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Abstract

With the development of Unmanned Aerial Vehicles,

drones are being deployed in a number of commercial and

civil government applications ranging from remote surveil-

lance and infrastructure maintenance among others. How-

ever, processing the videos captured by drones for the ex-

tracting meaningful information is hindered by multitude of

challenges that include, the appearance of small objects,

changes in viewpoint of these objects, illumination changes,

large-scale resolution of the captured video, occlusion and

truncation. Addressing these challenges, there is a critical

need to develop algorithms that is able to efficiently process

the videos that can result in robust detection and recogni-

tion of small objects. In this paper, we propose a novel pro-

cessing pipeline, that brings together several key contribu-

tions including (i) the introduction of DeForm convolution

layers within backbone; (ii) use of the interleaved cascade

architecture; (iii) data augmentation process based on crop

functionality and (iv) multi-model fusion of sub-category

detection networks. The proposed approach has been ex-

haustively benchmarked against VisDrone-DET object de-

tection dataset, which includes 10,209 images for training,

validation and testing. The evaluation of the proposed ap-

proach has resulted in 22.61 average precision on the test-

challenge set in VisDrone-DET 2019.

1. Introduction

The evolution of aerial technology has seen exponen-

tial growth especially for Unmanned Aerial Vehicles (UAV)

which have found applications beyond military use and

have become powerful business tools according to Goldman

Sachs report1. However, processing the videos captured

by drones for the extracting meaningful information is hin-

1http://www.goldmansachs.com/our-thinking/technology-driving-

innovation/drones/

dered by multitude of challenges that include, the appear-

ance of small objects, changes in viewpoint of these objects,

illumination changes, large-scale resolution of the captured

video, occlusion and truncation. An example of these lim-

itations/constriants are presented in Figure 1. While, there

already exist several approaches successfully reported in the

literatures [21] for addressing the challenge of object detec-

tion upon dataset captured from traditional datasets, such

as COCO [20], PASCAL [7] and ImageNet [6], these ap-

proaches have been to result in lower performance when ap-

plied for detecting objects on videos or images from drones

[32].

In the context of the research presented in the paper, sev-

eral articles have been considered from the literature ad-

dressing the challenge of small object detection. The re-

ported approches has been broadly categorised into data

augmentation techniques and deep-learning network archi-

tectures. In [13], the authors present an approach of repli-

cating the appearance of small objects at scale for mul-

tiple times. The increased volume of the small object

dataset is then subsequently used for training the deep-

learning network, which is trained for processing traditional

dataset. In contrast, the approach presented in Trident-

Net [15] and SNIP [28] used dilated convolution network

layer and scale normalization respectively. The outcome of

these approaches aimed at addressing the uneven distribu-

tion of small objects in comparison to the appearance of tra-

dition object sizes. On the other hand, addressing the chal-

lenge of identifying dense objects as captured from drones,

[32] proposed to add anchor or proposal to contain more

objects. In addition, the authors also address the topic of

category imbalance through the removal of annotated labels

for classes containing large volume of training data.

Despite these techniques, the problem of identifying and

categorising the small objects remains an open challenge.

Addressing the problem of accurately and robustly cate-

gorising the small objects captured from drones, the pa-

per proposes a novel processing pipeline, which integrates



Figure 1. The challenges in the UAV vision. Objects are small and densely distributed with partial occlusion and illumination variations.

The viewpoint changed due to the different height of drones and camera directions.

