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Abstract

Drones or general Unmanned Aerial Vehicles (UAVs),

endowed with computer vision function by on-board cam-

eras and embedded systems, have become popular in a wide

range of applications. However, real-time scene parsing

through object detection running on a UAV platform is very

challenging, due to limited memory and computing pow-

er of embedded devices. To deal with these challenges,

in this paper we propose to learn efficient deep object de-

tectors through channel pruning of convolutional layers.

To this end, we enforce channel-level sparsity of convolu-

tional layers by imposing L1 regularization on channel s-

caling factors and prune less informative feature channel-

s to obtain “slim” object detectors. Based on such ap-

proach, we present SlimYOLOv3 with fewer trainable pa-

rameters and floating point operations (FLOPs) in compar-

ison of original YOLOv3 as a promising solution for real-

time object detection on UAVs. We evaluate SlimYOLOv3

on VisDrone2018-Det benchmark dataset; compelling re-

sults are achieved by SlimYOLOv3 in comparison of un-

pruned counterpart, including ∼90.8% decrease of FLOP-

s, ∼92.0% decline of parameter size, running ∼2 times

faster and comparable detection accuracy as YOLOv3. Ex-

perimental results with different pruning ratios consistent-

ly verify that proposed SlimYOLOv3 with narrower struc-

ture are more efficient, faster and better than YOLOv3, and

thus are more suitable for real-time object detection on

UAVs. Our codes are made publicly available at https:

//github.com/PengyiZhang/SlimYOLOv3.

1. Introduction

Drones or general Unmanned Aerial Vehicles (UAVs),

endowed with computer vision function by on-board cam-

eras and embedded systems, have been deployed in a wide

range of applications, involving surveillance [1], aerial pho-
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Figure 1. Billion floating point operations (BFLOPS) versus ac-

curacy (mAP) on VisDrone2018-Det benchmark dataset. Enabled

by channel pruning, our SlimYOLOv3-SPP3 achieves comparable

detection accuracy as YOLOv3 but only requires the equivalen-

t floating point operations as YOLOv3-tiny. Such performance is

very competitive in drone applications. Details are given in section

5.

tography [20], and infrastructural inspection [26]. These

applications require UAV platforms are able to sense the en-

vironment, parse the scene and react accordingly, of which

the core is scene parsing. Different drone applications re-

quire different levels of scene parsing, including recogniz-

ing what kinds of objects in the scene, locating where these

objects are, and determining exact boundaries of each ob-

ject. These scene parsing functions correspond to three ba-

sic research tasks in the field of computer vision, name-

ly image classification, object detection and semantic (in-

stance) segmentation. Visual object detection might be the

most common one that is adopted as a basic functional mod-

ule for scene parsing in UAV applications, and hence it

has been the area of increasing interest. Due to the vari-

ety of open deployment environment, automatic scene pars-

ing running on a UAV platform becomes highly demand-



ing, which brings many new challenges to the object detec-

tion algorithms. These challenges mainly include: (1) how

to deal with various variations (e.g., illumination, view, s-

cale and ration) that object’s visual appearance in aerial im-

ages commonly experiences; (2) how to deploy object de-

tection algorithms on a UAV platform with limited memory

and computing power; (3) how to balance detection accu-

racy and real-time requirements. Object detection method-

s based on machine learning and hand-crafted features are

prone to failure when dealing with these variations. One

competitive approach to address these challenges is object

detectors based on deep learning techniques that are popu-

larized in recent years.

Driven by the growth of computing power (e.g., Graphi-

cal Processing Units and dedicated deep learning chips) and

the availability of large-scale labelled samples (e.g., Ima-

geNet [4] and COCO [17]), deep neural network has been

extensively studied due to its fast, scalable and end-to-end

learning framework. Especially, compared with traditional

shallow methods, Convolution Neural Network (CNN) [14]

models have achieved significant improvements in image

classification (e.g., ResNet [10] and DenseNet [12]), ob-

ject detection (e.g., Faster R-CNN [24] and SSD [18]) and

semantic segmentation (e.g., UNet [25] and Mask R-CNN

[8]), etc. Since the beginning when CNN models were suc-

cessfully introduced in object detection tasks (R-CNN [6]),

such detection framework has attracted lots of research in-

terest, and thus many state-of-the-art object detectors based

on CNN models have been proposed in the past five years.

