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Abstract

In this paper, we present an indoor crowd detection net-

work framework based on feature aggregation module and

hybrid attention selection module (HSFA2Net). In order to

better provide the details needed for small scale pupula-

tion detection, we propose a novel feature aggregation mod-

ule (FAM), which uses the idea of fusion and decomposi-

tion to aggregate contextual feature information. Since the

indoor population feature and background feature overlap

and the classification boundaries are not obvious, the pro-

posed improved hybrid attention selection module (HASM)

combines the selection mechanism with the previously pro-

posed mixed attention module. Ultimately, we implement

an indoor crowd detection network framework and achieve

a recall rate of 0.92 and an F1 score of 0.92 on a public

dataset SCUT-HEAD.

1. Introduction

The indoor crowd detection task, like the outdoor crowd

couting task, has important research value in many real-

world aspects such as teaching management, security alert-

ing, event planning, etc. In recent years, there are two main

deep leaning based approaches have been the mainstream

of crowd couting, due to the powerful representation learn-

ing ability of convolutional neural networks (CNNs). One

is the method of directly obtaining the count through regres-

sion [22, 30, 27], which can only predict the rough number

of indoor crowd, but ignore other information such as be-

havior, movement trend and so on. In order to improve the

above problems, researchers have recently inceased their fo-

cus on the use of detection [18, 9], which contains rich se-

mantic information. Previously, human detection methods

were mainly divided into two categories, one was pedestrian

Figure 1. Indoor heads detection challenges.

detection [34, 15] and the other was face detection [17, 10].

Nevertheless, face detection can only detect forward and

side faces, and pedestrian detection has a poor ability to

distinguish between occluded people. In this paper, we pro-

pose a strategy based on head detection to compenstate for

the drawbacks of face and pedestrian detection, which con-

tains both positioning and couting information. However, as

illustrated in Figure 1, there are still two major challenges

in head detection.

The first major challenge is the diversity of head-scale

dimension, especially for small-scale head. As illustrated

in Figure 1, the scale of head can very significantly, which

change from littleness to largeness. Such large scale pat-

tern shifts usually bring grand challenges to head detection

by a single CNN model, due to its fixed size of receptive

fields. Remarkable progress has been achieved by learning a

multiscale detector through designing multi-scale architec-

tures [32] or aggregating multi-scale features [14, 21, 11].

Although these methods all generate a multi-scale detector

with good performance, these methods combine the feature

maps of multiple scales and directly use them to detect ob-

jects. The contribution rate of the merged features to objects



of different scales is not well considered. In this paper, we

propose a simple yet effective method to mitigate the prob-

lem. The core idea is to decompose the aggregated features

according to different scales of the head. Features contain-

ing rich context information are first fused through feature

aggregation module to compensate for information detects

between different layers of the CNNs. Then, according to

the different scales of the head, the features including recep-

tive field information are obtained by cascaded dilate con-

volution decomposition for final detection.

The second challenge is that in an indoor scene, the char-

acteristics of the head are similar to the surrounding back-

ground features, especially in image patches that are far

from the camera. As shown in Figure 1, the low-level fea-

tures of the head’s color, shape, and pixel mean overlap

exactly with other objects in surrounding background. To

overcome this problem, researchers have introduced atten-

tion mechanisms that force the network to focus on narrow

areas associated with the target, ignoring interference from

other background areas. Nevertheless, the previously pro-

posed attention method only extracts the distribution of ob-

ject information in the feature map from the channel dimen-

sion [7], the spatial dimension [28] or the mixed dimension

[29], and does not consider the synergistic contribution and

redundant information between the attention modules. In

this paper, we propose a attention selection mechanism that

works on a improved hybrid attention module (HASM). In

particular, the proposed method consists of two steps. First,

the input feature stream is respectively enhanced by the im-

proved spatial and channel modules. Second, the enhanced

feature is weighted and merged through the selection mod-

ule.

Experiments are conducted on open indoor crowd detec-

tion datasets, including SCUT-HEAD [], Brainwash Dataset

[24]. Extensive evaluations demonstrate superior perfor-

mance over the prior arts. To summarize, the following are

our main contributions:

• We propose an improved feature aggregation module

that obtains accurate feature information by means

of aggregate decomposition for objects of different

scales, thereby improving detection performance.

• We propose a attention selection mechanism that acts

on the improved hybrid attention module to preserve

redundant attention while maintaining different levels

of attention-enhancing performance.

