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Abstract

Nowadays, with the advent of Unmanned Aerial Vehi-

cles (UAV), drones equipped with cameras have been fast

deployed to a wide range of applications. Consequently,

automatic and effective object detection plays an impor-

tant role in understanding and analysis of visual data col-

lected from the drones, which could be further applied to

civilian and military fields. However, various challenges

still exist in object detection of drone-based videos, such

as defocus, motion blur, occlusion and various variations

(e.g., illumination, view and size), leaving too weak visual

clues for successful detections. In this paper, we propose a

novel approach for object detection in drone-based videos,

which includes the multi-model fusion detection, an efficient

tracker and a new evaluation method for confidence of the

track, and the false positive analysis with scene-level con-

text information and inferences. The experimental results

on VisDrone2018-VID [44] dataset demonstrate the effec-

tiveness of the proposed approach.

1. Introduction

Drones equipped with cameras have been fast deployed

to a wide range of applications, which includes agriculture,

aerial photography, fast delivery, surveillance, etc. Conse-

quently, automatic understanding of visual data collected

from these platforms becomes highly demanding, involv-

ing recognizing the categories of objects in the scene, lo-

cating the objects and determining exact boundaries of each

object, which brings computer vision to drones more and

more closely [44]. The three corresponding research tasks

in computer vision are image classification [35], object de-

tection [34], and semantic segmentation [28]. Object detec-

tion is the most common task and has been attracting in-

creasing number of attention.

Over the past few years, with the rapid development

of deep learning, the convolutional neural network (CNN)
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Figure 1. Examples of the challenging frames in videos of

VisDrone2018-VID dataset.

has proven to be successful in detecting objects. Instead

of designing handcrafted features, CNN architecture has a

powerful ability of learning feature representations. Many

CNN-based detection frameworks are proposed and achieve

state-of-the-art results on PASCAL VOC [13] and COCO

[26]. Generally, they can be divided into two classical tech-

nology solutions, which are region-based methods [15, 34,

16, 6] and single shot methods [30, 27, 12, 37]. However,

directly utilizing these still image detectors on video ob-

jects remains a great challenge. The common frame degen-

eration problem usually appears in videos, which is more

frequently in aerial videos taken by moving cameras (e.g.,

cameras equipped on drones). As shown in Figure 1, the

challenging frames in drone-based videos (VisDrone2018-

VID [44]) may suffer from defocus, motion blur, occlusion

and various variations (e.g., illumination, view and size),

leaving too weak visual clues to successful detections.



Figure 2. Architecture of our detection system. It is a multi-stage

framework for video object detection task.

To tackle the challenges of object detection in drone-

based videos, one of the straightforward solutions is to con-

sider the spatial and temporal coherence in videos and uti-

lize the information from adjacent frames. Consecutive

video frames are highly similar, as well as their high-level

convolutional features [47, 23, 42]. Deep Feature Flow [46]

suggests to reuse the features of nearby frames to avoid

redundant feature computation, which can be exploited to

reduce time cost. This method involves a motion estima-

tion to propagate feature, which needs to predict per-pixel

motion by optical flow [18, 11, 5, 40, 19]. However, such

pixel-level feature propagation approach would be inaccu-

rate and sacrifice detection accuracy when the appearance

of object dramatically changes, especially when the object

is occluded, which occurs quite frequently in drone-based

videos. On the other hand, several existing methods exploit

temporal coherence on feature level by aggregating features

of adjacent frames [45, 39], which could enhance the fea-

tures of the low-quality frames in video but also need to

predict motion paths by flow estimation.

Our philosophy is that better and more efficient using

of temporal information is of great importance in drone-

based video object detection. Instead of exploring better

flow estimation methods, we introduce the strategy of track-

ing to assist detection. Current tracking-by-detection meth-

ods [1, 3, 29] for multi-pedestrian tracking indicate that

temporal information could be utilized to regularize the de-

tection results [20]. Therefore Kai [20] incorporates ob-

ject tracking into detection framework for ImageNet [10]

object detection in video (VID) task dataset. They track

high-confidence detection proposals bidirectionally across

the whole video clip, randomly perturb the boundaries of

tubelet boxes and utilize CNN-based detectors to rescore all

the candidate boxes. However, due to the large number of

challenging frames in drone-based videos, the tracker may

be easier to drift to background or other objects in a long

tracking interval, and it is not efficient to rescore all the

boxes by CNN-based detectors.

