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Abstract

Detecting objects in aerial images usually faces two ma-

jor challenges: (1) detecting difficult targets (e.g., small ob-

jects, objects that are interfered by the background, or vari-

ous orientation of the objects, etc.); (2) the imbalance prob-

lem inherent in object detection (e.g., imbalanced quan-

tity in different categories, imbalanced sampling method,

or imbalanced loss between classification and localization,

etc.). Due to these challenges, detectors are often unable

to perform the most effective training and testing. In this

paper, we propose a simple but effective framework to ad-

dress these concerns. First, we propose an adaptive crop-

ping method based on a Difficult Region Estimation Net-

work (DREN) to enhance the detection of the difficult tar-

gets, which allows the detector to fully exploit its perfor-

mance during the testing phase. Second, we use the well-

trained DREN to generate more diverse and representative

training images, which is effective in enhancing the train-

ing set. Besides, in order to alleviate the impact of imbal-

ance during training, we add a balance module in which

the IoU balanced sampling method and balanced L1 loss

are adopted. Finally, we evaluate our method on two aerial

image datasets. Without bells and whistles, our framework

achieves 8.0 points and 3.3 points higher Average Preci-

sion (AP) than the corresponding baselines on VisDrone

and UAVDT, respectively.

1. Introduction

Object detection in aerial images has attracted signifi-

cant attention worldwide due to its important application
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Figure 1: Find difficult regions on the training set. We use

sliding window search to obtain regions and calculate their

scores based on the prediction results from a preliminary

trained detector, as shown in in (a). Then, we merge the re-

gions, the merged regions are displayed in (b). Finally, we

select the top N regions with the highest score as the diffi-

cult regions, which can be used to train the difficult region

estimation network.

potential in traffic monitoring [21, 32] and pedestrian track-

ing [28]. In previous years, the works are mostly based

on the sliding window search [27, 1] and the handcrafted

features [21]. Recent years, with deep learning becom-

ing the dominative technique in object detection, the re-

lated detectors (e.g., R-CNN series [26, 11, 9, 8], YOLO

series [23, 24, 25], SSD series [19, 7], etc.) have achieved

huge success in image detection of natural scenes. Different

from the natural images (e.g., images in Pascal VOC [6] and

MS COCO [17]), the aerial image has several unique char-

acteristics: (1) the objects are generally small; (2) uneven

distribution of objects; and (3) the angle of camera shooting

is not fixed. Due to the influence of these characteristics, the

detectors designed for natural images often encounter many



difficult targets in the detection of aerial images, this is the

first challenge. Another challenge is the inherent imbalance

problem in object detection, which hinder the model from

optimizing in the best direction during training, this adverse

reaction is especially noticeable on unbalanced aerial im-

ages. Due to the existence of the above two major chal-

lenges, the detectors which perform well in natural images

often perform poorly in aerial images in terms of speed and

accuracy.

In order to compensate for the weakness of the general

detector, many detectors specifically designed for the detec-

tion of the aerial image have been proposed. For example,

some detectors [12, 5] aim to improve the detection perfor-

mance on small objects. They usually enhance the effective

representation of small objects by carefully designing and

transforming deep network structures or using feature fu-

sion of different scales [14, 20]. However, in the case where

the image is large-resolution and with large-density of small

objects, the results obtained by these methods are mostly

unsatisfactory in accuracy. Besides, some researchers pro-

pose to make improvements on the anchor, such as design-

ing rotated anchors [5] or proposing the guided anchoring

scheme [31]. But, these detectors still do not truly solve the

thorny problem of detecting difficult targets, because they

only improve the detection of a kind of targets. In general,

most of the above detectors are dedicated to improving the

structure of the model to achieve better results, which is lim-

ited for the improvement of the effect, because the model

does not fully exert their abilities during training and test-

ing. Therefore, for the existing feature extraction models

and classifiers, we consider that the improvements can be

made during the training and testing phases to fully exploit

the abilities of aerial image detectors.

Attempting to address these concerns, we propose a sim-

ple but effective framework. For the testing phase, just like

a teacher teaches students, the teacher should pay more at-

tention to students with poor grades to improve the overall

performance of all students. Inspired by this motivation,

we propose a difficult region estimation network (DREN) to

estimate the difficult regions and then retest these difficult

regions. We call the regions where the difficult-to-detect

objects are concentrated as difficult regions. For the train-

ing phase, in order to alleviate the impact of the imbalance

problem, we adopt the IoU balanced sampling method [22]

and the balanced L1 loss [22] in balance module. Further-

more, we use the trained DREN to generate some effective

training data, such data enhancement is important for train-

ing a powerful detection model. In general, the main con-

tributions of this work are as follows:

• We provide a simple but effective framework which

can fully exploit the abilities of the aerial image detec-

tors by enhancing the detection of difficult targets and

alleviating the impact of the imbalance problem.