Figure 2. The whole network structure. An input image will be input to the backbone (a) ResNet50, which is implemented with de-

formable convolution. The feature maps further refine with (b) Feature Pyramid Network. Then (c) Region Proposal Network extract some

Region of Interest(RoI). The RoI and feature maps input to (d) Cascade Architecture to refine the bounding box prediction with three stages

interleaved box head Bi and mask head Mi.

four processing components and the overall architecture of

the proposed solution is presented in Figure 2. The frame-

work integrates the ResNet network as proposed in [10] for

feature extraction, which is complemented with deformable

convolution layer (DCN) as reported in [5]. In addition, the

architecture also interfaces with Feature Pyramid Network

(FPN) [18] for effectively combining the features at differ-

ent scales. Subsequently, the architecture integrates the Re-

gion Proposal Network (RPN)[26] for the extraction of Re-

gion of Interest (RoI). Finally, the interleaved cascade archi-

tecture is used to predict box and mask for the candidate re-

gion. The box branch and mask branch are interleaved and

reciprocal to each other as presented in [3]. Mask branch

is for instance segmentation, which generates a pixel-wise

mask of the object. However, the training of segmentation

networks requires more precise labelled data sets, and not

easy to transfer to the problem with low-cost labelling. We

also use some learning strategies, like OHEM [27], soft-

NMS [1] and warmup learning rate. A detailed outline of

the various processing steps is presented in Section 3. The

main contributions of this paper are as follows:

• To validate the addition of a deformable convolution

layer in the last three stages of ResNet to learn more

distinguishable feature representations.

• To process the modified features through the box and

mask interleaved cascade architecture for predicting

and refining the position and size of the detected ob-

ject.

• To propose a data augmentation process prior to training

and testing for improved performance of the network.

• To implement a parallel process of architecture that is

able to fuse the outputs of two network models, each

trained on a sub categories of classes.

2. Related Work

In this section, a summary of the related work is pre-

sented within the scope of the research work presented

broadly categorised into general object detection strategies

and small object detection approaches.

2.1. General Object Detection

Object detection algorithms reported in the literature

can be divided into two categories: single-stage and two-

stage. The single-stage detector directly predict the location



of objects without extracting proposal, such as SSD [23],

YOLO [25], RetinaNet [19]. The two-stage detector gen-

erates a set of region proposal and then predict the ob-

ject class inside the region of interest (RoI) as well as re-

fine the proposals to according define the position and size

of the object. This approach has been adopted, such as

Fast R-CNN [8], Faster R-CNN [26], RFCN [4]. Nor-

mally, the single-stage approach is faster than two-stage,

while the two-stage method has higher accuracy than single-

stage. With the improvement over the past few years,

the single-stage approach as presented RefineDet [30] also

make progress and outperform the performance of the two-

stage algorithm. However, those algorithms are designed

for general object detection, which is not good at detecting

on the small and densely distributed object.

2.2. Small Object Detection

However, addressing the challenge of detecting small

objects, which are inherently present in the well-known

COCO dataset, several approaches have been reported. To

address the challenge of class imbalance due to the sparse

appearance of the small objects in the dataset, the use of

data augmentation techniques has reported in [13] by copy-

ing and pasting to increase the number of small objects. For

algorithm design, a lot of methods are based on multi-scale

image pyramid [11, 22, 5] to improve the performance of

small and large object scales. SNIP [28] used scale normal-

ization for image pyramids with mutli-scale training. Tri-

dentNet [15] applied dilated convolutional layers [29] with

different dilation rate to solve the scale variation. But these

kinds of methods aim to address the problem of scale vari-

ations. In general dataset, small objects are few in number.

These methods can improve the performance of small ob-

ject detection as compared to that of the medium and large

object.

In contrast to the approaches reported in the literature,

the research presented in the paper implements an object de-

tection framework for object idenfication on the UAV cap-

tured images that integrates the interleaved cascade archi-

tecture with deformable convolution layer. In addition, the

proposed approach also includes data augmentation process

for improving the robustness of the trained network.

3. Method

The proposed network architecture is presented in Fig-

ure 2, which is divided into four parts. The first part serves

as a backbone, used to extract feature maps from the in-

put image. Subsequently the framework integrates, the

ResNet50 network with deformable convolutional layers,

which is described in Section 3.1. The second processing

component aims to exploit and refine the feature maps ob-

tained from ResNet50 through the use of FPN. The third

component includes the region proposal network (RPN) to

extract potential proposals of objects contained in the im-

age. The final component is a task head for specific targets.