In this paper, we propose a novel approach for object de-

tection in drone-based videos, which includes a deep CNN

Figure 3. Architecture of F-SSD. The basic feature extractor of F-

SSD is VGG-16 and it is constructed with two multi-scale feature

fusion modules added to the original SSD. The two fusion layers

are conv12 1 and conv12 2. F-SSD generates locations of bound-

ing boxes and classifies objects from multiple feature maps in dif-

ferent layers densely and respectively. conv12 1 and conv12 2

are added to predict bounding boxes and object categories. Conv

1×1×256 denotes the convolutional operation with the size of ker-

nel 1×1, and the number of output channels is 256. p1 denotes

pad = 1, s2 denotes stride = 1.

detection method, an efficient tracking process and the false

positive analysis. The framework can be divided into three

stages: 1) CNN-based detectors are trained and utilized to

get the detection result of each frame with multi-model de-

cision fusion; 2) We exploit the strategy of short-term track-

ing and a new evaluation method for the confidence of track

to recall false negative objects; 3) False positive analysis is

conducted to remove wrong alarms with scene-level context

information and inferences.

2. Related Works

2.1. Object Detection in Still Images

Existing state-of-the-art methods for still image object

detection are mainly based on deep CNNs. They can be

simply divided into two categories based on whether ex-

tra region proposal modules are required, i.e., two-stage

and single-stage detectors. Two-stage object detectors have

been the leading paradigm of object detection in recent

years. The final detection result is generated by two stage:

First, generate a large number of region proposals that likely

contain objects of interest, and then classify the region pro-

posals as well as refine the coordinates [15]. Because the re-

gion proposal generation with selective search [38] is time-

consuming, Faster R-CNN [34] utilizes Region Proposal

Network (RPN) instead and merges the proposal genera-

tion, classification and bounding box regression into an end-



to-end architecture by sharing convolutional features. How-

ever, the computation and run-time memory cost is rela-

tively large for two-stage object detectors to generate re-

gion proposals. On the other hand, one-stage detectors re-

gard object detection as a regression problem that directly

predicts the locations and scores of bounding boxes in one

evaluation, such as YOLO series models [31, 32, 33], Sin-

gle Shot MultiBox Detector(SSD) [27] and RetinaNet [25].

YOLO [31] can easily make use of the spatial context in-

formation from the full image to reduce the false posi-

tives, but may not get an effective detection of small ob-

jects. YOLOv2 [32] involves the pre-defined anchors and

achieves a higher recall than its precedent. SSD generates

anchors densely from several different feature maps and

thus has much better performance on object detection with

multi scales. Most of the above-mentioned detectors are

anchor-based object detectors, but the pre-defined sizes and

aspect ratios of anchors may reduce the generalization abil-

ity of the model. FCOS [37], CenterNet [12] and CornerNet

[21] are anchor-free detectors, of which FCOS makes full

use of all points in the ground truth bounding box and sup-

presses the low-quality boxes by the proposed “center-ness”

branch, which brings comparable recall with anchor-based

detectors.

2.2. Object Detection in Videos

There have been video object detection methods that

consider the spatial and temporal coherence in videos, and

employ information from adjacent frames. Deep Feature

Flow [46] considers to reuse the features from nearby

frames to avoid redundant feature computation, which

should involve motion estimation to propagate features and

predict per-pixel motion by optical flow [18, 11, 5, 40, 19].

However, such pixel-level feature propagation approach

would be inaccurate and time-consuming, especially when

the appearance of object dramatically changes. This phe-

nomenon is quite frequently in drone-based videos. On the

other hand, several existing methods exploit temporal co-

herence on feature level by aggregating features from adja-

cent frames [45, 39], which could enhance the features of

the low-quality frames in videos but also need to predict

motion paths by flow estimation.

2.3. Object Tracking

As for visual object tracking, the mainstream mod-

els contain two types: 1) correlation filter based trackers

[17, 8, 41, 9, 7], and 2) Siamese network based trackers

[4, 2, 22]. For correlation filter based trackers, correlation

operation is conducted to calculate the maximum response

in the sub-region of current frame around object’s location

in the previous frame and get the updated location of the

object. They are extremely fast, and always do well in nat-

ural videos. However, for drone-based videos, the task is

still challenging because of the complexity and diversity of

scenes. Due to the powerful representation of feature, the

Siamese network based trackers have received increasing

attentions for their well-balanced tracking accuracy and ef-

ficiency, which could deal better with rotations, occlusions,

deformations and other appearance changes to avoid the

drift.

