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Abstract

Deep learning requires large amounts of annotated data.

Manual annotation of objects in video is, regardless of an-

notation type, a tedious and time-consuming process. In

particular, for scarcely used image modalities human an-

notation is hard to justify. In such cases, semi-automatic

annotation provides an acceptable option.

In this work, a recursive, semi-automatic annotation

method for video is presented. The proposed method uti-

lizes a state-of-the-art video object segmentation method to

propose initial annotations for all frames in a video based

on only a few manual object segmentations. In the case

of a multi-modal dataset, the multi-modality is exploited to

refine the proposed annotations even further. The final ten-

tative annotations are presented to the user for manual cor-

rection.

The method is evaluated on a subset of the RGBT-234

visual-thermal dataset reducing the workload for a human

annotator with approximately 78% compared to full manual

annotation. Utilizing the proposed pipeline, sequences are

annotated for the VOT-RGBT 2019 challenge.

1. Introduction

Manual ground truth annotation of video sequences is a

labour-intensive process, which is inevitable in many com-

puter vision applications. In the case of deep learning,

where large amounts of training data are required [38], the

need for efficient annotation is particularly important. In

recent years, many annotation tools that facilitate the pro-

cess have emerged [16, 33, 48]. Semi-automatic annotation

methods assist the user by proposing initial annotations later

corrected by the user.

In this paper, a novel, recursive, semi-automatic annota-
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Figure 1: Overview of the proposed method. The video

object segmentation algorithm is applied both forward and

backward in both thermal (TIR) and RGB before fusion be-

tween the two modalities.

tion method is proposed. Based on only a few initial manual

segmentations, a state-of-the-art video object segmentation

(VOS) algorithm [22] proposes segmentations for all frames

in a video sequence. Our method recursively recommends

where additional manual annotations are needed based on

forward-backward segmentation consistency, and the VOS

algorithm is run from the additional annotations. Thus, the

proposed method generates dense segmentation labels in a

video, based only on a handful manually annotated frames.

In the case of a multi-modal dataset, segmentation results

for all modalities are merged. The proposed annotations

serve as a tentative annotation set to be further refined by

the user, considerably reducing the workload compared to

full manual annotation.

From dense segmentation labels, it is possible to extract a

number of different types of annotations, e.g., center points,

and axis-aligned or rotated bounding boxes. As an exam-

ple, the final corrected segmentation masks of the evaluation

dataset are utilized to generate rotated ground truth bound-

ing boxes for the VOT-RGBT 2019 tracking challenge.



Contributions

• A novel, recursive semi-automatic annotation method

for, but not limited to, multi-modal video.

• A novel, automatic failure detection method based on

forward-backward consistency.

• A dataset annotated with rotated bounding boxes that

will be utilized in the VOT-RGBT 2019 tracking challenge.

2. Background

2.1. Related Work

The process of ground truth annotation has become a

fundamental task in the development of computer vision ap-

plications. Due to its time-consuming nature, various tools

and strategies to facilitate the annotation task have emerged.

Popular annotation tools are e.g. CVAT [33], ViPER [16],

and LabelMe [48]. Other options are crowd sourcing [38]

or family members [4]. Depending on the annotation type,

the effort can be reduced by, for example, interpolation be-

tween so called key frames [8]. Through the right strategy

it is possible to reduce the annotation time significantly, e.g.

by marking extreme points instead of bounding box cor-

ners [34].

Semi-automatic approaches to facilitate the annotation

process exist for many of the annotation tasks, for example,

human activity recognition [9], video object detection and

segmentation [41], semantic tagging of large corpora [15],

and animal behaviour [23]. Most available methods are in-

teractive and require a human-in-the-loop approach. There

are methods that assist the user during the annotation pro-

cess on a frame-based level and methods that assist the user

on a sequence-based level. Examples of frame-based meth-

ods are PolygonRNN [11], PolygonRNN++ [1], and ByLa-

bel [37] for object instance segmentation.