The component uses an interleaved cascade architecture to

assign bounding box and mask prediction. This part can be

found in Section 3.2.

In order to address the challenge of detection small and

dense object, image cropping function is used as a data aug-

mentation process during the training stage (in Section 3.3 ).

Then all the cropped images and the original image resized

to the input specification of the network. Also, multi-model

fusion is used to solve the imbalance categories distribution

(in Section 3.4). The test time augmentation helps the accu-

racy improve further (in Section 3.5).

3.1. Deformable Convolution

Figure 3. Residual Block with Deformation Convolution. The

(a) Original Residual Block uses regular convolutional layers. In

(b) the second convolution layer on the left branch changes to De-

form Conv. The Deform Conv block contains an additional convo-

lutional layer to learn offset and combined with the input feature

map to a deformable convolutional layer.

The deformable convolution [5] layer is used in the last

three-stage (res3, res4, res5) of the backbone. The tradi-

tional convolution network has limited performance on ge-

ometric transformation due to the restricted form of convo-

lutional layers and pooling layers. The traditional network

architecture is not able to transfer well on the drone based

object detection tasks. The image used for training and for

testing in real applications cannot be perfectly consistent in

distribution and scale viewpoint. Viewpoint variation is one

of the biggest challenges in images captured from drones,

since the dataset distribution contains images captured in

top view angle, while other images might be captured from

a lower view angle. The features learned from the object in

different angle is not transferable. In order to improve the



transferability of the learned features, the deformable con-

volutional layer has been adopted within ResNet50 for fea-

ture extraction, since deformable convolution can change

the reception field dynamically. The proposed change to

the ResNet50 leads to semantic representation of object fea-

tures and localisation at higher layers.

The traditional convolution progress can be represented

as below:

R = {(−1,−1), (−1, 0), ..., (0, 1), (1, 0)} (1)

y(P0) =
∑

Pn∈R

(w(Pn) · x(P0 + Pn)) (2)

R is the grid of a 3 × 3 convolution layer. P0 is the

coordinate of feature map y. Pn is the coordinate in R.

So P0 + Pn is the sample point coordinate, x(P0 + Pn) is

the corresponding pixel value in the input feature map x.

w(Pn) is the weights in convolution kernel.

The output of deformable convolutiona layer is:

y(P0) =
∑

Pn∈R

(w(Pn) · x(P0 + Pn +∆Pn)) (3)

{∆pn|n = 1, ..., N} , N = |R|. (4)

The offset is added to R, so the sample point become

P0+Pn+∆Pn. The ∆Pn is fractional. So the sample point

in the input feature map will locate in a fractional position

without pixel value. To get the pixel value of x(P0 + Pn +
∆Pn), it needs to operate bilinear interpolation. The offset

is learned by additional convolution.

In each of the residual block in stage Res3, Res4 and

Res5, the second simple convolution are changed to de-

formable convolution. As shown in Figure 3, original con-

volution kernel is a regular rectangle. In the deformable

convolution kernel, offset are added to each sample point

and the arrangement becomes irregular. There is an ad-

ditional convolution layer to learn offset. Then the input

feature map is combined with offset together input to the

deformable convolution to do offset and convolution.

3.2. Interleaved Cascade

The task head for box and mask prediction at the end

of the whole network is an interleaved cascade architecture,

which is derived from the intermediate form of Hybrid Task

Cascade (HTC) [3]. Cascade is an architecture, which can

improve the performance of multiple tasks through multi-

stage refinement. Rather than executing object detection

and object segmentation in parallel, the two tasks are in-

terleaved and reciprocal with each other in this framework.

The mask head is designed for instance segmentation.