Specifically, YOLO series models [21, 22, 23] might be the

most popular deep object detectors in practical application-

s as the detection accuracy and speed are well balanced.

Despite that, the inference of these detectors still requires

high-performance computing and large run-time memory

footprint to maintain good detection performance; it brings

high computation overhead and power consumption to on-

board embedded devices of UAV platforms. Therefore, how

to reduce floating point operations (FLOPs) and the size of

trainable parameters without notably sacrificing detection

precision becomes an urgent problem to be solved when

deploying deep object detectors on UAVs. Model pruning

methods are one promising approach to achieve this goal.

A typical deep learning pipeline briefly involves design-

ing network structures, fine-tuning hyper-parameter, train-

ing and evaluating network. The majority of popular net-

work structures (e.g., ResNet and DenseNet) are designed

manually, in which the importance of each component can-

not be determined before training. During the training pro-

cess, network can learn the importance of each component

through adjusting the weights in trainable layers automati-

cally. Consequently, some connections and computations in

the networks become redundant or non-critical and hence

can be removed without significant degradation in perfor-

mance [29]. Based on this assumption, many model pruning

methods have been designed recently to simplify deep mod-

els and facilitate the deployment of deep models in practical

applications. Channel pruning is a coarse-grained but effec-

tive approach. More importantly, it is convenient to imple-

ment the pruned models just by modifying the number of

corresponding channel (or filter) in the configuration files.

A fine-tuning operation is then performed on pruned mod-

els to compensate potentially temporary degradation in per-

formance. We empirically argue that deep object detectors

designed by experts manually might exist inherent redun-

dancy in feature channels, thus making it possible to reduce

parameter size and FLOPs through channel pruning.

In this paper, we propose to learn efficient deep objec-

t detectors through performing channel pruning on convo-

lutional layers. To this end, we enforce channel-level s-

parsity of convolutional layers by imposing L1 regulariza-

tion on channel scaling factors and prune the less informa-

tive feature channels with small scaling factors to obtain

“slim” object detectors. Based on such approach, we fur-

ther present SlimYOLOv3 with fewer trainable parameter-

s and lower computation overhead in comparison of origi-

nal YOLOv3 [23] as a promising solution for real-time ob-

ject detection on UAVs. YOLOv3 is initially trained with

channel-level sparsity regularization; sequentially, SlimY-

OLOv3 is obtained by pruning feature channels to a cer-

tain ratio according to their scaling factors in YOLOv3;

SlimYOLOv3 is finally fine-tuned to compensate tempo-

rary degradation in detection accuracy. We evaluate S-

limYOLOv3 on VisDrone2018-Det dataset [30, 31]; SlimY-

OLOv3 achieves compelling results compared with its un-

pruned counterpart, including ∼90.8% decrease of FLOPs,

∼92.0% decline of parameter size, running ∼2 times faster

and comparable detection accuracy as YOLOv3. Experi-

mental results with different pruning ratios consistently ver-

ify that SlimYOLOv3 with narrower structure are more ef-

ficient, faster and better than YOLOv3, and thus are more

suitable for real-time object detection on UAVs.

2. Related Work

2.1. Deep Object Detector

Before R-CNN [6] was proposed, object detection was

used to be treated as a classification problem through s-

liding windows on the images. These traditional method-

s cannot deal with various variations of objects’ appear-

ance effectively. Combining selective search and CNN

models, R-CNN achieved notable improvements in objec-

t detection tasks in comparison of shallow methods. S-

ince then, deep object detectors have attracted lots of re-

search interest; many state-of-the-art deep object detectors

have been proposed in the past five years, including SPP-

net [9], Fast R-CNN [5], Faster R-CNN [24], R-FCN [3],



RetinaNet [16], SSD [18], YOLOv1 [21], YOLOv2 (also

called YOLO9000) [22] and YOLOv3 [23], etc. Accord-

ing to whether extra region proposal modules are required,

these deep object detectors can be simply divided into two

categories, i.e., two-stage and single-stage detectors.