The proposed method assists the user on a sequence-

based level. Examples of other sequence-based methods are

[2, 7, 8, 31, 44]. Bianco et al. [7] combines several methods

to semi-automatically propose annotations, while Biresaw

et al. [8] (iVAT) uses automated tracking and other com-

puter vision methods together with interpolation for assist-

ing manual annotation. Manen et al. [31] propose a semi-

automatic annotation method for multi object tracking in

video, where the user tracks the object with the cursor and

these weak annotations are transformed to dense box trajec-

tories. Another method is proposed by Adhikari et al. [2],

where a model is trained based on manual annotations on

the first half of the dataset and the model then proposes an-

notations for the second half. Wang et al. [44] uses an object

detector and tracker to facilitate bounding box annotation.

Several of the previous methods are specific to RGB and

cannot be used directly on thermal (TIR) data. The de-

fault approach to object segmentation in TIR is thresholding

based on temperature [5]. This approach does, however, as-

sume that the object has an evenly distributed temperature,

that the object maintains its temperature over time, and that

no other object in the scene has the same temperature. In

most cases, the situation is more complex and a more ad-

vanced segmentation method is needed.

Video object segmentation (VOS) is the task of tracking

and segmenting one or multiple target objects in a video

sequence, given a first frame annotation. In recent years,

the interest for this problem has surged, and the overall un-

derstanding of and performance on the task improves every

year [3, 10, 12, 13, 14, 19, 20, 28, 32, 35, 42, 45, 47]. Today,

there are computationally efficient and accurate methods

that can track and segment a given target given sufficiently

benevolent conditions. They are, however, still prone to

drift or failure in tougher scenarios, such as during occlu-

sions or significant appearance changes.

The transferability of visual video object segmentation

methods to thermal infrared data has been investigated by

Yoon et al. [39]. They concluded that their object segmen-

tation method, trained on visual images, was transferable to

thermal infrared video by just fine-tuning the method on the

first frame. The two modalities, TIR and visual, are known

to be complementary in many cases [21, 30], e.g. for object

tracking [40], detection [29], as well as segmentation [49].

In this work, a video object segmentation method trained on

visual images was applied to both TIR and visual images

and the segmentation results were merged.

2.2. The Visual Object Tracking Challenge

The Visual Object Tracking (VOT) challenge [24,25,26]

was introduced in 2013 as a challenge for single object,

short term tracking. Since then, it has been arranged an-

nually and become one of the most respected benchmarks

for short-term tracking methods. In 2015 the VOT Ther-

mal Infrared challenge (VOT-TIR) [17] using the LTIR [6]

dataset, was launched as the first thermal infrared short-

term tracking benchmark. The dataset was updated in [18]

but the VOT committee decided to go towards RGBT for

VOT2019, thus a new dataset is needed.

Li et al. [27], proposed a visual spectrum (RGB) - ther-

mal infrared (TIR) tracking benchmark (RGBT-234) that

utilizes the VOT evaluation toolkit. The dataset consists

of 234 TIR and RGB video pairs of varying length. In to-

tal, the dataset contains around 234K frames. The available

annotations are axis-aligned bounding boxes. In order for

the dataset to be useful in the VOT-RGBT 2019 challenge,

rotated bounding boxes are needed, but manual annotation

had been prohibitively expensive. This problem has been

addressed by the proposed method.

3. Method

We propose to semi-automate the annotation process via

automatic annotation of easy parts of a video. Difficult parts



that require additional manual annotation are automatically

detected. The proposed algorithm is recursive in nature,

where in each iteration high-impact manual annotations are

requested and subsequently utilized to improve the auto-

matic annotation. Pseudo-code of the algorithm is provided

in Algorithm 1 and an overview is given below.

3.1. Overview

The proposed pipeline recursively suggests a frame in-

dex jk,m to be manually annotated for each iteration k

and modality m, based on forward-backward consistency

of previously segmented frames. Frames are segmented us-

ing a video object segmentation (VOS) method. Manually

annotated frames Am,j serve as initialization for the VOS

algorithm [22], see Section 3.2. The VOS algorithm is ap-

plied both forward (VOSforward) and backward (VOSback-

ward) starting at Am,j , see illustrative examples in Figures

1 and 2. The resulting set of segmentations S
f
j and Sb

j are

appended to the set of segmentations Sm for that modality.