Instance segmentation is more complex than object detec-

tion. It needs to classify every pixel in the picture. The

mask and the box prediction are influenced by each other in

this architecture. So using this pixel-wise algorithm is more

precise on dense and small objects than traditional object

detection algorithms. However, segmentation requires more

accurate labelling, which is time-consuming and laborious.

Therefore, it is difficult to transfer for other low-labelling

problems. The object labelling considers all the pixels in

the ground truth bounding box are labelled as the mask of

the object. This saves the cost of labelling, and can still help

improve the object detection performance.

Figure 4. The Interleaved Cascade architecture. The feature

map is input into each stage. And use RoI Align as bounding box

RoI extractor. Bt is the box head to predict the box location and

the corresponding class. Mt is the mask head to predict the mask

at t-th stage.

The architecture used in this paper is shown as Figure 4.

In each stage of the cascade, the bounding box prediction

comes from:

xbox
t = P (x, rt−1), rt = Bt(x

box
t ) (5)

In this formula, x represents the features extracted by the

backbone network. After pooling operated by P (·), the box

features xbox
t are derived. Bt is the box head at t-th stage.

The box prediction rt is generated from box features by box

head. In every t-th stage, The box features are considered

both features from backbone and box features from the pre-

vious stage. Therefore, the bounding box prediction and be

refined and improved in every stage.

xmask
t = P (x, rt),mt = Mt(F (xmask

t ,m−

t−1
)) (6)

Mask branch interleaves with box branches so that it can

be benefited by the updated box predictions. xmask
t is mask

features, which is determined by backbone features and box

features of the current stage. Mt is mask head at t-th stage.

This head not only considers mask features of the current

stage but also take previous stage intermediate mask fea-

tures m−

t−1
into account. This connection between different

stages improves the mask prediction further, instead of re-

lying on box refinement only. F is the function to combine

two features, which can be shown as below:

F (xmask
t ,mt−1) = xmask

t + gt(m
−

t−1
) (7)



m−

t−1
represents intermediate mask feature, which is the

RoI feature before the deconvolutional layer. gt is a 1 ∗ 1
convolutional layer for embedding the feature to be aligned

with xmask
t .

The loss function considers multi-task together.

L =
T∑

t−1

(Lt
bbox + Lt

mask), (8)

Lt
bbox(ci, rt, ĉt, r̂t) = Lcls(ct, ĉt) + Lreg(rt, r̂t), (9)

Lt
mask(mt, m̂t) = BCE(mt, m̂t). (10)

Lt
bbox is for bounding box prediction. It combines clas-

sification loss Lcls and bounding box regression loss Lreg

together with the same definition of Cascade R-CNN [2].

Lt
mask regards mask prediction. BCE stands for binary

cross entropy used in Mask R-CNN [9]. The overall loss L

is the combination of Lt
bbox and Lt

mask at each stage t.

3.3. Data Augmentation

For data augmentation, image cropping function is used

to enhance the quality of the training dataset. The image

is segmented into 4x4 blocks on average and merged into

the training set with the original images. The training set is

increased 5x as much as the original one.

Figure 5. As the data augmentation method, we crop the image

into four pieces averagely, and incorporate in the training set. All

the images in training set are resized to the network input size.

The proposed data augmentation technique has several

advantages, including (i) deep learning algorithm often re-

quires large-volume of training data for improved represen-

tation of trained featuers; (ii) objects are often occluded and

truncate thus the network needs to learn the features of a

partial object and predict the whole through the part. Crop-

ping increases the proportion of truncate objects and en-

ables the network to learn partial features better; and (iii)

training the small cropped image as a whole does increase

the scale variation of the object, and learn more details and

characteristics of the small object.

Figure 6. The proportion of objects of different categories.

3.4. Multi-Model Fusion

One of the key research problems to be addressed in

training the network relates to the establishing a balance

between the difference datasets. As the deep-learning net-

works require large-quantities of both positive and negative

samples, the unbalanced distribution of annotated classes

might lead to under performance of trained network. In

the context of the research presented in the paper, Figure

6, presents an overview of various classes upon which the

proposed network has been trained (additional details on the

dataset is presented in Section 4.1).

