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Abstract

In this paper, a real-time unmanned aerial vehicle (UAV)

tracking method is proposed. This approach builds a target

representation from histograms of oriented gradient (HOG)

and ColorNames features. Correlation filters have been u-

tilized in tracking recently because of their high efficiency.

To better fuse the tracking results from different features,

peak-to-sidelobe ratio (PSR) is employed to evaluate ro-

bustness of our trackers. A stability measure is proposed,

based on the PSR values computed over a short period of

time which is also used to predict object position. Addi-

tionally, we show that the proposed PSR stability enables

our tracking method to be robust to various appearance

variations. The method is carried out on five UAV track-

ing datasets and achieves appealing results comparable to

state-of-the-art trackers but at a lower computational com-

plexity.

1. Introduction

Unmanned aerial vehicles (UAV) equipped with cameras

produce a vast amount of visual information that can be ex-

ploited in many applications [41, 45], e.g., action recog-

nition, pedestrian detection. UAV based tracking plays an

important role in these applications. For object-following

applications, a UAV must track a target as it moves through

an environment. For autonomous flying, a UAV must track

dynamic obstacles to predict where they are moving and es-

timate their future positions.

UAV based tracking presents its own properties. The

videos are captured from a high perspective in outdoor set-

tings. The target appearance changes severely. In addition,

targets are often captured at low resolution and present im-

portant illumination variations which makes UAV tracking

more challenging than generic tracking.

Feature descriptor is a key component in visual track-

ing [1]. In order to represent an object accurately, various

features have been developed, e.g., histogram of oriented

gradient (HOG) [37] and color descriptors [31]. Recently,

deep features have achieved significant success in generic

tracking [3, 4, 5] and UAV tracking [6, 7]. Deep features

are trained on large scale datasets. Consequently they are

able to characterize object appearance accurately. Howev-

er, extracting the deep features imply high computation and

memory requirements. In UAV tracking, the tracker output

should be accurate and robust, while running in real-time

under limited hardware capabilities. Thus, hand-crafted

features (e.g., HOG and color) constitute often a more suit-

able choice.

To improve robustness, backward tracking is usually em-

ployed. This scheme is useful to eliminate false tracking

points [8], fuse multiple independent trackers [5] and cor-

rect tracker results [9] as the inverse temporal order pro-

vides new information to the tracker. In [8, 5], only the ad-

jacent frame information is used. In [9] a period of history

is exploited, as a temporal sequence contains more infor-

mation. In [4] the responses of a short period frames are

treated as a time series to better estimate the fusion weight.



In [10] tracking results are improved by using the models

from previous frames to update the current target model.

Many algorithms proposed to improve tracking to deter-

mine the fusion weight of the trackers. In [11] the authors

use the foreground and background differences to determine

the fusion weights. Response values are employed in [4] to

predict fusion weights. Peak-to-sidelobe ratio (PSR) is used

in [30] to fuse different parts trackers. Overlap is employed

in [5] to compare the differences between forward tracking

and backward tracking. These indicate that tracking in in-

verse order improves temporal consistency.

Correlation filters are utilized in visual tracking because

of their fast computation and high accuracy [16, 17, 18].

Correlation response is an important clue for identifying

new target location. Peak-versus-noise ratio based on the

correlation response is adopted in [12] to adaptively update

the tracking model.

Motivated by the works mentioned above, we propose

a PSR based UAV tracking method. HOG [37] and Col-

orNames [31, 36] features are utilized to extract features.

The hand-crafted features are complementary to each other

and can be calculated in a short time which is an advantage

in real-time tracking. These features are tracked indepen-

dently in a correlation filter framework. Backward track-

ing is then carried out. A PSR stability measure is defined

to assess the tracking quality. The fusion weights of each

tracker are computed based on the PSR stability. Finally,

the position is obtained by fusing the results of independent

trackers.

The contributions of this paper are as follow.

First, a PSR stability criteria is proposed to estimate the

performance of different feature tracking results and assign

proper weights to them. Specifically, PSR values are used to

measure reliabilities of the tracking results. The reliabilities

can be treated as weights to fuse different feature tracking

results.

Second, backward tracking is utilized over a period of

time. Different from previous work [5, 8] which only use

two consecutive frames, we use the backward tracking re-

sults in multiple frames.

Third, we show how the PSR stability can be used as an

indicator to effectively update target model.

Fourth, our tracker is evaluated on five UAV tracking

datasets and achieved comparable results to state-of-the-art

methods while running at a much higher frame rate.