3. Method

Our detection system for drone-based videos employs

CNN-based detectors, tracking process and false positive

analysis. As shown in Figure 2, the entire system is a multi-

stage framework for object detection task. A detailed de-

scription is given in the following sections.

3.1. Still Image Object Detection

The CNN-based detectors of our proposed framework

are derived from SSD [27] and FCOS [37] that predict

bounding boxes and corresponding object categories of

each frame with the multi-model decision fusion strategy,

which is more robust compared to the single model that may

generate much more false negative objects. As shown in

Figure 2, we utilize FCOS model for its great performance

in detecting small objects(e.g. pedestrian, person and mo-

tor), and a multi-scale feature fusion technique is applied

to original SSD (just called F-SSD). F-SSD generates loca-

tions of bounding boxes and identifies the category of ob-

jects from multiple feature maps of different layers densely

and respectively. In order to aggregate low-level features

with more accurate details and high-level features with se-

mantic information, we implement a feature fusion mod-

ule that concatenates multi-scale feature maps, of which the

specific details are described in Figure 3.

As shown in Figure 3, we add two multi-scale feature

fusion modules to the original SSD and the basic feature

extractor is VGG-16 [36]. In feature fusion module 1, we

add convolution layer conv12 1 1 after layer conv4 3 and

deconvolution layer conv12 1 2 after layer fc7, then the

first fusion layer conv12 1 is generated by the concate-

nation of conv12 1 1 and conv12 1 2. In feature fusion

module 2, convolution layers conv12 2 1 and deconvolu-

tion layers conv12 2 2 are added after layer fc6 and layer

conv8 2 respectively, and the same concatenation method is

utilized to construct the second fusion layer conv12 2 from

conv12 2 1 and conv12 2 2. Subsequently, the two fusion

layers are added to predict locations and categories, which

improves the feature representation capacity of model to

cover kinds of objects with different scales and shapes.

At the multi-model decision fusion stage, we conduct a

decision fusion on the detection results obtained from F-

SSD and FCOS, which could improve the accuracy com-

pared with the single model in our experiments. The deci-

sion fusion ratio of the two models is 1:1. Afterwards, we
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Figure 4. The architecture of SiamFCOS. It is an end-to-end fully convolutional network based on the structure of SiameseFC [4] and three

Siamese FCOS modules. The input feature maps of the three modules are from layers conv3 3, conv4 6 and conv5 3 of the backbone

network ResNet-53 respectively. Each Siamese FCOS module has three branches for different prediction tasks of regression, center-ness

and classification. We concatenate the last layer’s feature maps of all the regression branches from the three modules and involve in one

1×1 convolutional operation to generate an new branch for regression, and we also get an new branch for center-ness and an new branch

for classification in the same manner.

exploit non maximum suppression(NMS) to reduce the re-

dundancy of predicted boxes, and the thresholds of NMS

for interclass and intraclass objects are different.

3.2. Object Tracking

We propose a one-stage fully convolutional network

for tracking based on the structure of SiamFC [4], called

SiamFCOS. Figure 4 shows its overall structure and the

backbone network is ResNet-53, which is the same as

SiamRPN++ [22]. Both shallow and deep features of the

network are considered of equal importance, so the back-

bone network has three multi-level feature outputs in the

layers conv3 3, conv4 6 and conv5 3 respectively. Each of

the three layers is utilized subsequently as the input for the

Siamese FCOS module. As shown in Figure 4, we replace

the original anchor-based regression branch in SiamRPN++

with an anchor-free regression branch, and regress the dis-

tances from each location to the four sides of bounding box.

Moreover, a “Center-ness” sub-branch [37] is added to infer

the center of object. In [37], the Center-ness branch is par-

allel to the classification branch and used to suppress low-

quality boundary boxes. We hope that the predicted value

corresponding to the pixels near the center point of object

will approach to 1 and the pixels far from the center point of

object will approach to 0 in the Center-ness branch. There-

fore, the predicted value of this branch will be (1).

centerness = 2

√

min(L,R)

max(L,R)
∗
min(T,B)

max(T,B)
(1)

where L, T, R, and B represent the distances of the corre-

sponding pixel in the input image from the left, upper, right,

and lower boundary of the ground truth bounding box re-

spectively.