• Extensive experiments and evaluations on two aerial

image datasets demonstrate the validity and stability

of our framework.

2. Related Work

Natural Image Detection. Object detection is an active re-

search topic in the computer vision field. Generally speak-

ing, object detection refers to the detection of natural im-

ages, also known as general object detection. The existing

general object detection methods can be divided one-stage

and two-stage. The one-stage detectors includes SSD [19],

YOLO [23], and RetinaNet [16]. The two-stage detectors

includes Fast-RCNN [8], Faster-RCNN [26], and Mask-

RCNN [11]. We mainly introduce R-CNN [9] and a se-

quence of later works which are developed based on it. R-

CNN [9] is the first work of the R-CNN series, it adopts the

selective search algorithm [30] to get the candidate boxes

and use SVM as classifier. Fast R-CNN [8] accelerates

R-CNN by introducing an ROI pooling layer. Faster R-

CNN [26] further improves the speed and accuracy by in-

troducing a learnable network to replace the proposal gener-

ation stage. Later, Mask R-CNN [11] achieves the state-of-

the-art performance by adding a segmentation branch. Re-

cently, anchor free methods are also very popular for the

detection of natural image. Cornernet [13] is an anchor free

work in object detection, it detects an object bounding box

as a pair of key points. [4] is an improved anchor free work

based on Cornernet later. However, natural images are very

different from aerial images, so these detectors cannot be

used directly for aerial image detection.

Aerial Image Detection. Different from natural images,

aerial images have several unique characteristics. There-

fore, a lot of detectors specifically for aerial image detec-

tion have been proposed for a long time. Here, we only

introduce some methods based on deep learning, because

they are more related to our work. In [18], a fast multi-class

vehicle detection approach on aerial images is proposed.

[12, 5, 14, 20] aim to improve the detection performance

on small targets in aerial images by carefully designing and

transforming deep network structures or using feature fu-

sion of different scale. Besides, some approaches make

improvements on the anchor, such as designing rotated an-

chors [5] and proposing the guided anchoring scheme [31].

In [33], a framework for clustered region detection has been

proposed, we are inspired by the work. Different from

ClusDet [33], our method is to consider the regions where

the difficult targets are concentrated, and we abandoned

ScaleNet of ClusDet to streamline the entire process. Be-

sides, numerous algorithms for aerial image detection are

discussed in [34].

Imbalance in Object Detection. In addition to an excel-

lent structure, a detector also needs to be well trained to

perform at their best. However, the imbalance will pre-



Figure 2: This is our framework. The trained Difficult Region Estimation Network (DREN) is used to estimate the difficult

regions during testing and generate some cropped training images during training. When testing, both the original image and

the cropped images are passed to the detector, then the generated candidate boxes are merged together for NMS. The balance

module contains IoU-balanced sampling and Balanced L1 Loss, which is only used during training and the details of it are

shown in Figure 3.

vent the power of well-designed model architecture from

being fully exploited. For example, at the sample level, the

hard samples are more valuable for training but are usually

less, so this should be taken into account when sampling.

OHEM [29] is a popular hard mining method, which can

help drive the focus towards hard samples, but it is sensi-

tive to noise labels. Focal loss [16] also can alleviate this

problem in one-stage detectors, but is found little improve-

ment used in two-stage detectors. Libra R-CNN [22] is a

recent proposed framework towards balanced learning for

object detection, which integrates IoU-balanced sampling,

balanced feature pyramid, and balanced L1 loss. We adopt

IoU-balanced sampling and balanced L1 loss from Libra R-

CNN in our proposed framework to alleviate the impact of

imbalance without introducing additional testing time.

3. Proposed Method

3.1. Overview

As shown in Figure 2, our proposed framework mainly

contains a DREN and a balance module. When testing, both

the original image and the cropped images are passed to

the detector, then the generated candidate boxes are merged

together for NMS. When training, we adopt IoU-balanced

sampling method, the balanced L1 loss, and use the trained

DREN to generate more diverse training data to alleviate

imbalances at different levels of our framework.

3.2. Difficult Region Estimation

We train a preliminary detector in advance to get the pre-

dicted boxes and scores on the training set. Then we use the

predicted box and score to calculate the score for the re-

gions. Finally, we merge the regions with intersections to

get the final difficult regions and use these difficult regions

to train the DREN.