Two-stage detectors.Two-stage detectors represented

by R-CNN series models mainly consist of three parts: (1)

backbone network, (2) region proposal module, and (3)

detection header. First, region proposal modules gener-

ate large numbers of region proposals that likely contain

objects of interest; sequentially, detection headers classify

these proposals to retrieve their categories and perform po-

sition regression to locate objects precisely. Detection ac-

curacy and real-time performance of two-stage object de-

tectors have been increasingly optimized through several

major improvements in region proposal methods (e.g., s-

elective search [6], region proposal networks [24], etc.),

deep feature extraction methods for region proposals (spa-

tial pyramid pooling [9], ROI pooling [24], ROI align [8],

etc.) and backbone networks (VGG, ResNet [10], feature

pyramid network [15], etc.). Two-stage detectors resort to

region proposals of high quality generated by region pro-

posal modules to obtain a good detection accuracy. How-

ever, the inference of two-stage detectors with these region

proposals requires huge computation and run-time memory

footprint, thus making the detection speed relatively slow.

Single-stage detectors. In comparison of two-stage de-

tectors, single-stage detectors represented by YOLO se-

ries models, SSD and RetinaNet utilize predefined anchors

that densely cover spatial positions, scales and aspect ra-

tios across an image instead of using extra branch networks

(e.g., region proposal network). In other words, single-stage

detectors directly treat object detection as regression prob-

lems by taking input images and learning category proba-

bilities and bounding box coordinates relative to these pre-

defined anchors. Encapsulating all computations in a single

network, single-stage detectors are more likely to run faster

than two-stage detectors. Amongst these single-stage de-

tectors, YOLO series models might be the fastest object de-

tection algorithms with state-of-the-art detection accuracy

and hence become one of the most popular deep object de-

tectors in practical applications. The real-time performance

of YOLO series models reported in literatures are evaluated

on powerful Graphical Processing Units (GPU) cards with

high-performance computing capacity. When deploying on

a UAV platform with limited computing capacity, it will be

very challenging to balance detection performance and high

computation overhead. In this paper, we propose to learn

an efficient YOLOv3 model, i.e., SlimYOLOv3, through

performing channel pruning on convolutional layers to deal

with this challenge.

Figure 2. A representative procedure of incremental model prun-

ing. There exists four iterative steps: (1) evaluating importance

of each component in a pre-trained deep model; (2) removing the

components that are less important to inference; (3) fine-tuning

pruned model to compensate potentially temporary degradation

in performance; (4) evaluating the fine-tuned model to determine

whether pruned model is suitable for deployment. An incremental

pruning strategy is preferred to prevent over-pruning.

2.2. Model pruning

When deploying a deep model on resource-limited de-

vices, model compression is a useful tool for researchers

to rescale the resource consumption required by deep mod-

els. Existing model compression methods mainly include

model pruning [29, 19], knowledge distillation [2], parame-

ter quantization [28] and dynamic computation [11], etc. In

this section, we specifically discuss model pruning method-

s.

A representative procedure of incremental model prun-

ing is shown in Figure 2. The components removed from

deep models by model pruning methods can be individu-

al neural connections [7] or network structures [29, 19].

Weight pruning methods prune the less important connec-

tions with small weights. It is conceptually easy to under-

stand, but it is hard to store the pruned model and speed

up due to generated irregular network architectures. Tech-

nically, weight pruning might not be suitable for practi-

cal applications unless special software library or dedicated

hardware is designed to support the pruned model. Unlike

weight pruning, structured pruning is more likely to pro-

duce regular and tractable network architecture. To obtain

structured unimportance for structured pruning, researcher-

s resort to sparsity training with structured sparsity reg-

ularization, mainly including structured sparsity learning

[27] and sparsity penalty on channel-wise scaling factors

[29, 19]. Liu et al. [19] proposed a simple but effective

channel pruning approach called network slimming. They

directly adopted scaling factors of batch normalization (BN)

layers as channel-wise scaling factors and trained network-

s with L1 regularization on these scaling factors to obtain

channel-wise sparsity. Channel pruning is a coarse-grained

but effective approach, and more importantly, it is conve-

nient to implement the pruned models without the require-

ments of dedicated hardware or software. They applied net-

work slimming methods to prune CNN-based image clas-

sifiers and notably reduced both model size and computing

operations. In this paper, we follow Liu’s work and extend it



Figure 3. An iterative procedure of learning efficient deep object

detector through sparsity training and channel pruning for SlimY-

OLOv3.

to be a coarse-grained method of neural architecture search

for efficient deep object detectors.