In Figure 4, the object template Z is a small rectangular

image block that contains the object and the search area X

is an almost two times larger image block in current frame

to find the designated object in. After the object template

Z and the search area X get three levels of feature maps

through the backbone network ResNet-53, the feature maps

are separately utilized as the input of three Siamese FCOS

modules. In one of the three modules, F(z) and F(s) denote

the corresponding level of feature maps from Z and X. The

structure of Siamese FCOS module is shown in Figure 5,

of which the left describes all the components of the mod-

ule and the connection relationship between them, such as

Adj 1, Corr 1, Box head and so on. These components are

described in detail in the right of Figure 5 with the corre-

sponding color. The correlation operation is the same as that

in SiamRPN++ [22]. (L, T, R, B), S and C denote the out-

put feature maps of the regression, classification and center

branch of one Siamese FCOS module respectively. Then,

we concatenate (L, T, R, B), S and C from the three modules

and employ one 1×1 convolutional operation to generate
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Figure 5. The structure of Siamese FCOS module. The left describes all the components of the module and the connection relationship

between them. The right shows the specific details of the components with the corresponding color. Conv 3×3×256 p1 + s1 + BN denotes

the convolutional operation with the size of kernel 3×3, and the number of output channels is 256. pad = 1, stride = 1. BN and ReLU

denote the operation of Batch Normalization and ReLU motivation.

new output feature maps to predict the locations and cate-

gories of objects. The process of prediction is the same as

FCOS [37].

In this paper, we utilize the strategy of short-term track-

ing, which is different from T-CNN [20]. The objects with

detection confidence larger than a pre-defined threshold are

chosen as the starting point for tracking, and the tracking

process continues for K frames(K ≤ 25). We calculate the

score St of trajectory to determine whether the tracking is

valid by:

St =
1

2
(λ1IK + λ2IK-m + λ3IK-2m)

s.t.λ1 + λ2 + λ3 = 1
(2)

where IK, IK-m and IK-2m denote the maximum value of in-

tersection over union (IoU) between the Kth, (K-m)th, (K-

2m)th bounding box of the tracking object along the trajec-

tory and the detections of same class in the corresponding

frame of video respectively. λ1, λ2, λ3 are the weights. The

equation (2) has a premise that the confidence of the Kth,

(K-m)th, or (K-2m)th bounding box of the tracking object

should be larger than 0.7. In this paper, if St ≥ 0.6, the

tracking trajectory is valid and the added bounding boxes

will be fused with the detection result by NMS.

3.3. False Positive Analysis

Removing outliers by inferring video shooting di-

rection.The camera on a drone generally takes images or

videos of the objects of interest at a relatively long distance.

Therefore, we can infer the shooting direction of video

through observing the changes in size of the objects be-

longing to the same class in different regions of the frames.

Based on the distribution of size along the shooting direc-

tion, we can eliminate the false detections with abnormal

size. By comparing the sizes of boxes of each category

in different areas of the same frame, it can be determined

whether the camera’s shooting direction is overlooked or

not. In the former situation, there is no distinct difference
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Figure 6. A part of object detection results with the proposed method. In one given frame, bounding boxes in different colors are used to

mark different objects detected by the proposed method.

in the sizes of boxes of same category. However, in the lat-

ter situation, the sizes of boxes are smaller if they are far

away from the camera and the objects with abnormal size

in specific regions can be found.

Removing false detections by considering context in-

formation of video. Directly applying still-image object

detectors to video will waste the context information. The

statistics of detection result is useful for us to suppress false

positive detections. Given a drone-based video, we count

the number of objects of a certain category from the result

of detection by still image object detectors . If the number

of objects of the specified category is samller than 10 per-

cent of the video frames, it indicates a very high probability

of the objects of this category not existing in the scene of

video (e.g. the truck or bus doesn’t appear in pedestrian

streets).

The objects in a video should be strongly correlated,

which can help us to find out the false detections in the

background. For each object in a frame, we calculate the

number of its neighbors within a rectangular region of size

225 × 225 centered on it. If more than 80 percent of the

objects have at least 3 neighbors, it means the objects in the

frame are concentrated. Under this premise, the isolated ob-

ject whose number of neighbors is less than 3 and detection

score is lower than 0.5 can be regarded as a false detection.