In order to resolve the unbalanced distribution of object

categories, two sub-category models have been proposed

which includes a sub-set of data objects for training and

testing purposes. The information extracted from the both

sub-category network models are subsequently used to fuse

the outcomes and validate the training. The overview of the

proposed approach for multi-model solution is presented in

Figure 7. The top-3 classes in first network relates to pedes-

trian, person and car. The rest of the classes namely bicy-

cle,van,truck, tricycle, awning-tricycle, bus and motor, are

used to train a second model. The separation of the sub-

categories of image dataset has been identified empirically.

The advantage of training two sub-category of networks is

that, each network is trained on a balanced distribution of

dataset resulting in well modelled features for each of the

category. In addition, the training input to each network

is also extended by complementary datasets considered as

negative samples, resulting in two network models that are

able to effectively and efficiently learn the underlying com-

plex feature patterns. The output of both sub-category net-

work are cumulatively added towards the final outcome as-

signed for each object identified and localised in the input

image.



Figure 7. Multi-Model fusion. We use one network to train pedestrian, person and car, which have a big amount in the dataset. Use

another network to train bicycle, van, truck, tricycle, awning-tricycle, bus and motor, which numbers are sparse. Fuse two models at the

testing time can address the problem of unbalanced category.

Method AP[%] AP50[%] AP75[%] AR1[%] AR10[%] AR100[%] AR500[%]

CornerNet [14] 17.41 34.12 15.78 0.39 3.32 24.37 26.11

Light-RCNN ResNet-101 [16] 16.53 32.78 15.13 0.35 3.16 23.09 25.07

DetNet 59 [17] 15.26 29.23 14.34 0.26 2.57 20.87 22.28

RefineDet512-VGG16 [30] 14.9 28.76 14.08 0.24 2.41 18.13 25.69

retinanet [19] 11.81 21.37 11.62 0.21 1.21 5.31 19.29

fpn [18] 16.51 32.2 14.91 0.33 3.03 20.72 24.93

cascadercnn [2] 16.09 16.09 15.01 0.28 2.79 21.37 28.43

Ours 22.61 45.16 19.94 0.42 2.84 17.1 35.27

Table 1. Results on test-challenge set. Compare with the official baselines, ours is better.

3.5. Test Time Augmentation

Data augmentation is to expand the training set to help

the network adapt with more situation, while test time aug-

mentation (TTA) is to do data augmentation at the testing

stage. TTA usually make random modifications like the

method in data augmentation, such as rotation, shift, flip

and translation. Then test the trained model on all the mod-

ified images and average the prediction to gain the final re-

sult. The benefit of doing TTA can be shown as follow.

First, test on only one image may occur error which will re-

duce the accuracy. TTA on several images, modified from

the original one, can help mitigate the error. Second, using

the same augmentation within the training phrase can help

the network adapt to change. It is better when the testing

set has same characteristic with training set, such as same

lighting conditions, similar scale variations and class distri-

bution.

In this paper, we use image cropping and Non-Maximum

Suppression (NMS) as test time augmentation. During the

training stage, the images are cropped averagely into four

pieces. But cropping the same during the test time will

cause problems. The object on the cropping edge only

gets half bounding box. To avoid this problem, the crop-

ping weight and height are still half of the original images,

while the strides become one-quarter of corresponding side

length. In that case, the image is cropped into nine pieces

overlap with each other. Then mapping the bounding box

result back to the original image. After that, using NMS to

remove the overlapping boxes. This method helps to im-

prove performance, especially for small object detection.

Because crop and resize help the algorithm zoom in and

gain more features on small objects.

4. Experiments

The section presents an outline of the performance evalu-

ation carried out along with a detailed outline of the dataset

against which the proposed architecture has been bench-

marked. In addition, various evaluation metrics has also

been included for completeness.