Calculate Scores of Regions. We use sliding window

search to obtain regions. The formula for calculating the

score for each region is as follows:

M =

∑

i∈N

scorei

N

S =
N

3

2 ×
√
M

A

(1)

where p is a region, N is the number of the predicted boxes

in p, M is the average of the scores of all the boxes in p, A
is the area of p, S is the final score of p. Based on experi-

mental experience, we set the ratio (N/M ) as 3:1 to balance

the magnitude of N and M .

Merge Regions. In order to dig out a continuous region of

difficult target aggregation, after calculating the scores of

all regions, we merge some regions with intersections to get

the final difficult regions. The specific process of merging

is shown in Algorithm 1.

3.3. Alleviate Imbalance

Generate Cropped Images. Since the aerial image is of

large resolution, or the density of the objects is large, or the



Algorithm 1 IoU-Based Iterative merge (IIM)

Input: the set of regions S, merge-threshold t, maximum

number of merged regions Nmax

Output: merged regions S′

1: function IIM(S, t, Nmax)

2: S′ ← S
3: while |S′| > Nmax do

4: mious ← ComputeIoUs(S′,MaxIous)
5: if max(mious) < t then

6: break

7: else

8: x, y ← argmax(mious)
9: S′ ← S′ − x− y +merge(x, y)

10: end if

11: end while

12: return S′

13:

14: function MaxIoUs(box1, box2)

15: area1, area2 ← Area(box1), Area(box2)
16: area0 ← Area(box1 ∩ box2)
17: return area0/min(area1, area2)

distribution of the objects is uneven, using random cropping

method to enhance training data is not appropriate. There-

fore, we propose to generate more representative training

images using the trained DREN. In our experiments, four

cropped images (the top four difficult regions in score) are

generated for each image, the entire training dataset is four

times larger than the original dataset.

IoU-balanced Sampling. As [22] mentioned, there are

more than 60% hard negatives have an overlap greater than

0.05, but random sampling only provides us 30% training

samples that are greater than the same threshold. IoU-

balanced sampling is a piecewise sampling method which

can resolve the above contradiction. Suppose we need to

sample N negative samples, then we evenly split the sam-

pling interval into K parts according to IoU. The number of

selected samples for each part is

P =
N

K
(2)

where K is 3 in our experiments, the range of IoU is [0,0.3].

Balanced L1 Loss. In addition to IoU-balanced sampling,

we also adopt balanced L1 loss [22] in the balance mod-

ule, which is denoted as Lb. Balanced L1 loss is derived

from the conventional smooth L1 loss, the large gradients

are clipped with a maximum value of 1.0. The promoted

gradient formulation is designed as:

∂Lb

∂x
=

{

x = α ln (b|x|+ 1) if |x| < 1

y = γ otherwise,
(3)

Figure 3: The details of the balance module in Figure 2.

This is the process of sampling the candidate box and cal-

culating the loss during training.

By integrating formulation (3), the balanced L1 loss can

be expressed as:

Lb(x) =

⎧

⎨

⎩

α

b
(b|x|+ 1) ln (b|x|+ 1)− α|x| if |x| < 1

λ|x|+ C otherwise,
(4)

where the parameters λ, α, and b are constrained by

α ln (x+ 1) = λ (5)

We set α = 0.5 and λ = 1.5 in our experiments.

3.4. Cropped Image Preprocessing.

According to the experience in our experiments, the as-

pect ratio of the cropped image can not be too large or too

small. So we do the following preprocessing on the cropped

image: if the width (height) of the cropped image is greater

than 0.7×W (H), we cut the cropped image into two equal

parts, then extend the images according to the extension

rules. If the width (height) of the cropped image is smaller

than 0.6×W (H), we expand it to 0.6×W (H). W and H
represents the width and height of the original image. In

the experiment, we found that retaining some information

around the target is helpful to detect the target, which is

why the image is expanded.

4. Experiments and Results

4.1. Implementation Details

Our detector are implemented on PyTorch and Detec-

tron [10]. The Mask R-CNN [11] with Feature Pyramid

Network (FPN) [15] are adopted as the baseline detection

network. We train our detector for 90k iterations on 8 TI-

TAN Xp GPUs. The initial learning rate is 0.001, after 60k

iterations, the learning rate decreases to 0.0001. A momen-

tum of 0.9 and parameter decay of 0.00001 are used. The

difficult region estimation network (DREN) is implemented

on network of SSD [19] and parameters are set according to

it. The other parameters of our detector not specified are in

accordance with the initial settings of the Detectron. When



Table 1: The detection results on the validation set of VisDrone.