4. Experiments

We propose an efficient approach for object detection

in drone-based videos, which includes still image object

detection, object tracking and false positive analysis. To

demonstrate the performance of the proposed method, we

empirically evaluate it on the publicly available dataset:

VisDrone2018-VID [43]. The dataset is challenging since

the objects are multi-category and multi-scale with complex

backgrounds.

4.1. Dataset

VisDrone2018-VID [43] consists of 96 challenging

video clips for the detection task, including 56 clips for

training (24201 frames in total), 7 for validation (2819

frames in total) and 33 for testing (12968 frames in to-

tal). The videos in the three subsets are captured by vari-

ous drone platforms at different cities in China, and share

similar environments and attributes. The maximal resolu-

tion of video clips is 3840 × 2160 and ten object categories

of interest are mainly defined, including pedestrian, person,

car, van, bus, truck, motor, bicycle, awning-tricycle, and tri-

cycle. The models in this paper are evaluated on the test

set.
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Figure 7. The influence of tracking process. (a) shows examples of detection results before using the proposed tracking strategy. It is

found that some people on the motor or tricycle are not detected due to their small size, as well as the buses in the distance. (b) shows

examples of detection results after using the proposed tracking strategy and we can find that the missing objects are recalled through the

tracking process.

4.2. Parameter Settings or Implementation Details

Data augmentation is performed to increase the num-

ber of annotated images with corresponding objects, which

plays an important role in reducing over-fitting in the train-

ing process and improving the generalization ability of

model. In our experiments, random flip horizontally or ver-

tically and random rotation are adopted. For VisDrone2018-

VID, we crop in the provided images of train set with the

object as the center and balance positive samples among

each class with data augmentation. The models were trained

on Linux workstation with Intel Xeon E5-2630 v3 2.4 GHz

CPU and two NVIDIA GeForce GTX 1080 GPUs.

F-SSD predicts locations and categories of objects di-

rectly using an end-to-end neural network. We choose the

VGG-16 as a feature extractor, which was pretrained on

ImageNet [10] classification task. The image input size is

300 × 300 and multiple feature maps from different layers

are used to make predictions respectively. We utilize the

stochastic gradient descent (SGD) with 0.9 momentum and

weight decay of 0.0005. The learning rate starts from 10−3

and then decays by a factor of 5 at the iteration step of 50k,

80k and 110k. We set the maximum training iteration step

as 120k and use mini-batch size of 25. Besides, we train the

anchor-free model of FCOS with the input size of 1000 ×

1000 and the batchsize of 28. The base model is ResNet-50

pretrained also on ImageNet classification task. The learn-

ing rate is initialized to 0.01 and decays by a factor of 10

at the iteration step of 60k and 80k. The maximum training

iteration step for FCOS is 90k. When testing, at the multi-

model decision fusion stage, we employ non maximum sup-

pression (NMS) process to fuse the detections from F-SSD

and FCOS. The NMS threshold is set as 0.6 for objects be-

longing to different categories and 0.4 for objects of same

categories.

SiamFCOS is trained based on Resnet-53, which was

pretrained on ImageNet datasets. The objects from detec-

tion with the confidence higher than 0.85 are chosen sepa-

rately as the start tracking objects. The sizes of object tem-

plate Z and search X are 127 × 127 and 255 × 255 respec-

tively. Z is a small rectangular image block that contains the

object and the search X is an almost two times larger image

block in current frame to find the designated object in. You

can find more detailed information in SiamFC[4] about how

to select them as the input of a siamese network for track-

ing. SiamFCOS is finetuned on the augmented train dataset

from VisDrone2018-VID. The initial learning rate is 0.01

and decreases exponentially with the step. The batchsize is

32 and the maximum training iteration step is 150k. When

testing, the trajectory’s length K is set as 20, and m is 5. λ1,

λ2 and λ3 are 0.5, 0.3 and 0.2 respectively.

5. Results

In this section, the proposed approach is compared with

CenterNet [12], CornerNet [21], FPN [24], D&T [14],

FGFA [45] and Faster-RCNN [34]. The mean Average Pre-

cision (mAP) is used to quantitatively evaluate the perfor-

mance of the proposed method and comparison algorithms.

Following the evaluation protocol in MS COCO [26], we

use AP IoU=0.50:0.05:0.95, AP IoU=0.50, and AP IoU=0.75

metrics to evaluate the results of detection algorithms [43].