3. SlimYOLOv3

Experts design network architectures for object detectors

manually. There is no guarantee that each component plays

an important role in forward inference. We propose to learn

efficient deep object detectors through performing channel

pruning on convolutional layers. Specifically, we aim to

search a more compact and effective channel configuration

of convolutional layers to help reduce trainable parameters

and FLOPs. To this end, we apply channel pruning in Y-

OLOv3 to obtain SlimYOLOv3 by following the procedure

shown in Figure 3.

YOLOv3 and YOLOv3-SPP3. YOLOv3 makes an in-

cremental improvement to the YOLO series models in ob-

ject detection accuracy. First, YOLOv3 adopts a new back-

bone network, i.e., Darknet-53, as a deep feature extrac-

tor. Darknet-53 uses more successive 3×3 and 1×1 convo-

lutional layers than Darknet-19 in YOLOv2 and organizes

them as residual blocks [10]. Hence, Darknet-53 is much

more powerful than Darknet-19 but still more efficient than

ResNet-101 [10]. Second, YOLOv3 predicts bounding box-

es at three different scales by following the idea of feature

pyramid network for object detection [15]. Three detection

headers separately built on the top of three feature maps

with different scales are responsible for detecting objects

with different sizes. Each grid in the detection header is as-

signed with three different anchors, and thus predicts three

detections that consist of 4 bounding box offsets, 1 objec-

tiveness and C class predictions. The final result tensor of

detection header has a shape of N ×N × (3× (4+1+C)),
where N × N denotes the spatial size of last convolution-

al feature map. In this paper, to enrich deep features with

minimal modifications, we introduce spatial pyramid pool-

ing (SPP) [9] module to YOLOv3. As shown in Figure 4,

the SPP module consists of 4 parallel maxpool layers with

kernel sizes of 1×1, 5×5, 9×9 and 13×13. SPP mod-

ule is able to extract multiscale deep features with differ-

ent receptive fields and fuses them by concatenating them

in the channel dimension of feature maps. The multiscale

features obtained within same layer are expected to further

improve detection accuracy of YOLOv3 with small com-

N N C

Figure 4. Architecture of SPP module used in YOLOv3-SPP3. We

integrate three SPP modules in YOLOv3 between the 5th and 6th

convolutional layers in front of three detection headers to formu-

late YOLOv3-SPP3.

putation cost. The additional feature channels introduced

by SPP modules as well as extra FLOPs can be reduced

and refined by channel pruning afterwards. In our exper-

iments with VisDrone2018-Det dataset, we integrate three

SPP modules in YOLOv3 between the 5th and 6th convolu-

tional layers in front of three detection headers to formulate

YOLOv3-SPP3.

Sparsity training. Channel-wise sparsity of deep mod-

els is important for channel pruning and describes the num-

ber of less important channels that are expected to be re-

moved afterwards. To facilitate channel pruning, we assign

a scaling factor for each channel, where the absolute values

of scaling factors denote channel importance. Specifical-

ly, except for detection headers, a BN layer to accelerate

convergence and improve generalization follows each con-

volutional layer in YOLOv3. BN layer normalize convolu-

tional features using mini-batch statics, which is formulated

as formula (1).

y = γ × x− x√
σ2 + ǫ

+ β (1)

where x and σ2 are mean and variance of input features

in a mini-batch, γ and β denotes trainable scale factor and

bias. Naturally, we directly adopt the trainable scale fac-

tors in BN layers as indicators of channel importance. To

discriminate important channels from unimportant channel-

s effectively, we perform channel-wise sparsity training by

imposing L1 regularization on γ. The training objective of

sparsity training is given by

L = lossyolo + α
∑

γ∈Γ

f(γ) (2)

where f(γ) = |γ| denotes L1-norm and α denotes penalty

factor that balances two loss terms. In our implementation,



we use subgradient method to optimize the non-smooth L1

penalty term as Liu et al. [19] did.

Channel pruning. After sparsity training, we introduce

a global threshold γ̂ to determine whether a feature channel

is to be pruned. The global threshold γ̂ is set as n-th per-

centile of all |γ| to control pruning ratio. Besides, we intro-

duce a local safety threshold π to prevent over-pruning on

a specific convolutional layer and maintain the integrity of

network connections. The local safety threshold π is set in

a layer-wise manner as k-th percentile of all |γ| in a specific

layer. We prune the feature channels whose scaling factors

are smaller than the maximum of γ̂ and π. In YOLOv3,

several special connections between layers, e.g., the route

layer and shortcut layer (Darknet [23]) are required to be

treated carefully. During pruning process, we directly dis-

card maxpool layer and upsample layer as they have nothing

to do with channel number. Initially, we construct a prun-

ing mask for all convolutional layers according to the global

threshold γ̂ and local safety threshold π. For a route layer,

we concatenate pruning masks of its incoming layers in se-

quence and take the concatenated mask as its pruning mask.