4.1. Datasets and evaluation metrics

Datasets. VisDrone-Det [31] is an object detection

dataset with drone perspective. Most of the objects in this

dataset are small, densely distributed and partially occluded.

The viewpoint changes with the different flying height of

drone and camera direction. There are also illumination and

perspective changes in different scenarios. The object cat-

egories in this dataset can be regarded as two major cate-

gories: human beings and means of transportation. In this

dataset, human beings are divided into person and pedes-

trian. Pedestrian are those human with standing or walking

pose and person with other poses. Means of transportation

contain car, van, bus, truck, motor, bicycle, awning-tricycle,

and tricycle. There are 6471 images in the training set, 548

in the validation set and 1580 in the test-challenge set.

Evaluation Metrics. Similar to the evaluation pro-

tocol in MS COCO [20], we use AP, APIOU=0.50,

APIOU=0.75, ARmax=1, ARmax=10, ARmax=100, and

ARmax=500 metrics to evaluate the results of detection

algorithms. Unless otherwise specified, the AP and AR



Method pedestrain person bicycle car van truck tricycle awning-tricycle bus motor

baseline 21.91 12.74 10.19 62.89 32.1 24.28 17.58 5.46 42.19 23.94

baseline + TTA 33.7 17.61 6.72 65.61 21.41 13.22 11.7 2.71 15.82 22.97

DA + fusion 28.1 20.83 17.98 67.63 40.01 34.57 25.48 11.33 49.69 32.68

DA + fusion + TTA 49 40.33 31.28 75.3 44.65 36.23 32.11 12.63 53.41 51.78

Table 2. The result of each class with different implementation in the validation set. The baseline is a pure network. Test Time Augmen-

tation (TTA) crop the image at the testing time. DA stands for data augmentation, which operates image cropping at the training phrase.

Multi-Model fusion combines two networks trained with a different group of classes. Each module helps to improve performance.

metrics are averaged over multiple intersection over union

(IoU) values. Specifically, we use ten IoU thresholds of

[0.50:0.05:0.95]. All metrics are computed allowing for at

most 500 top-scoring detections per image (across all cate-

gories). These criteria penalize missing detection of objects

as well as duplicate detections (two detection results for the

same object instance). The AP metric is used as the primary

metric for ranking the algorithms.

4.2. Implementation details

The algorithm is implemented with PyTorch [24] and

mmdetection [12]. The GPU used for training is Nvidia

GeForce 1060 6GB.

The backbone is used to extract feature maps. We use

ResNet50 as the backbone in this experiment. The residual

block in the last 3 stages of ResNet (res3, res4, res5) was

changed. Some regular convolutional layers were changed

to deformable convolutional layers. Head is for specific

tasks, e.g. bounding box prediction and mask prediction.

We use the 3-stage interleaved cascade architecture to re-

fine the box and mask prediction. The specific structure is

described in the previous section.

The images cropped into four pieces as data augmenta-

tion. As for test time augmentation, each image is cropped

into nine pieces. The final results were fused by NMS. For

model fusion, we trained two different models. One is train-

ing for pedestrian, person and car. Another one is training

for the rest of the class. Then combine the result at testing

time.

At the training stage, the mask information used is all the

pixels in the ground truth box, which is a rectangle mask.

The experimental output shows that the network does not

automatically learn the foreground and background infor-

mation of the target in the bounding box. In the inference

phase, the output mask is also a rectangle. But compared

with other object detection algorithms, this method can im-

prove the effect, which is better than all official baseline as

shown in Table 1.

4.3. Ablation Experiments

The ablation experiments result in the validation set is

shown in Table 3. The first line is the baseline perfor-

mance, which represents interleaved cascade with resnet50

Method AP[%] AP50[%] AP75[%]

Interleaved Cascade 25.8 40.8 27.9

+ dconv c3-c5 26.8 42.1 28.8

+ data augmentation 28.8 47.1 29.3

+ model fusion 29.93 50.37 30.61

+ test time augmentation 30.12 58.02 27.53

Table 3. The ablation experiments on the validation set. The

first line is the result of cascade architecture with ResNet50. Then

we add deformable convolution layers in the last three stages of

ResNet and the performance improved, shown in the second line.