2. Related work

There is a plethora of tracking literature. For a compre-

hensive review, please refer to [13, 14]. In this section, we

only focus on the works most related to ours.

2.1. Correlation filter tracking

Recently, correlation filter tracking attracts more atten-

tion because of its fast computation and accurate results.

Correlation filters were first introduced to visual tracking in

[16] and intensity features were used for target representa-

tion. Kernel methods are integrated into correlation filters

to achieve more robust tracking [17]. The input features are

extended from a single channel (e.g., intensity) to multiple

channels [18]. HOG and color features are integrated into

correlation filter to improve tracking results [19]. In [3] the

authors use deep features from three convolutional layers

contains semantic information and spatial details. Tracking

task is decomposed into translation and scale estimation to

deal the problem of long-term tracking [21]. In addition,

a re-detection scheme based on random fern is employed to

re-detect target in case of tracking lost. A re-detection mod-

ule is proposed in [22] to re-evaluate results in each frame.

This module refines the tracking results and help updates

object model adaptively.

To handle scale variation, a method that search over the

scale space is presented in fDSST [24]. A Siamese tracking

is combined with fDSST to achieve collaborative tracking

[23]. Region proposal which is usually used in object de-

tection is incorporated into Siamese tracking [25].

Background information is considered to deal with the

problem of boundary effects in [26]. This method is ex-

tended in [6] by incorporating hard negative examples into

training. Interpolation method is utilized in [27]. A convo-

lution operator is used to reduce the number of parameters

in the tracking model. The boundary effects are alleviated

in SRDCF [28] by penalizing correlation filter coefficients

according to spatial location. This approach has been im-

proved in [29] with a joint function loss to reduce the influ-

ence of contaminated training examples.

Response of correlation filter is not only used to locate

target position but also used to infer reliability of tracking

results. The PSR is adopted in [30] to measure the tracking

quality of each part. A PNR criterion is proposed based on

the correlation response in [12] for efficient updating model.

2.2. Tracking fusion

In [32] a factorial Hidden Markov Model (HMM) is em-

ployed to measure the reliability of each tracker. The po-

sitions and sizes of predicated bounding boxes of multiple

trackers is employed in [33] for trajectory optimization. H-

MM is employed in [34] to fuse multiple trackers. The con-

fidence score of each tracker is computed with trained pa-

rameters. In [35], each tracker is incrementally trained to

classify training examples which are not correctly classified

in the previous frames. In [39], overlap and distance er-

rors between different ensemble trackers are considered in

a short period of time. A history of correlation response is

used in [4, 44] to infer the reliability of each independent



Figure 1. Pipeline of our tracking algorithm.

tracker. And the position is estimated by fusing these posi-

tions of trackers. A clustering method with temporal con-

straints is proposed to explore and memorize patterns from

previous frames [10].

2.3. Backward tracking

Tracking task is decomposed into tracking, learning and

detection (TLD) [8] to facilitate each other. The back-

ward tracking is employed to filter effective feature points.

Lucas-Kanade method [40] is used to track target and back-

tracking is employed in each frame to select the accurate

tracking points. Multiple trackers are employed in [9] using

different features, e.g., color, texture and illumination in-

variant features. Each tracker tracks object forwardly and

backwardly to measure the reliability of the tracker. In

[5], backward tracking is employed to measure the tracking

quality. A re-detection scheme is carried out if the tracking

quality degrades.

In light of the above observation, we make fully use of

backward tracking by evaluating PSR values over a short

history of time. Meanwhile, a PSR stability is designed to

adaptively fuse different feature tracking results.

3. Tracking algorithm

We aim at developing a real-time UAV tracking system

that is robust to object appearance changes. Our method

based on correlation filter tracking due to its competitive

performance and high efficiency. The key idea is to utilize

backward tracking with multiple features (e.g., HOG and

ColorNames) and develop a PSR stability criterion to adap-

tively combine the independent trackers. Furthermore, to

effectively cope with appearance changes, PSR stability is

employed to adaptively update the model. Pipeline of our

tracking method is illustrated in Figure 1.

3.1. Correlation filter tracking

We tested our tracker with three feature configurations:

HOG, ColorNames [31, 36] and HOG with ColorNames.

Combination of multiple features can enhance tracking re-

sults since these features are complementary to each other.

A briefly introduction to the correlation filter tracking algo-

rithm is given here.

Correlation filter tracking makes use of the circulan-

t structure of training and testing examples for speeding up

computation efficiency with negligible loss in tracking ac-

curacy [17]. The classifier is trained using an image patch

which is centered around the object.