The proposed pipeline is initialized by running the VOS

algorithm forward from the first Am,1 and backward from

the last Am,J frame of the sequence. In each iteration, fail-

ures are automatically detected based on the current set of

multiple segmented frames Sm = {Ifj,m,n, I
b
j,m,n} by ex-

ploiting the consistency as described in Section 3.3. I
f
j,m,n

and Ibj,m,n ∈ {0, 1}W×H are W × H binary segmen-

tation masks for forward and backward runs respectively.

j = 1, ..., J is the frame index, m = 1, ...,M the modal-

ity index, and n = 1, ..., Nm the number of segmentation

masks for frame j and modality m. In each iteration k and

modality m, there will be k + 2 manually annotated seg-

mentations for that sequence. At the same time, there will

be k + 2 segmentations by the video object segmentation

method for each frame j. See example in Figure 2. This also

implies that the total number of segmentations per frame j

and modality will be Nm = Km + 2 where Km is the total

number of iterations needed for modality m.

The final set of semi-automatically annotated frames,

T = {T1, ..., TJ} ∈ {0, 1}W×H , is found by manual

correction of the fused segmentation results of all modal-

ities and iterations, further described in Section 3.4. An

overview can also be seen in Figure 1.

3.2. Video Object Segmentation

In this work, we utilize the state-of-the-art method for

video object segmentation (VOS) proposed in [22], which

achieves high performance at low computational cost. It is a

deep neural network, comprising a feature extractor, a track-

ing module, and an upsampling module. The tracking mod-

ule is a recurrent neural network specifically constructed for

the VOS task, and the core idea is to generatively model the

deep feature generation, conditioned on whether the fea-

ture corresponds to foreground or background. Based on

Algorithm 1 The proposed recursive method for semi-

automatic annotation of one sequence.

1: S = {}
2: for m ← 1 to M do

3: Sm = {}
4: Am,1 ← manualAnnotation(1)

5: Am,J ← manualAnnotation(J)

6: Sf
m ← VOSforward(Am,1)

7: Sb
m ← VOSbackward(Am,J )

8: Sm ← {Sf
m,1}+ {Sb

m,J}
9: k = 1

10: jk,m ← findFailure(Sm)

11: while failure found do

12: Am,j ← manualAnnotation(jk,m)

13: S
f
j ← VOSforward(Am,j)

14: Sb
j ← VOSbackward(Am,j)

15: Sm ← Sm + {Sf
m,j}+ {Sb

m,j}
16: k ← k + 1
17: jk,m ← findFailure(Sm)

18: S ← S + {Sm}

19: T ← manualCorrection(merge(S))

j1 Jj2j1

Figure 2: The black, solid, line represents frames in a se-

quence of length J . There are four manually annotated seg-

mentation masks at frames 1, j1, j2, J . The VOS algorithm

is run both forward (green lines) and backward (blue lines)

from each manual segmentation, resulting in a total of four

segmentation masks (Nm = 4) for each frame j in the se-

quence. The number of iterations is two (k = 2).

the given annotated frame, the parameters of this model is

inferred in closed form as a layer within the network. In

subsequent frames, the model is used to relocate and seg-

ment the target by calculating the posterior class probabil-

ities. Thus, the parameters of the generative model are not

part of the neural network parameters, and are instead learnt

online for a given target. The neural network parameters

are trained with respect to this process and with the VOS

datasets DAVIS2017 [36] and YouTubeVOS [46]. Note that

while no TIR data was used for training of the VOS method,

we experienced it to perform sufficiently well also on TIR

data.



3.3. Failure Detection

We propose to detect failures based on the consistency

between forward and backward applications of the VOS al-

gorithm. The idea is that if both the forward and backward

runs are correctly segmenting, their predictions will over-

lap. If either of them loses a part of the target or begins to

segment a distractor, the overlap will decrease - and if either

or both of the methods completely fail, the overlap should in

most cases be equal to zero. The forward-backward consis-

tency is further described in Section 3.3.1. We hypothesize

that the best choice for manual annotation is the center of a

cluster of failed frames, see Section 3.3.2.

3.3.1 Forward backward consistency

The proposed method for failure detection is based on a

consistency score cm,j . The frame- and modality-wise con-

sistency score cm,j ∈ [0, 1] for modality m = 1, ...,M and

frame j = 1, ..., J is found via minimization of:

M
∑

m=1

|cm,j − o
fb
m,j |+ |

M
∏

m=1

(cm,j)− o
f
j |+ |

M
∏

m=1

(cm,j)− obj |

(1)

We motivate (1) by arguing that a frame in timestep j

and modality m has consistent annotations if i) the clos-

est forward, and closest backward passes agree (term 1); ii)

the closest forward pass segmentations of different modal-

ities agrees (term 2); and iii) if the closest backward pass

segmentations of different modalities agree (term 3). Each

term is further described below.