The shortcut layers in YOLOv3 play a similar role as resid-

ual learning in ResNet. Therefore, all the layers that have

connections with shortcut layer are required to have a same

channel number. To match the feature channels of layers

that are connected by shortcut layer, we iterate through the

pruning masks of all connected layers and perform Boolean

OR logical operation on these pruning masks to generate a

final pruning mask for these connected layers.

Fine-tuning. After channel pruning, a fine-tuning op-

eration is suggested to be performed on pruned model-

s to compensate potentially temporary degradation in de-

tection performance. In relatively fine-grained object de-

tection tasks, detection performance is generally sensitive

to channel pruning. Thus, fine-tuning is very importan-

t to make pruned model recover from potential degradation.

In our experiments with VisDrone2018-Det dataset, we di-

rectly retrain SlimYOLOv3 with the same training hyper-

parameters as in the normal training of YOLOv3.

Incremental pruning. As discussed in section 2.2, an

incremental pruning strategy is preferred to prevent over-

pruning. Over-pruning might lead to catastrophic degrada-

tion so that pruned model will never be recovered.

4. Experiments

We propose to learn efficient deep object detectors

through pruning less important feature channels and further

present SlimYOLOv3 with fewer trainable parameters and

lower computation overhead for real-time object detection

on UAVs. We empirically demonstrate the effectiveness

of SlimYOLOv3 on VisDrone2018-Det benchmark dataset

[31]. SlimYOLOv3 is implemented based on the publicly

available Darknet [23] and a Pytorch implementation for Y-

OLOv3 [13]. We use a Linux server with Intel(R) Xeon(R)

E5-2683 v3 CPU @ 2.00GHz (56 CPUs), 64GB RAM, and

four NVIDIA GTX1080ti GPU cards to train and evaluate

models in our experiments.

4.1. Datasets

VisDrone2018-Det benchmark dataset consists of 7,019

static images captured by drone platforms in different places

at different heights [30, 31]. The training and validation

sets contain 6,471 and 548 images respectively. Images are

manually labeled with bounding boxes and ten predefined

classes (i.e., pedestrian, person, car, van, bus, truck, motor,

bicycle, awning-tricycle, and tricycle). All models in this

paper are trained on training set and evaluated on validation

set.

4.2. Models

Baseline models. We implement two YOLOv3 model-

s, i.e., YOLOv3-tiny and YOLOv3-SPP1, as our baseline

models. YOLOv3-tiny [23] is a tiny version of YOLOv3,

and is much faster but less accurate. YOLOv3-SPP1 [23]

is a revised YOLOv3, which has one SPP module in front

of its first detection header. YOLOv3-SPP1 is better than

original YOLOv3 on COCO dataset [17] in detection accu-

racy as reported in [23]. We thus take YOLOv3-SPP1 as a

baseline of YOLOv3.

YOLOv3-SPP3. YOLOv3-SPP3 is implemented by in-

corporating three SPP modules in YOLOv3 between the 5th

and 6th convolutional layers in front of three detection head-

ers. YOLOv3-SPP3 is designed to further improve detec-

tion accuracy of baseline models.

SlimYOLOv3. We realize three SlimYOLOv3 model-

s by setting global threshold γ̂ in channel pruning module

as 50-th percentile, 90-th percentile and 95-th percentile of

all |γ| corresponding to 50%, 90% and 95% pruning ra-

tio respectively. The local safety threshold π is empirical-

ly set as 90-th percentile of all |γ| in each layer to keep

at least 10% of channels unpruned in a single layer. We

prune YOLOv3-SPP3 with these three pruning settings, and

thus obtain SlimYOLOv3-SPP3-50, SlimYOLOv3-SPP3-

90 and SlimYOLOv3-SPP3-95. Specifically, we iteratively

prune YOLOv3-SPP3 2 times for SlimYOLOv3-SPP3-50

by following the iterative pruning procedure shown in Fig-

ure 3.