Figure 2. In our approach, we use an inverse temporal order track-

ing to obtain a reliable tracking by simultaneously exploiting the

dual and complementary information from both orders.

Let each sample xk contains D feature channels

x1

j , x
2

j , · · · , x
D
j , y is the Gaussian shape label matrix. The

correlation filters algorithm can be formulated as:

argminw

K
∑

k=1

||yk − φ(xk, w)||
2

L2 + λ

D
∑

d=1

||w||2L2 , (1)

where xk is the shifted sample, w is D channel features, λ

is a regularization parameter. φ(∗, ∗) is a mapping function,

φ(xk, w) =

D
∑

d=1

xd
k ∗ wd, (2)

Equation (1) can be computed efficiently in the Fourier do-

main. w =
∑K

k=1
αkxk, α can be computed as,

α = F−1(
F(y)

F(φ(x, x)) + λ
), (3)

where F and F−1 represent Fourier transform and its in-

verse, respectively. Given the appearance model x̂ and α,

the response map ŷ of a patch z can be computed as fol-

lows,

ŷ = F−1(F(α))⊙F(φ(z, x̂)), (4)

where ⊙ is element-wise product.

3.2. PSR computation

Our forward and backward tracking is an extension of

[5] and is illustrated in Figure 2. The red box in frame t is

the tracking position. The green box and blue box in frame

t + 1 are positions traced by two different features in for-

ward temporal order. The green box and blue box in frame t

are positions traced by two corresponding features in back-

ward temporal order. The backward tracking is carried out

from frame 2. The PSR values are utilized to measure track-

ing results in each frame. PSR is a measure to quantify the

sharpness of the correlation peak. Higher PSR value rep-

resents more reliable detection results. Thus, PSR can be

used to weight the confidence maps of each feature. PSR is

defined as,

psri =
max(f̂ t

i )− µi

σi

, (5)



Figure 3. PSR values become larger when the tracking results are

accurate.

Figure 4. PSR values significantly decrease when tracking drift

occurs.

where f̂ t
i is the confidence map (from equation (4)) of the

i − th feature at time t. µi and σi represent the mean and

standard deviation of the i−th confidence map respectively.

The PSR of both forward and backward tracking are taken

into consideration to strengthen the temporal consistency on

consecutive frames for reliable tracking results.

Figure 3 and Figure 4 illustrate how the quality of the

tracking results improves the response map. In Figure 3,

the PSR values are larger because the response map has less

noise and sharper peak, which means the tracking results

are accurate. The response maps of forward tracking are

shown in the top row. The PSR values are 5.929, 5.8075

and 5.6693 respectively. The response maps of backward

tracking are shown in the bottom row. The PSR values are

5.5991, 6.1413 and 5.4707 respectively.

In Figure 4, the PSR values become rapidly smaller as

tracking drift occurs. The PSR values in the top row are

0.6269, 0.6241 and 0.6240 respectively.

3.3. PSR stability

We introduce a PSR stability measure to reveal the dis-

tribution of response map. The mean value of PSR over a

time period T is defined as,

M t
i =

1

T

T
∑

t=1

psrti , (6)

where psrti is the PSR value at frame t of the i− th feature

(as computed by equation (5)). It reveals the temporal tra-

jectory consistency. The fluctuation of the PSR in a short

period T is defined as,

V t
i =

√

√

√

√

T
∑

t=1

(M t
i − psrti)

2, (7)

The PSR stability is then computed as follows,

Pwt
i =

M t
i

V t
i + 0.005

, (8)

A PSR value just considers current frame while our PSR

stability measure take a period into consideration. Tempo-

ral smoothness is useful in tracking for inferring tracking

quality. When the fluctuations of PSR values are large, this

indicates that tracking drift might have occurred.

3.4. Model update

The final position in frame t+ 1 can be predicted as fol-

lows,

hycf = β1 ∗ hy1 + β2 ∗ hy2 + β3 ∗ hy3, (9)

where β1, β2 and β3 are the normalized PSR stability of

Pwt
1
, Pwt

2
and Pwt

3
respectively, hy1, hy2 and hy3 are the

three forward tracking results.

In UAV based tracking, the object appearance changes

severely mainly because of illumination variation and oc-

clusion. Thus, it is necessary to update each classifier over

time. With correlation filter trackers, the trained model

only considers the appearance of the target in the curren-

t frame. The tracker updates the classifier coefficients by

F(α)t = (1 − γ)F(α)t−1 + γF(α), where F(α) is the

classifier coefficient and γ is a learning parameter.