2. Related Works

Due to the limited indoor space and the small number

of people, unlike outdoor crowd counting, indoor crowd

counting uses a detection-based approach that is more ad-

vantageous in terms of accuracy and subsequent applica-

tion processing. Early methods for indoor crowd detection

are mostly low-level feature extraction and detection, such

as Haar [4], sobel [4] etc. Recently, with the development

of deep learning, the mainstream crowd counting methods

switch to CNN-based methods.

2.1. Deep ConvNet object detectors

Recently, there are two main ideas for object detection

algorithms based on deep learning. The first type is a two-

stage detector, such as R-CNN [5], Fast-RCNN [4], Faster-

RCNN [20], R-FCN [2]. This type of method is to select the

candidate region of the object and perform coarse screening,

and then perform object classification and bounding box re-

gression on the selected candidate regions. Although this

type of method has high detection accuracy, it has a long

inferred time and takes up high memory. The second cat-

egory is single-stage detection algorithms including: SSD

[14], YOLO [19]. This type of method produces the bound-

ing box and category of the object directly from the image.

The inference of such methods is fast, but the accuracy of

object detection is especially poor for small objects.

2.2. Methods using multiple layers

Researchers have put plenty of efforts into improving the

detection accruancy of objects with various scales no mat-

ter what kind of detector it is, either an single-stage detec-

tor or a two-stage one. To the best of our knowledge, there

are mainly two strategies to tackle this scale-variation prob-

lem. The first one is featurizing image pyramids to pro-

duce semantically representative multi-scale features, such

as: MTCNN [32], SNIP [23]. The second one is detecting

object in the feature pyramid extracted from inherent lay-

ers within the network while merely taking a single-scale

image including: MS-CNN [1], DSSD [3], FPN [11], Reti-

naNet [12].

2.3. Attention mechanism

Attention is a mechanism that mimics the processing

tasks of the human brain. When the human brain processes

tasks, it only focuses on the task itself and ignores other

non-task interferences. The attention mechanism was first

widely used in the field of natural language processing, such

as natural language inference [16], text representation [25],

sentence embedding [13] and so on. Meanwhile, the atten-

tion modules are also increasingly applied in the image vi-

sion field including: Image classification [8, 26], object de-

tection [6], video tracking [35], super-resolution image gen-

eration [31] and so on. In these tasks, the attention mecha-

nism is embedded in the different locations of the network

as modules, and can be well migrated to other tasks.



Figure 2. The overall architecture of HSFA2Net.

3. Proposed Method

3.1. Overview

The overall pipeline is depicted in Figure 2, consisting

of two modules: 1) Feature aggregation module (FAM) pre-

sented in Sec. 3.2. We leverage multi-scale feature fusion to

generate an initial feature map, which provides an accurate

prediction and location on image. And then, according to

the scale of different objects, the cascading hole convolu-

tion is used to construct the decomposition structure to ob-

tain the feature information with different receptive fields;

2) Hybrid attention selection module (HASM) detailed in

Sec. 3.3. The input feature information contains rich se-

mantic information of the head and similar objects in the

surrounding background. Therefore, it is necessary to first

filter the target information through the improved mixed at-

tention module proposed in this paper, and then use the pro-

posed selection mechanism to reduce the redundant infor-

mation. The whole network is end-to-end trainable and the

training loss is presented in Sec. 3.4.

3.2. Feature Aggregation Module

Many previous multi-scale methods have proven to per-

form well in small object detection. Therefore, We fol-

low the mainstream object detection methods by aggregat-

ing multi-scale feature. Empirically, we define an object as

small when the area it occupies in images is smaller than

32× 32 (the area is measured as the number of pixels in the

segmentation mask). In the indoor crowd detection task,

many people’s head areas are smaller than this size. Tak-

ing VGG16 as the backbone network as an example, since

the image is downsampled by convolution and pooling, the

feature information of the small-sized object can only be

transmitted to the middle layer Conv7 and disappears in the

deeper layer afterwards. Therefore, instead of simply fus-

ing multi-scale feature layers, we filter the feature layers

that need to be fused based on the most remoteness that

the smallest object feature information can propagate. Due

to the lack of sufficient information, human beings are si-

multaneously assisting in the observation of small objects

by means of surrounding features. We propose a feature

decomposition method to mimic such human behavior for

indoor crowd detection. Using the receptive field charac-

teristics of the dilate convolution, we assign large receptive

fields to small objects and small receptive fields to larger

objects. Finally, we unify feature fusion and feature decom-

position in a feature aggregation module.