Then we add data augmentation, multi-model fusion and test time

augmentation, the accuracy grows higher respectively.

FPN trained in 20 epoch. There is no pre-processing and

post-processing. In the second line, we add deformable

convolution layers and the performance improved. As de-

scribed in method, we use image cropping as data augmen-

tation. In the third line, every image in the training set is

cropped into four pieces and combine with the original im-

age to expand five times than before. After training with the

augmented dataset, the performance increased. For model

fusion, the 10 categories in Visdrone are divided into two

groups. One group contain person, pedestrian and car, the

other group containing the rest of the categories. We use

two different networks to train those two group and com-

bine the result. The result is shown in the fourth line. The

fifth line represents the output of adding test time augmenta-

tion. The test image is cropped into nine pieces. The width

and height of the cropped image are half of the width and

height of the original image. The stride is one-quarter of the

corresponding edge. Then test on the nine cropped images

and the original one. Use NMS to remove duplicates. Each

module helps to improve the accuracy and performance of

small object detection. We use all the module together on

test-challenge set and the result exceeds all the baseline al-

gorithm from the challenge officials.

4.4. The result in each class

Table 2 shows the influence on each class by using pre-

possessing and post-processing methods. The number in

the table is the mAP scores of the corresponding class. The



Figure 8. The result on cropped image. The left-hand side is the result of the original image. Some objects are too small to be detected, as

the red circle region. On the right is the testing result on the cropped image, the object in the red circle becomes detectable.

first line is the result of a single network without bells and

whistles.

Test Time Augmentation. Then we use image crop-

ping as post-processing at test time. The mAP scores of

pedestrian, person and car are increased, while others are

decreased. The performance increased because some ob-

jects, that are too small to be detected, become detectable

after cropping and resizing. It decreases because of the

scale of objects changed. After crop and resize, object be-

come larger than before, which is easy to detect. But the

new scale of objects is not the same as the training set. So

the trained network is not adapt to them. Pedestrian, per-

son and car have a big amount of samples in the dataset

with various size, so the network learns enough feature to

represent them. However, other classes don’t have enough

samples to train, so the performance of them decreased.

Multi-Model Fusion. The unbalanced distribution in-

fluenced a lot. Train all the classes together cannot learn

enough feature for every class. So we decide to train pedes-

trian, person and car with one network, the rest of the

classes with another network. Then the results of two mod-

els at the test time are combined.

Data Augmentation. To increase the scale variations,

the image cropping was used to do data augmentation as

prepossessing. The result can be seen in the third line of

Table 2. The performance of every class improved to a large

extent.

At last, we use data augmentation, test time augmenta-

tion and model fusion together to get the best result. Data

augmentation can help the network learn more features with

different scales. Model fusion can handle the class imbal-

ance. Test time augmentation can zoom in to small part of

the image and detect the tiny object.

5. Conclusion

Object detection in UAV vision is extremely difficult due

to small objects, densely distributed, viewpoint changes,

illumination variations and partial occlusion. The dataset

VisDrone-DET also have problem with category imbalance.

The deformable convolution improves the adaptability of

viewpoint variations due to geometric transformation learn-

ing. The interleaved cascade architecture resolve the de-

tection of dense and occlusion objects through refining the

bounding box prediction in three stages. The data augmen-

tation and test time augmentation greatly improve perfor-

mance, especially for small objects. Multi-model fusion

address the problem of unbalanced categories. The overall

network exceeds all the official baseline in VisDrone-DET

2019 challenge.

In future work, we will focus on network efficiency and

operation speed. The network pruning can be implemented

to achieve a light-weight algorithm, which can be operated

in the real UAV platform.
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