If the tracker uses a fix learning rate, it means that the

appearance and correlation filter will be updated without

adapting to specific situations. Once a tracker loses the tar-

get, the whole model will be corrupted. We solve this prob-

lem by adaptively updating the trained model. It is noted

that the model of a corrupted feature should not be updat-

ed to avoid introducing errors. And the updating frequency

should be proportional to the tracking reliability. Similar to

PSR stability presented in Section 3.3, a threshold is utilized



Figure 5. Our tracking algorithm.

to adaptively update each tracker. The learning rate for the

model is set proportional to the PSR stability (equation (8)).

Thus, the update scheme is defined as,

F(α)ti =

{

(1− β)F(α)t−1

i + βF(α)i, ifPwt
i > threshold

F(α)t−1

i , else

(10)

xt
i =

{

(1− β)xt−1

i + βxi, if Pwt
i > threshold

xt−1

i , else
(11)

where β is a parameter, threshold is pre-defined, Pwt
i is the

PSR weight of the i− th feature in frame t.

As showed in Section 3.3, PSR stability infers tracking

reliability. The PSR stability is thus taken into consideration

in order to avoid unwanted model updating. In our updat-

ing scheme, even when the target is occluded in one frame,

our scheme can still track the target accurately by using the

classifiers of the previous frame. Thus, it is able to predi-

cate the occluded object when it appears again in the next

frame. Our tracking algorithm is presented in Figure 5.

4. Experiment

4.1. Dataset

Previous works are mainly focus on generic tracking

datasets, such as OTB [14], LaSOT [15] and TC128 [43]. In

recent years, UAV tracking datasets are emerged. To evalu-

ate our method, we test our algorithm on five UAV tracking

datasets. There are different challenging attributes in these

datasets, such as variations in illumination, occlusion, scale

changes, etc. Meanwhile, these UAV tracking datasets fo-

cus on different aspects.

The UAV123 dataset [20] contains 123 videos captured

by a UAV at 30 fps. There are various tracking situation-

s, e.g., people running on the lawn, cars on the road, and

persons with bicycles on the road.

The UAV123-10fps dataset [20] is a down sampled ver-

sion of the UAV123 dataset.

The UAV20L dataset [20] contains 20 videos with long

duration.

The DTB70 dataset [7] contains 70 videos with large dis-

placements.

The VisDrone2018 single object tracking

(VisDrone2018-SOT) dataset [41, 46] contains 86

training videos and 11 validation videos. The testing

videos are used for competition and ground truths are

not released. Thus, these 97 videos (86 training videos

and 11 validation videos) can be employed to test our

tracking algorithm. The benchmark dataset is captured by

various drone-mounted cameras, covering a wide range of

attributes including location (taken from different cities),

objects (vehicles, pedestrian, bicycles, etc.), environment

(urban and country), and density (sparse and crowded

scenes). Meanwhile, the dataset is collected using various

drone platforms, in different situations, and under various

weather and illumination conditions.

4.2. Compared trackers

In the UAV123 dataset, UAV123-10fps dataset and

UAV20L dataset, we compared our method with six track-

ing algorithms: ECO [27], Staple [19], BACF [26], SRD-

CFdecon [29], SRDCF [28] and fDSST [24]. Most of them

have achieved state-of-the-art results on OTB dataset [14].

The SRDCF results are provided by [20].

In the DTB70 dataset, we compare our method with six

tracking algorithms: ECO [27], Staple [19], BACF [26],

SRDCFdecon [29], MEEM [38] and fDSST [24]. The

MEEM results are provided by [7].

In the VisDrone2018-SOT dataset, we compare our

method with seven tracking algorithms: ECO [27], Staple

[19], BACF [26], HDT [4], STRCF [42], CSRDCF [2] and

fDSST [24].

These tracking algorithms are recently published and

achieve state-of-the-art results in the OTB dataset [14].

Most of them can be run in real-time. We use the source

codes released by the authors. The parameters of these

methods are fixed and given by the authors.

The evaluation metrics are success and precision rate are

used by the OTB dataset [14].

4.3. Quantitative evaluation

4.3.1 UAV123 dataset

Our method achieved 0.461 in success plots and 0.660 in

precision plots on the UAV123 dataset as shown in Fig-

ure 6. The ECO method achieves the first place in both

precision and success plots. Our method ranks the third in

precision and success plots respectively. The ECO method

uses a convolution operator to improve the tracking model.

The SRDCF [28] results are provided by the dataset [7]. It

performs a slightly better than our method while it runs at

5.24fps [7]. And the speed of our proposed method is 20

fps without code optimization.



Figure 6. The success plots and precision plots on the UAV123

dataset.