The detailed structure of the feature fusion module is

shown in the Figure 3. To reduce computational complex-

ity and memory consumptionthe, feature fusion module first

uses the 1× 1 convolution to construct the bottleneck layer

for channel normalization of the middle layer (conv4 3-

conv7 2). In order to reduce the loss of spatial informa-

tion, we directly reduce the size of the shallow conv3 3 us-

ing the bilinear down-sampling operation. Deconvolution

can infer the activation information of the previous layer of

convolution. Therefore, it can preserve the target semantic

information well in the process of sampling on the feature

layer, and reduce the interference of background semantic

information. We use deconvolution to upsample the mid-

dle layer (fc7-conv7 2) features, then, element-level sum-

mation to fuse each of the upsampled middle-tier features

to obtain a high-level semantic layer. Finally, we use the

concate operation to connect the rich detail layer and the

rich semantic layer to obtain the fusion features that contain

global context information. Each of the convolution and de-

convolution layers is followed by a ReLU layer.

In order to increase the information of small objects, we

use the dilate convolution to construct the feature decompo-

sition module, as shown in the Figure 4. Precisely, we use a

3 × 3 dilate convolution with a dilate ratio of 1, 2, 5 and a

1× 1 standard convolution to decompose the input features



Figure 3. Feature Fusion Module architecture.

Figure 4. Feature Decomposition Module architecture.

and then use element-level summation to combine decom-

position features for reconstructing feature layers contain-

ing different receptive field information.

3.3. Hybrid Attention Selection Module

Figure 5. Hybrid Attention Selection Module.

We design a hybrid attention selection module for ex-

tracting key features. As shown in Figure 5, the input fea-

ture map fi ∈ R
H×W×C extracts the channel attention map

Cfi ∈ R
1×1×C with large target contribution rate through

the channel attention module; Simultaneously, the spatial

attention module is used to extract the two-dimensional spa-

tial attention map Sfi ∈ R
H×W×C to obtain the region

with the highest correlation between the image and the tar-

get; Ultimately, we use the attention module in SEnet to

Figure 6. Channel Attention Module architecture.

build our attention selection module to obtain the final out-

put f̂i ∈ R
H×W×C . In the following, we will describe the

improved channel attention module, spatial attention mod-

ule and attention selected module in detail.

For different object, the feature maps of different chan-

nels have different contribution rates to key information.

Channel attention is focused on the contribution of different

channels. Therefore, this paper improves a structure for ex-

tracting the intrinsic relationship between channel and ob-

ject, as shown in Figure 6. In order to learn only the contri-

bution rate of different channels, the global average pooling

method is generally used to compress spatial information.

we also introduce the global maximum pooling operation at

the same time. The global maximum pooling can obtain the

most distinguishing features between channels, which can

help to infer more detailed channel attention. First, channel

attention module uses the global average pooling and the

global maximum pooling to generate different spatial de-

scription features: M c
ave ∈ R

1×1×C , M c
max ∈ R

1×1×C .

The merged channel description feature M c
merge is then

added by pixel-level addition. The merged channel descrip-

tion feature is fed into a multi-layer perceptron (MLP) to

obtain the final channel attention map. In order to compress

the parameters, this paper sets a compression ratio (dilate

ratio), and through experiments, the parameter is finally set

to 16. Finally, the process of attention extraction for the

entire channel can be described as follows:

M c
merge(fi) = M c

ave(fi) +M c
max(fi) (1)

Cfi = σ(W1W0(M
c
merge(x))) (2)

In Equ. 1, σ(.) is the sigmoid function. The principle

of choice is that the channel attention extraction process be-

longs to a generalized two-class classification problem. The

weight of the multi-layer perceptron: W0 ∈ R
C×C/r,W1 ∈

R
C/r×C , W0 is activated with the nonlinear activation func-

tion ReLU.

The spatial attention is mainly to find the areas of the fea-

ture map that are important to the key information, which is

a supplement to the attention of the channel. Since ordi-

nary convolution operations are limited by the size of the

convolution kernel, only the intrinsic association of fea-

tures within the domain can be considered, and the cor-

relation of similar features in the global region cannot be

considered. Therefore, in order to obtain the contribution



Figure 7. Spatial Attention Module architecture.

Figure 8. Attention Selected Module architecture.

of the global region to the key information, we design a

improved spatial attention structure, as shown in Figure 9.