Base Method pedestrian people bicycle car van truck tricycle awning-tricycle bus motor AP

Baseline 17.7 10.2 9.3 49.8 28.7 24.8 17.9 10.4 36.2 18.1 22.3

Baseline+UC (2× 2) 19.8 10.1 8.6 51.1 25.6 19.4 17.5 8.9 34.4 18.2 21.3

ResNeXt 152 Baseline+RC (4) 22.4 13.4 10.7 51.4 28.1 25.5 20.4 10.4 37.5 22.3 24.2

Baseline+Ours 25.7 17.6 16.8 55.6 38.0 34.5 24.6 14.6 49.8 25.8 30.3

Baseline 14.3 8.1 8.1 46.8 26.9 22.7 14.6 7.0 34.8 15.0 19.8

Baseline+UC (2× 2) 17.2 8.1 6.3 46.2 26.0 18.8 14.0 6.5 33.7 15.2 19.2

ResNeXt 101 Baseline+RC (4) 17.8 10.7 8.8 46.3 27.1 23.4 15.7 7.7 35.0 17.8 21.0

Baseline+Ours 22.2 15.0 14.5 53.8 34.5 30.7 21.0 11.2 45.2 22.7 27.1

Figure 4: This is the visualization of the detection results on the validation set of VisDrone. For each test image, we show

the visualized result of baseline, uniform cropping, random cropping, and our proposed method.

testing, the candidate boxes predicted in the cropped im-

age will be deleted if they are on the edge. The number of

difficult regions generated by DREN for each original test

image is 3 by default in the experiment.

4.2. Datasets and Evaluation Metric

We evaluate our approach on VisDrone [35, 34] and

UAVDT [3]. Next, we briefly introduce the datasets and

the evaluation metric below:

Evaluation Metric. We follow the evaluation protocol in

MS COCO [17]. We use the Average Precision (AP) metric

to evaluate the detection results. The AP is averaged over

multiple Intersection over Union (IoU) values. Specifically,

we use ten IoU thresholds of [0.50:0.05:0.95].

VisDrone. This is also an aerial image dataset which con-

sists of 6471 images in the training set, 548 images in the

verification set and 3190 in the test set. The resolution is

about 2000×1500 pixels. The images in the training set

and verification set have rich annotations on ten categories

of objects. In this dataset, the density of objects is large and



the objects are unevenly distributed. Since the organizer of

this dataset does not provide the labels for the test set, we

use the verification set to test the trained model.

UAVDT. This is an aerial image dataset. It contains approx-

imately 40k representative images including 23258 images

for training and 15069 images for testing. The resolution is

about 1024×540 pixels. There are three categories of anno-

tation objects, including cars, buses, and trucks.

Figure 5: Uniform cropping and random cropping.

4.3. Quantitative Results

We adopt Mask R-CNN [11] with Feature Pyramid Net-

work (FPN) [15] as the baseline model. In addition to the

baseline, we also compare our method with uniform crop-

ping (UC) and random cropping (RC). As shown in Figure

5, UC means that the image is evenly divided into four parts.

For a fair comparison, the width and height of each ran-

domly cropped image are larger than 0.6×W and 0.6×H ,

and the number of randomly cropped images is 4. W and

H are the width and height of the original image. Because

without the scale and size constraints, the effect of random

cropping is very pool.

Table 2: Ablation study of detection result on validation set

of VisDrone.

Method AP

Baseline 22.3

Ours w/o generate training data 28.5

Ours w/o balance module 24.5

Ours w/o cropped image preprocessing 28.7

Ours w/o adaptive cropping 25

Ours (ResNeXt 152, N=3) 30.3

VisDrone. Table 1 shows the comparison results of our

approach with the methods of baseline, uniform cropping,

and random cropping. Our method achieves an AP of 30.3

when the backbone network is ResNeXt 152, achieving 8.0

points improvement over the baseline. Our method signif-

icantly improves all individual indicators compared to the

other methods. Figure 4 shows the comparison of visual-

ization results. The second, third, and fourth rows indicate

that our method has significant improvements in detecting

Table 3: Parameter analysis of N. N is the number of dif-

ficult regions for each test image, the backbone network is

ResNeXt 152. When N is large, the test takes a lot of time,

so we only analyze the case where N is 2 to 5.

N 2 3 4 5

VisDrone 29.8 30.3 30.2 30.4

UAVDT 17.5 17.7 17.6 17.5

the small objects farther away. The effect of the first row is

not obvious, because the angle of this captured image is just

below.