Figure 7. The success plots and precision plots on the UAV123-

10fps dataset.

4.3.2 UAV123-10fps dataset

Our method achieved 0.432 in success plots and 0.587 in

precision plots on the UAV123-10fps dataset as shown in

Figure 7. This dataset is used to test the tracker in low frame

rate tracking.

All the compared methods drop in precision and success

rate compare to the results in the UAV123 dataset. This

indicates that the frame rate is an important factor in visual

tracking. The SRDCF method drops to the fourth place in

the success rate and fifth place in the precision rate. Our

method ranks the second place in both precision and success

rates. It indicates that our method is suitable in low frame

rate tracking which frequently exists in UAV tracking under

limited hardware capabilities.

4.3.3 UAV20L dataset

Our method achieved 0.400 in success plots and 0.597 in

precision plots on the UAV20L dataset as shown in Figure

8. Our method ranks first in precision rate and third in suc-

cess rate. This dataset is used to test the tracker in long term

tracking as the frames of videos are between one thousand

and six thousand. Our method achieved competitive perfor-

mance which indicate that our tracker is effective in long

term tracking.

4.3.4 DTB70 dataset

Our method achieved 0.407 in success plots and 0.604 in

precision plots on the DTB70 dataset as shown in Figure 9.

Figure 8. The success plots and precision plots on the UAV20L

dataset.

Figure 9. The success plots and precision plots on the DTB70

dataset.

Figure 10. The success plots and precision plots on the

VisDrone2018-SOT dataset.

Our method ranks second in both precision rate and success

rate. There is severe camera motion in this dataset. Thus,

the performance of the compared methods drop compared

to the results in the UAV123 dataset.

4.3.5 VisDrone2018-SOT dataset

Our method achieved 0.663 in success plots and 0.719 in

precision plots on the VisDrone2018-SOT dataset as shown

in Figure 10. Our method ranks third in success rate. Our

method performs a slightly lower than STRCF and ECO

trackers.

4.4. Qualitative evaluation

We also plot the results of ECO, BACF, Staple, fDSST

and our method for qualitative comparison. Figure 11

shows a qualitative comparison of our method with these

trackers on car6 and bike1 videos in the UAV20L dataset.

In these two videos, the lengths of the videos are 4861 and



Figure 11. Qualitative comparison of our method with state-of-the-

art methods on the car6 and bike1 videos in the UAV20L dataset.

Figure 12. Qualitative comparison of our method with state-of-the-

art methods on the Soccer2 and Surfing03 videos in the DTB70

dataset.

3085 respectively. There are challenging situations in the

videos, e.g., viewpoint changes, rotation and scale varia-

tions. Our method tracks the targets throughout the entire

videos.

Figure 12 shows a qualitative comparison of our method

with these trackers on soccer2 and surfing03 videos in the

DTB70 dataset. There are occlusion and background clutter

in the videos. Our algorithm tracks the targets consistently.

4.5. Discussion

In the past few years we have witnessed significan-

t progress in deep neural networks. The popularity of tra-

ditional hand-crafted features seems to be overtaken by the

deep features, which can learn powerful features automati-

cally from images and have brought breakthroughs in vari-

ous problems in computer vision. However, these advances

rely on deep networks with millions or even billions of pa-

rameters, and the availability of GPUs with very high com-

putation capability and large scale labeled datasets plays a

key role in their success.

In UAV tracking, computation cost is expensive. Mean-

while, there are only a few UAV tracking dataset and limit-

ed amounts of annotated training images can be gathered in

UAV tracking.

Our method is based on hand-crafted features and does

not to be trained offline. The HOG and color features are

easy to be implemented in hardware which can be further

accelerated. Moreover, our method is able to achieve ap-

pealing results on five UAV datasets which include various

challenging factors. The results indicate the robustness and

effectiveness of our tracking algorithm. Additionally, it can

be run in real-time.

There are two directions to improve our algorithm. First,

our PSR stability only considers a short period and each fea-

ture independently. Prediction on temporal sequences might

be more accurate. Also the correlation between the features

should be considered.

Second, more accurate metric can be used to evaluate the

correlation response to give a robust measure of tracking.

5. Conclusion

Based on the correlation filter tracking framework, we

propose a UAV tracking method that uses hand-crafted fea-

tures. A PSR stability is developed to measure the status of

tracking results and estimate fusion weights. By using the

PSR stability, our tracker is robust to appearance changes.

Our method achieved comparable results with state-of-the-

art algorithms on five UAV tracking datasets. Furthermore,

our method can operate at 20 fps (on a i7 cpu).
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