First, the input feature map fi ∈ R
H×W×C uses the global

maximum pooling and the global average pooling to gen-

erate two new feature descriptions: Ms
ave ∈ R

H×W×1,

Ms
max ∈ R

H×W×1, then fuses the new feature descrip-

tion through the concate operation, and finally obtains the

spatial attention map through a standard convolution. The

entire attention extraction process is described as follows:

Ms
merge(fi) = [Ms

ave,M
s
max] (3)

Sfi = σ(f3×3Ms
merge(fi)) (4)

Through the spatial attention module and the channel at-

tention module, the input features will separately obtain dif-

ferent attention-enhancing information. Enhanced features

will introduce redundant information if they are directly

fused. Therefore, inspired by the gating idea in SEnet, we

design the attention selection module. As shown in Fig-

ure 8, we merge the enhanced features through the concate

operation, and then, the sequeeze and excitation operation

is used to obtain weights for different attention modules. Fi-

nally, output features are obtained through pixel-level sum-

mation. As shown in the Figure 9, the left side is the original

image, the right side is the shallow feature map of the SSD

and the partial shallow layer feature of the HSFA2Net with

the attention mechanism added. It can be seen that the at-

tention module designed in this paper enhances the seman-

tic information and detail location information of the target

area in the feature map.

3.4. Training Loss

The whole network is end-to-end trainable, which in-

volves two loss functions: 1) location loss Lloc is used to

Figure 9. Our method, SSD part shallow feature map visualization.

calculate the difference between the object position pre-

dicted by the network and the ground truth label; 2) classi-

fication loss Lcls is used to indicate the degree of matching

between the predicted object category and the ground truth

label. The final loss function L for the whole network is the

combination of the above two losses given by

L =
1

N
Lcls + αLloc (5)

In Equ. 5, the hyperparameter α is a balance factor used

to balance the effects of classification loss and location loss

on the final structure. Here we select α = 1 based on mul-

tiple experiments. N = 0 is the default number of frames

matched. If N = 0, the set loss is 0.

The location loss in this paper is also the same as the

previous detection methods using the smooth L1 loss. The

deteail is shown below:

Lloc(x, l, g) =

N∑

i∈Pos

∑

m∈{cx,cy,w,h}

xk
ijsmoothL1(l

m
i − ĝmj )

where ĝcxj = (gcxj − dcxi )/dωi ĝcyj = (gcyj − dcyi )/dhi

ĝcxj = (gcxj − dcxi )/dωi ĝcyj = (gcyj − dcyi )/dhi

(6)

where (cx, cy) is the center point of the detection box,

and ω and h define the detection box’s width and height.

We use l to represent the predicted box position value and g

to represent the position value of the real box.

We adopt multi-class confidence loss as the classification

loss function of this paper.

Lconf (x, c) =

N∑

i∈Pos

x
p
ij log(ĉ

p
j )−

∑

i∈Neg

log(ĉ0i )

where ĉ
p
i =

exp(cpi )∑
p exp(c

p
i )

(7)

4. Experiments

4.1. Experimental Setup

All models are trained on Tesla M40 GPU. Before the

training phase, we use random horizontal flip, random



brightness and data normalization as data preprocessing.

Our method uses the SSD300 [33] pre-trained parameters

on MSCOCO for parameter initialization. In the training

phase, we use the stochastic gradient descent optimizer, the

momentum is set to 0.9, and the weighting regularization

parameter is set to 0.0005. The initial learning rate is set

to 0.001. When training 80k, the learning rate drops to 1e-

4, and after training for 20k, the learning rate was finally

adjusted to 1e-5.

4.2. Datasets and Evaluation Metrics

SCUT-HEAD. This is a large-scale head detection

dataset, which follows the standard of Pascal VOC, includ-

ing 4405 images labeld with 111251 heads. This dataset

consists of two parts. PartA includes 2000 images sampled

from monitor videos of classrooms in an university with

67321 heads annotated. PartB includes 2405 images crowd

from Internet with 43930 heads annotated. Both PartA and

PartB are divided into training and testing parts.

Brainwash. This dataset contains 91146 heads anno-

tated in 11917 images. We use this dataset only for testing.

Evaluation metrics. We employ three standard metrics,

i.e., Recall (R), Precision (P), and F1 score (F).

4.3. Experimental Comparisons

The proposed method outperforms all the other com-

peting methods on all the benchmarks. The quantitative

comparison with the state-of-the-art methods on these two

datasets.

SCUT-HEAD. Table 1 compares our method with best

performing methods on the SCUT-HEAD. Compared with

other algorithms, we have a high improvement under var-

ious evaluation indicators, and each performance index is

higher than 0.9. Table 2 shows the performance comparison

of our method and other methods on small head detection.