Method mAP(%) AP(0.5)(%) AP(0.75)(%)

CenterNet[12] 15.75 34.53 12.1

CornerNet[21] 16.49 35.79 12.89

FPN[24] 16.72 39.12 11.8

D&T[14] 17.04 35.37 14.11

FGFA[45] 18.33 39.71 14.39

Faster-RCNN[34] 14.46 31.8 11.2

ours 18.73 44.38 12.68

Table 1. The mean Average Precision of different methods on the

VisDrone2018-VID test dataset. AP(0.5) denotes the mean Aver-

age Precision computed at the IoU threshold of 0.5.

Specifically, AP IoU=0.50:0.05:0.95 is computed by averag-

ing among all 10 intersection over union (IoU) thresholds

(i.e., in the range of [0.50 : 0.95] with the uniform step size

of 0.05) of all categories, which is used as the primary met-

ric for ranking [43]. AP IoU=0.50 or AP IoU=0.75 is com-

puted at the single IoU threshold of 0.50 or 0.75 over all

categories respectively.

Our work is based on a multi-stage structure to detect

objects with different sizes in drone-based videos. TABLE

1 shows the mAP of our method and comparison algorithms

on the test set of VisDrone2018-VID and Figure 6 shows

the object detection results in examples of frames using the

proposed approach.

As observed in Table 1, in terms of mAP over all ten

object categories, the proposed approach outperforms all

the comparison algorithms. Figure 7 shows the influence

of tracking process through the comparison of example

frames, of which the left displays the results before using

the proposed tracking strategy. It can be found that the

people riding the motor or tricycle is recalled through the

tracking process, as well as the bus in Figure 7(b), which

indicates that the tracker is able to alleviate the problem

of missed detection caused by motion blur, illumination

change, and dimensional change. Figure 8 and 9 show the

process of false positive analysis to eliminate the false de-

tections by considering context information of video. As

shown in Figure 8, the view of frame is overlooking, which

can be inferred through comparing the size of cars. There-

fore, the object in the red circle is a false positive detection

of bus since its size is an outlier in the scene. In addition, the

shooting direction of the frame in Figure 9 can be inferred

through observing the changes in size of cars in different

regions. The objects in red circle are far away from the con-

centrated region and have abnormal sizes. Subsequently,

these false positive objects will be filtered out if their confi-

dence are lower than the threshold.

6. Conclusion and Future Work

In this paper, we propose a novel approach for object de-

tection in drone-based videos, which includes deep CNN

detection, efficient tracking process and false positive anal-

Figure 8. The influence of false positive analysis. The view of

frame is overlooking and the false positve detection of bus in the

red circle can be found based on whether its size is in a specific

range.

Figure 9. The influence of false positive analysis. The shooting

direction of frame can be inferred through observing the changes

in size of cars in different regions. The false positive object in the

red circle can be found and filtered out if the size of it is abnormal

and the confidence is lower than the threshold.

ysis. The deep CNN detection exploits multi-model de-

cision fusion strategy from F-SSD and FCOS. The effi-

cient tracking process involves the tracker named SiamF-

COS and an evaluation method for confidence of the track

to recall false negative objects. At last, we utilize false

positive analysis with scene-level context information and

inferences to remove wrong alarms. The proposed frame-

work presents a remarkable performance on the publicly

available VisDrone2018-VID dataset. In future work, we

will continue to improve the proposed approach for better

detection performance. A better detector is needed in the

first stage, based on which the performance of detection can

be improved greatly through the tracking process and false

positive analysis. Some small objects are lost due to the

implementation of pooling. Therefore, we will consider de-

signing a module to obtain richer information for accurate

localization and classification of small objects.
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[8] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Dis-

criminative scale space tracking. IEEE Transactions on

Pattern Analysis & Machine Intelligence, 39(8):1561–1575,

2017.

[9] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.

Beyond correlation filters: Learning continuous convolution

operators for visual tracking. 2016.

[10] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li.

Imagenet: A large-scale hierarchical image database. Proc

of IEEE Computer Vision & Pattern Recognition, pages 248–

255, 2009.

[11] A. Dosovitskiy, P. Fischery, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. V. D. Smagt, D. Cremers, and T. Brox. Flownet:

Learning optical flow with convolutional networks. In IEEE

International Conference on Computer Vision, 2015.

[12] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. Cen-

ternet: Keypoint triplets for object detection. 2019.

[13] M. Everingham and J. Winn. The pascal visual object classes

challenge 2007 (voc2007) development kit. International

Journal of Computer Vision, 111(1):98–136, 2006.