The first term in (1),
∑M

m=1
|cm,j − o

fb
m,j | enforces

forward-backward consistency. o
fb
m,j ∈ [0, 1] is defined as

the intersection over union between all forward and back-

ward segmentations for modality m and frame j as in:

o
fb
m,j = IoU(Ifm,j , I

b
m,j) =

I
f
m,j ∩ Ibm,j

I
f
m,j ∪ Ibm,j

(2)

where

I
f
m,j =

N
f
m,j
⋃

n=1

I
f
m,j,n (3)

and

Ibm,j =

Nb
m,j
⋃

n=1

Ibm,j,n (4)

in the case of multiple forward/backward segmentations per

frame. An illustration is provided in Figure 3. I
f
m,j and

Ibm,j ∈ {0, 1}W×H are the binary segmentation masks for

the forward and backward frames respectively. N
f
m,j is the

number of forward segmentations for modality m and frame

j1 Jj2,1j1,1

௝,ଵ௙ܫ
௝,ଵ௕ܫ

j1 Jj2,2j1,2 ௝,ଶ௙ܫ
௝,ଶ௕ܫ

m=2

m=1

Figure 3: The black line represents frames in a sequence of

length J for modalities m = 1 and m = 2. There are four

manual segmentation masks at frames 1, jm,1, jm,1, J . The

VOS algorithm is run both forward (green lines) and back-

ward (blue lines) from each manual segmentation resulting

in a total of four segmentations for each frame j in the se-

quence. The segmentation masks used in the calculation of

I
f
m,j and Ibm,j are marked with red circles.

j and N b
m,j is the number of backward segmentations. Fol-

lowing the reasoning about the total number of segmenta-

tions per frame in Section 3.1, Nm = N
f
m,j + N b

m,j =
Km + 2.

The second term in (1), |
∏M

m=1
(cm,j) − o

f
j | enforces

forward consistency over modalities. Note that the prod-

uct
∏M

m=1
is only calculated over consistency scores cm,j .

The forward overlap o
f
j ∈ [0, 1] is defined as the intersec-

tion over union between the forward segmentations I
f
m,j of

different modalities:

o
f
j = IoU(If

1,j , I
f
2,j , ..., I

f
M,j) =

M
⋂

m=1

I
f
m,j

M
⋃

m=1

I
f
m,j

(5)

Similarly, the third term in (1), |
∏M

m=1
(cm,j) − obj | en-

forces backward consistency over modalities. The back-

ward overlap obj ∈ [0, 1] is defined as:

obj = IoU(Ib
1,j , I

b
2,j , ..., I

b
M,j) =

M
⋂

m=1

Ibm,j

M
⋃

m=1

Ibm,j

(6)

The minimizer of (1) is obtained with the MATLAB rou-

tine fmincon, using the default interior-point algorithm.

3.3.2 Frame annotation proposal

Given a consistency score vector cm for all frames j =
1, ..., J , a frame index jk,m for iteration k and modality m



0 20 40 60 80 100 120 140 160 180

Frame number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

o
vis

f,b

o
tir

f,b

o
vis

f

o
vis

b

c
vis

c
tir

0 20 40 60 80 100 120 140 160 180
0

0.5

1

c
vis

< 0.63

0 20 40 60 80 100 120 140 160 180
0

0.5

1

c
tir

< 0.58

Figure 4: Example of failure detection in the sequence

twowomen after initialization (i.e. two manual annota-

tions, first and last frame). The red line shows the visual

consistency score cvis and the blue line the thermal consis-

tency score ctir. αvis = 0.63, αtir = 0.58, and the method

proposes an additional manual annotation at frame 47 for

RGB and frame 33 for TIR.

is proposed for manual annotation. In order to filter out

noise, cm is initially smoothed by a moving average filter

with support seven. Scores (cm,j), elements of vector cm,

below a threshold αm are considered to be failure areas, and

the frame index of the center of the largest cluster of failed

frames is selected as jk,m, see Figure 4. We propose to

place the annotation at the center of a failure cluster based

on the hypothesis that this will maximize the utility.