UAVDT. Table 4 shows the comparison results of our ap-

proach with the methods of baseline, uniform cropping, ran-

dom cropping, and ClusDet [33]. The detection results of

Faster-RCNN [26], R-FCN [2], and SSD [19] are obtained

directly from ClusDet. From Table 4 we can see that our

method achieves an AP of 17.7 when the backbone network

is ResNet 101, achieving 3.8 points improvement over the

baseline. When the backbone network is ResNet 50, our

method achieves an AP of 15.1, achieving 1.4 points im-

provement over ClusDet and achieving 3.3 points improve-

ment over the corresponding baseline, which shows that our

approach achieves the state-of-the-art on this aerial image

dataset. From the comparison results we can see that both

Baseline + UC and Baseline + RC also can improve perfor-

mance, but our approach is the most obvious improvement.

Table 4: The detection results on the test set of UAVDT.

Base Method car truck bus AP

VGG Faster-RCNN [26] - - - 5.8

ResNet 50 R-FCN [2] - - - 7.0

N/A SSD[19] - - - 9.3

ResNet 50 ClusDet[33] - - - 13.7

Baseline 19.9 4.3 11.1 11.8

Baseline+UC (2× 2) 25.2 3.8 8.8 12.6

ResNet 50 Baseline+RC (4) 25.4 4.5 10.4 13.6

Baseline+Ours 24.6 6.2 14.6 15.1

Baseline 24.8 4.9 12.0 13.9

Baseline+UC (2× 2) 24.9 4.7 15.3 14.9

ResNet 101 Baseline+RC (4) 26.3 5.8 14.6 15.6

Baseline+Ours 29.2 5.1 18.7 17.7

4.4. Analysis

Parameter Analysis. In the difficult region estimation net-

work, we need to set the parameter N to determine the num-

ber of difficult regions to be selected for each test image.

It is instructive to understand the effect of N on the perfor-

mance of our framework. We considered four cases when N

is 2 to 5. Table 3 shows that when N is 5, our method can get



the best performance on the Visdrone dataset, but this does

not mean that 5 is the best because the time consuming is

positively correlated with N. When N is 3, its performance

is almost the same as when N is 5. It can also be seen from

the table that our method can get the best performance on

the UAVDA when N is 3 or 4.

Ablation Study. In this experiment, we show how each

component in our framework affects the final performance.

We consider 6 cases: (a) baseline: we adopt Mask R-

CNN with Feature Pyramid Network (FPN) as the baseline

model; (b) Ours w/o generate training data: do not use the

cropped training images generated by difficult region esti-

mation network as training data; (c) Ours w/o balance mod-

ule: use random sampling instead of the iou-balanced sam-

pling and use L1 loss instead of the balanced L1 loss in

the balance module; (d) Ours w/o cropped image prepro-

cessing: remove the cropped image preprocessing part; (e)

Ours w/o adaptive cropping: remove the difficult region es-

timation network; (f) Ours: the full implementation of our

method. The AP results are reported in Table 2. It can be

observed from the AP results that each component in our

framework is of great importance to obtain full improve-

ment in test performance. Among all components, the most

obvious impact on the overall performance is the balance

module and adaptive cropping, which shows that the com-

bination of the two is very meaningful, and it also proves

that our improvement in the training and testing phase is

effective for fully exploiting the performance of the model.

4.5. Discussion

The discussion point is why Baseline + UC does not per-

form as well as baseline on VisDrone. As can be seen from

the results in Table 1, in the experiments when the backbone

network is ResNeXt 152 or ResNeXt 101, the performance

of Baseline + UC will be a little worse. This may be because

the density of the objects in the images is very large, such a

cropping method easily destroys the shape of the object in

the images, which results in reduced the performance. How-

ever, the number of objects in the UAVDT is much less than

the number of objects in the visdrone, so this method be-

comes effective in UAVDT. Notably, Baseline + RC works

better than Baseline + UC, probably because we constrain

the size and aspect ratio of randomly cropped images.

5. Conclusion

In this paper, we presented a simple but effective frame-

work to fully exploit the abilities of aerial image detectors.

Our framework addresses two major challenges in the de-

tection of aerial images. During testing, we propose to

strengthen the detection of difficult targets using a diffi-

cult region estimation network. During training, we alle-

viate the impact of imbalance by introducing a balancing

module. Besides, we use the well-trained DREN to gener-

ate more diverse and representative training images for data

enhancement. The full experimental results on two aerial

image datasets have demonstrated the effectiveness of our

method.
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