4.3. Training

Normal training. Following the default configurations

in Darknet [23], we train YOLOv3-tiny, YOLOv3-SPP1

and YOLOv3-SPP3 using SGD with the momentum of 0.9

and weight decay of 0.0005. We use an initial learning rate

of 0.001 that is decayed by a factor of 10 at the iteration

step of 70000 and 100000. We set the maximum training

iteration as 120200 and use mini-batch size of 64. We set



the size of input image as 416 for YOLOv3-tiny and 608 for

YOLOv3-SPP1 and YOLOv3-SPP3. Multiscale training is

enabled by randomly rescaling the sizes of input images.

We initialize the backbone networks of these three models

with the weights pre-trained on ImageNet [4].

Sparsity training. We perform sparsity training for

YOLOv3-SPP3 for 100 epochs. Three different values of

penalty factor α, i.e., 0.01, 0.001 and 0.0001, are used in

our experiments. The remaining hyper-parameters of spar-

sity training are same with normal training.

Fine-tuning. We fine-tune SlimYOLOv3-SPP3-50,

SlimYOLOv3-SPP3-90 and SlimYOLOv3-SPP3-95 on

training set. These models are initialized by the weights

of pruned YOLOv3-SPP3. We use same hyper-parameters

as in normal training to retrain SlimYOLOv3-SPP3-90 and

SlimYOLOv3-SPP3-95 due to the possibility of aggressive

pruning. For SlimYOLOv3-SPP3-50, we reduce maximum

training iteration to 60200 and decay learning rate at the

iteration step of 35000 and 50000 to fine-tune the pruned

models.

It is to be noted that we use Darknet [23] to perform

normal training and fine-tuning, while we use the Pytorch

implementation [13] to perform sparsity training for conve-

nience.

4.4. Evaluation metrics

We evaluate all these models based on the following 7

metrics: (1) precision, (2) recall, (3) mean of average preci-

sion (mAP) measured at 0.5 intersection over union (IOU),

(4) F1-score, (5) model volume, (6) parameter size, (7)

FLOPs and (8) inference time as frames per second (FP-

S). The objectiveness confidence and non-maximum sup-

pression threshold for all models in our experiments are

set as 0.1 and 0.5 respectively. We run evaluation with no

batch processing on one NVIDIA GTX1080ti GPU card

using Darknet [23]. Besides, we evaluate all models with

three different input sizes, including 416×416, 608×608

and 832×832.

5. Results and Discussions

We compare the detection performance of all models on

validation set of VisDrone2018-Det dataset in Table 1 and

Figure 1.

Effect of SPP modules. With input sizes of 416×416

and 608×608, YOLOv3-SPP3 achieves comparable detec-

tion performance as YOLOv3-SPP1. With a larger input

size, i.e., 832×832, YOLOv3-SPP3 outperforms YOLOv3-

SPP1 by ∼1% in mAP and F1-score as shown in Figure 5. It

implies that SPP modules can help detectors extract useful

multiscale deep features through different sizes of recep-

tive fields in high-resolution input images.Correspondingly,

the number of trainable parameters and FLOPs required by

YOLOv3-SPP3 are slightly increased with the addition of

Figure 5. Performance comparison of YOLOv3-SPP1 and

YOLOv3-SPP3 with input size of 832×832.

SPP modules. The increased FLOPs (+21 BFLOPs) here

are negligible in comparison of the decreased FLOPs (-244

BFLOPs with 90% pruning ratio) during channel pruning as

shown in Figure 6.

Effect of sparsity training. During the sparsity training,

we compute the histogram of scaling factors (absolute val-

ue) in all BN layers of YOLOv3-SPP3 to monitor change

in the distribution of scaling factors. We visualize these

histograms as well as the loss curves of training and vali-

dation sets in Figure 7. With the training progress, the num-

ber of smaller scaling factors increases while the number of

larger factors decreases. Sparsity training is able to effec-

tively reduce the scaling factors and thus make the feature

channels of convolutional layers in YOLOv3-SPP3 sparse.

However, sparsity training with a larger penalty factor, i.e.,

α = 0.01, make the scaling factors decay so aggressive that

models start failing with underfitting. In our experiments,

we use the YOLOv3-SPP3 model trained with penalty fac-

tor α = 0.0001 to perform channel pruning.