[14] C. Feichtenhofer, A. Pinz, and A. Zisserman. Detect to track

and track to detect. 2017.

[15] R. Girshick. Fast r-cnn. Computer Science, 2015.

[16] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.

IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, PP(99):1–1, 2017.

[17] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE

Transactions on Pattern Analysis & Machine Intelligence,

37(3):583–596, 2015.

[18] B. K. P. Horn and B. G. Schunck. Determining optical flow.

Artificial Intelligence, 17(1-3):185–203, 1980.

[19] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE Conference on Computer Vi-

sion & Pattern Recognition, 2017.

[20] K. Kai, W. Ouyang, H. Li, and X. Wang. Object detec-

tion from video tubelets with convolutional neural networks.

IEEE Transactions on Circuits & Systems for Video Technol-

ogy, PP(99):1–1, 2016.

[21] H. Law and D. Jia. Cornernet: Detecting objects as paired

keypoints. 2018.

[22] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan.

Siamrpn++: Evolution of siamese visual tracking with very

deep networks. 2018.

[23] S. Lin, K. Jia, T. H. Chan, Y. Fang, W. Gang, and S. Yan. Dl-

sfa: Deeply-learned slow feature analysis for action recog-

nition. In IEEE Conference on Computer Vision & Pattern

Recognition, 2014.

[24] T. Y. Lin, P. Dollár, R. Girshick, K. He, and S. Belongie.

Feature pyramid networks for object detection. 2016.

[25] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal

loss for dense object detection. IEEE Transactions on Pat-

tern Analysis & Machine Intelligence, PP(99):2999–3007,

2017.

[26] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. 2014.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y.

Fu, and A. C. Berg. Ssd: Single shot multibox detector. 2015.

[28] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. IEEE Transactions

on Pattern Analysis & Machine Intelligence, 39(4):640–651,

2014.

[29] H. Possegger, T. Mauthner, P. M. Roth, and H. Bischof. Oc-

clusion geodesics for online multi-object tracking. In Com-

puter Vision & Pattern Recognition, 2014.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. 2015.

[31] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Com-

puter Vision & Pattern Recognition, 2016.

[32] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In IEEE Conference on Computer Vision & Pattern Recogni-

tion, 2017.

[33] J. Redmon and A. Farhadi. Yolov3: An incremental improve-

ment. 2018.

[34] S. Ren, R. Girshick, R. Girshick, and J. Sun. Faster r-cnn:

Towards real-time object detection with region proposal net-

works. IEEE Transactions on Pattern Analysis & Machine

Intelligence, 39(6):1137–1149, 2017.

[35] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. Computer Sci-

ence, 2014.

[36] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. Computer Sci-

ence, 2014.

[37] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convolu-

tional one-stage object detection. 2019.

[38] Uijlings, R. R. J., V. D. Sande, E. A. K., Gevers, Smeulders,

and W. M. A. Selective search for object recognition. Inter-

national Journal of Computer Vision, 104(2):154–171, 2013.

[39] S. Wang, Y. Zhou, J. Yan, and Z. Deng. Fully Motion-Aware

Network for Video Object Detection. 2018.

[40] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.

Deepflow: Large displacement optical flow with deep match-

ing. In IEEE International Conference on Computer Vision,

2014.



[41] L. Yang and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. 2014.

[42] Z. Zhang and D. Tao. Slow feature analysis for human

action recognition. IEEE Trans Pattern Anal Mach Intell,

34(3):436–450, 2012.

[43] P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu. Vision meets

drones: A challenge. CoRR, abs/1804.07437, 2018.

[44] P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, and Q. H. et al.

Visdrone-vdt2018: The vision meets drone video detection

and tracking challenge results. In Computer Vision - ECCV

2018 Workshops - Munich, Germany, September 8-14, 2018,

Proceedings, Part V, pages 496–518, 2018.

[45] X. Zhu, Y. Wang, J. Dai, Y. Lu, and Y. Wei. Flow-guided

feature aggregation for video object detection. 2017.

[46] X. Zhu, Y. Xiong, J. Dai, Y. Lu, and Y. Wei. Deep feature

flow for video recognition. In Computer Vision & Pattern

Recognition, 2017.

[47] W. Y. Zou, S. Zhu, A. Y. Ng, and Y. Kai. Deep learning of

invariant features via simulated fixations in video. In Inter-

national Conference on Neural Information Processing Sys-

tems, 2012.