In the field of indoor crowd detection, our method reaches

the SOTA level.

Brainwash. We also compare our method on Brain-

wash dataset in Table 3. Our method also achieves state-of

the-art performance on this dataset compared with several

baselines including context-aware CNNs local model (Con-

local) [?] , SSD, R-FCN, and FRN [18].

4.4. Ablation study

Middle feature layers Choice. In order to verify the ra-

tionality of the feature layer selection used for fusion, we

design different feature layer combination ablation experi-

ments. The dataset uses the SCUT-HEAD PartA section,

and all experimental conditions are the same as before. As

shown in the Table 4, it can be found that the shallow layer

conv3 3 to the middle layer conv7 2 is used for fusion, and

the final performance index is the best, which proves the

Method PartA PartB

P R F1 P R F1

Faster-RCNN[20] 0.86 0.78 0.82 0.87 0.81 0.84

YOLOv3[19] 0.91 0.89 0.89 0.74 0.67 0.70

SSD[14] 0.87 0.68 0.76 0.80 0.66 0.72

R-FCN(ResNet-50) 0.87 0.78 0.82 0.90 0.82 0.86

R-FCN+FRN[18] 0.89 0.83 0.86 0.92 0.84 0.88

HSFA2Net(proposed) 0.93 0.92 0.92 0.95 0.91 0.93

Table 1. Comparison of other methods and our method on SCUT-

HEAD Dataset

Average scale 0∼10px 10∼20px

Method P R F1 P R F1

SSD 0.08 0.06 0.07 0.48 0.65 0.48

R-FCN 0.12 0.10 0.11 0.53 0.76 0.62

R-FCN+FRN 0.17 0.19 0.18 0.83 0.76 0.79

Ours 0.23 0.22 0.22 0.87 0.84 0.86
Table 2. Comparison of other methods and our method on small

head detection

Method Con-local SSD R-FCN FRN Ours

AP 44.5 80.2 84.8 88.1 89.2
Table 3. Comparison of other methods and our method on Brain-

wash Dataset

Method fusion layer P R F1

HSFA2Net conv3 3-conv7 2 0.92 0.90 0.92

HSFA2Net conv4 3-conv7 2 0.92 0.89 0.90

HSFA2Net conv4 3-conv6 2 0.90 0.88 0.89

HSFA2Net conv3 3-conv6 2 0.88 0.85 0.86

Table 4. Feature Fusion Module Structure Ablation Experiment

Result

rationality of the structure design of the feature fusion mod-

ule.

Attention module selection. In order to verify the ratio-

nality of our proposed dual attention structure design, five

different structures are designed: the first is the baseline of

the no-attention module; the second is the channel attention

module introduced in the SENet; the third is the channel

attention module introduced in this paper; the fourth is the

spatial attention module introduced in this paper; the last

one is the dual attention module containing channel atten-

tion and space attention. According to the results shown in

the Table 5, the hybrid attention selection module designed

in this paper can better improve the performance of the net-

work.

4.5. Qualitative Results

We show some visualization results of our method and

other methods, as shown in Figure 10, Compared with the



Method P R F1

HSFA2Net(baseline) 0.88 0.86 0.87

HSFA2Net+SEBlock 0.94 0.88 0.89

HSFA2Net+CAM 0.92 0.87 0.89

HSFA2Net+SAM 0.93 0.88 0.90

HSFA2Net+CAM+SAM 0.92 0.90 0.92

HSFA2Net+CAM+SAM+ASM 0.93 0.92 0.92

Table 5. Fusion Attention Module Structure Comparison Experi-

ment Results

visualization results of other methods, it can be seen that

the HSFA2Net proposed in this paper solves the problem

of multi-scale and the detection problem with similar object

and environmental characteristics.

5. Conclusion

In this paper, we present an indoor crowd detection net-

work framework based on feature aggregation module and

hybrid attention selection module. The feature aggregation

module can aggregate the context information and apply

the context information to the object detection according to

the scale of the head. The proposed hybrid attention se-

lection module is used to enable the network to learn to

distinguish between targets and surrounding similar object

features and to reduce redundant information through a se-

lection mechanism. Extensive experiments on two popu-

lar datasets demonstrate that the proposed method achieves

consistent and significant improvements over the previous

methods. HSFA2Net also shows the noteworthy general-

ization ability to untraining datasets, demonstrating the ef-

fectiveness of HSFA2Net in real applications.
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