Effect of channel pruning. In our experiments,

we perform iterative pruning for SlimYOLOv3-SPP3-50

and aggressive pruning for SlimYOLOv3-SPP3-90 and

SlimYOLOv3-SPP3-95 with three global thresholds corre-

sponding to pruning ratio of 50%, 90% and 95% respective-

ly. Compared with YOLOv3-SPP3, channel pruning with

these three pruning ratio actually reduces FLOPs (when in-

put size is 832×832) by 57.1%, 85.9% and 90.8%, decreas-

es parameters size by 67.4%, 87.5% and 92.0%, and shrinks

model volume by 67.5%, 87.4 and 92.0%. On the other

hand, SlimYOLOv3-SPP3-90 and SlimYOLOv3-SPP3-95

are able to achieve comparable detection accuracy as Y-

OLOv3 but requires even fewer trainable parameters than

YOLOv3-tiny. Besides, the inference time (when input

size is 832×832) evaluated on a NVIDIA GTX1080ti G-

PU card using Darknet [23] with no batch processing is re-

duced by 38.8%, 42.6% and 49.5% accordingly. It means

SlimYOLOv3-SPP3 runs ∼2 times faster than YOLOv3-

SPP3. However, SlimYOLOv3-SPP3 runs much slower

that YOLOv3-tiny with comparable FLOPs requirements

as YOLOv3-tiny. One of the reasons for this phenomenon

might be that YOLOv3-tiny has a shallower structure. Dur-



Model
Input

Precision Recall
F1-

mAP BFLOPS FPS
Time

Parameters Volume
size score (ms)

416 19.5 10.5 13.1 4.9 5.46 134 7.5

YOLOv3-tiny 608 24.1 16.8 19.1 9.1 11.65 80 12.5 8.7M 33.1MB

832 23.4 20.1 21.0 11.0 21.82 52 19.4

416 39 24.5 29.5 16.5 65.71 46 21.7

YOLOv3-SPP1 608 44.2 32.4 36.9 22.9 140.36 26 38.6 62.6M 239MB

832 42.9 36.7 39.2 25.5 262.84 15 67.9

416 36.6 24.9 29.1 16.2 71.03 40 24.8

YOLOv3-SPP3 608 43.7 33.7 37.6 23.3 151.72 23 43.1 63.9M 243MB

832 43.5 38 40.2 26.4 284.10 14 72.1

416 39.2 23.5 28.7 15.7 30.51 67 14.9

SlimYOLOv3-SPP3-50 608 45.6 32.1 37.1 22.6 65.17 39 25.6 20.8M 79.6MB

832 45.9 36 39.8 25.8 122 23 44.1

416 32.2 21.6 24.4 14.5 9.97 67 14.8

SlimYOLOv3-SPP3-90 608 37.9 30.0 32.0 20.6 21.3 40 25.1 8.0M 30.6MB

832 36.9 33.8 34.0 23.9 39.89 24 41.4

416 33.8 20.1 22.9 13.3 6.57 72 13.8

SlimYOLOv3-SPP3-95 608 37.3 28.2 30.1 19.1 14.04 41 24.1 5.1M 19.4MB

832 36.1 31.6 32.2 21.2 26.29 28 36.4

Table 1. Evaluation results of baseline models and pruned models on validation set of VisDrone2018-Det dataset.

Figure 6. Performance comparison of YOLOv3-SPP1 and YOLOv3-SPP3 with input size of 832×832.

ing inference process, top layers in deep models always wait

for the outputs from bottom layers to perform forward com-

putation. Therefore, YOLOv3-tiny doesn’t need to wait as

longer as SlimYOLOv33-SPP3 to obtain the final detection

outputs. We argue that this phenomenon implies that there

might exist a bottleneck to improve real-time performance

of deep object detectors through channel pruning.

Analysis of detection accuracy. As shown in Fig-

ure 1 and Table 1, the revised YOLOv3, i.e., YOLOv3-

SPP3, achieves the best detection results but requires the

most FLOPs at the meantime. In contrast, SlimYOLOv3-

SPP3 models with even fewer trainable parameters than

YOLOv3-tiny are able to obtain suboptimal detection re-

sults that are comparable with YOLOv3. Obviously,

SlimYOLOv3-SPP3 is much better than YOLOv3-tiny in

detection accuracy. Such results imply that with equiva-

lent trainable parameters a deeper and narrower YOLOv3

model might be more powerful and effective than a shal-

lower and wider YOLOv3 model. Besides, comparing

SlimYOLOv3-SPP3-50 and SlimYOLOv3-SPP3-95 we can

conclude that iterative pruning with a smaller pruning ra-

tio are more prone to maintaining detection accuracy than

aggressive pruning with a large pruning ratio. We pro-

duce visualized detection results of SlimYOLOv3-SPP3-95

and YOLOv3-SPP3 on a challenging frame captured by our

drone as shown in Figure 8. Both of the two detectors are

able to detect the majority of objects of interest precisely in

this frame without significant difference.

Limitations. We have not made any modifications to

both the training and inference of YOLOv3 expect for in-

tegrating SPP modules. However, VisDrone2018-Det is a

very challenging dataset with high category imbalance. The

category imbalance problem is not managed in purpose in

our experiments. Category with the largest number of in-

stances might dominate the optimization of detectors. Con-

sequently, mAP score of the dominant category (i.e., car) is

significantly higher than that of the categories with smaller

number of instances (e.g., bicycle) as highlighted in Table

2. This issue occurs in both unpruned models and pruned

models, further leading to a significant decline in overall



Figure 7. Histogram statistics of scaling factors in all BN layers

(left) and loss curve of training and validation sets (right) during s-

parsity training of YOLOv3-SPP3 with three different penalty fac-

tors(i.e., 0.01, 0.001 and 0.0001). In (a), we terminate the sparsity

training early when the model get stuck in underfitting.

(a) YOLOv3-SPP3

(b) SlimYOLOv3-SPP3-95

Figure 8. Visualized detection results of SlimYOLOv3-SPP3-95

and YOLOv3-SPP3 on a challenging frame captured by our drone.

performance. Approaches for solving the category imbal-

ance problem are left for future work to improve detection

accuracy of both baseline models and pruned models.

6. Conclusion

In this paper, we propose to learn efficient deep object

detectors through channel pruning of convolutional layer-

s. To this end, we enforce channel-level sparsity of convo-

(a) YOLOv3-SPP3

Class Instances Precision Recall
F1-

mAP
score

pedestrian 8,840 46.6 38.0 46.8 33.2

people 5,120 41.8 35.7 38.5 20.3

bicycle 1,290 24.7 16.9 20.0 6.9

car 1,4100 68.8 78.2 73.2 70.1

van 1,980 43.7 39.4 41.4 27.4

truck 750 35.6 30.1 32.6 19.8

tricycle 1,040 35.5 25.7 29.9 12.8

awning-
532 23.4 14.5 17.9 6.6

tricycle

bus 251 65.7 46.6 54.5 36.8

motor 4,890 49.0 46.1 47.5 30.4

overall 3,8800 43.5 38.0 40.2 26.4

(b) SlimYOLOv3-SPP3-95

Class Instances Precision Recall
F1-

mAP
score

pedestrian 8,840 33.0 41.9 36.9 25.8

people 5,120 31.4 32.4 31.9 17.0

bicycle 1,290 14.4 10.3 12.0 2.7

car 1,4100 60.3 75.0 66.9 67.0

van 1,980 43.8 37.0 40.1 27.1

truck 750 26.8 27.6 27.2 16.4

tricycle 1,040 26.9 15.8 19.9 6.8

awning-
532 33.0 7.0 11.5 3.0

tricycle

bus 251 55.9 28.3 37.6 22.8

motor 4,890 35.6 41.1 38.1 23.0

overall 3,8800 36.1 31.6 32.2 21.2

Table 2. Detection performance of SlimYOLOv3-SPP3-95

(832×832) and YOLOv3-SPP3 (832×832) for each category on

validation set of VisDrone2018-Det dataset.

lutional layers by imposing L1 regularization on the chan-

nel scaling factors and prune the less informative feature

channels with small scaling factors to obtain “slim” objec-

t detectors. Based on such approach, we further present

SlimYOLOv3 with narrower structure and fewer trainable

parameters than YOLOv3. Our SlimYOLOv3 is able to

achieve comparable detection accuracy as YOLOv3 with

significantly fewer FLOPs and run faster. Therefore, S-

limYOLOv3 is faster and better than original YOLOv3 for

real-time UAV applications. In addition, future work may

integrate the multi-step pruning strategy to formulate a flex-

ible online pruning approach and explore pruning strategy

suitable for specific processor platforms.
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