Note that the score vector, cm, is calculated separately

for each modality m (each element cm,j is calculated as in

(1)) which implies that the proposed index jk,m does not

have to (but can) be equal for the different modalities.

The threshold αm is found automatically for each itera-

tion k based on the assumption that the distribution of the

consistency scores will be approximately bimodal. The two

largest local maxima p1, p2 ∈ [0, 1]Z (where Z is the to-

tal number of local maxima) of the distribution of all con-

sistency scores cm,j are found and αm is set to the mean

between these as in:

αm =
p1 + p2

2
. (7)

An illustrative example is given in Figure 5. Another

option could be to use e.g. Otsu’s algorithm.

vis
= 0.63
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Figure 5: Example of the automatic selection of threshold

αm for the visual modality. Black dotted lines mark the two

local maxima p1, p2 of the distribution of consistency scores

cm,j (red solid line) and the red dotted line marks αm. Blue

bars are histogram bins for the consistency scores.

3.4. Modality Fusion

As exemplified in Figure 2, for each modality at itera-

tion k, there will be k + 2 segmentations for each frame

in the sequence. Thus, the total number of segmentations

per frame for modality m will be Nm = Km + 2 where

Km is the total number of iterations needed for that modal-

ity. These segmentations need to be fused in order to form

one single segmentation for that frame. Since video object

segmentation accuracy generally decreases with number of

frames since the initialization frame, the segmentations are

weighted according to how close they are to their initializa-

tion frame. The weight wj,m,n for frame j, modality m,

and segmentation n = 1, ..., Nm where Nm = Km + 2
following the reasoning above, is defined as:

wj,m,n = v−d (8)

where d is the distance (in number of frames) from the ini-

tialization frame. We use the base v = 2
1

100 which gives

wj,m,n = 0.5 after 100 frames.

The elements of a binary segmentation mask Tj ∈
{0, 1}W×H for frame j and pixel x = 1, ...,W and y =
1, ..., H is then calculated as:

T
x,y
j =

{

1 if P
x,y
j ≥ γ

0 if P
x,y
j < γ

(9)

where

P
x,y
j =

M
∑

m=1

Nm
∑

n=1

wj,m,nI
x,y
j,m,n (10)



I
x,y
j,m,n is an element of the binary segmentation mask

Ij,m,n ∈ {0, 1}w×h, P
x,y
j ∈ R, and the threshold γ is de-

fined as:

γ =
2

3 ·
∑M

m=1
Nm

(11)

The modality fusion assumes a sufficiently minute syn-

chronization between the different modalities, and devia-

tions will lead to a degradation of the results.

4. Experimental Results and Evaluation

In this section, the performance of the semi-automatic

annotation method is evaluated. Performance is measured

in terms of mean Intersection over Union (mIoU) between

the ground truth axis aligned bounding box and the enclos-

ing axis aligned bounding box around the estimated seg-

mentation. We calculate the mIoU by first taking the mean

intersection of union over all frames in one sequence, and

then averaging that over all sequences.

In addition, we compare mIoUs for the case where

ground truth axis aligned bounding boxes are available to

support the video object segmentation and the case where

such ground truth is unavailable. As a reference, the mIoU

for the manually annotated frames is provided as well.

4.1. Dataset

The dataset used in the evaluation is a subset of the

RGBT-234 dataset [27]. The thermal sequences of the full

RGBT-234 dataset were labelled with global attributes and

clustered according to the VOT standard1. Based on the

clustering, 60 sequences were automatically chosen. Dur-

ing evaluation, it became clear that in seven of the se-

quences, the object was too small to be properly segmented

by the VOS algorithm, this is a limitation of the proposed

semi-automatic annotation method. These sequences were

manually segmented for the VOR-RGBT 2019 dataset. The

subset used for evaluation of the method was, therefore, re-

duced even further to 53 sequences. A list of all included

sequences is provided in Appendix A. Available ground

truth for RGBT-234 is provided as axis aligned bounding

boxes which is not sufficient for VOT since rotated bound-

ing boxes are needed.

The mIoU between the available ground truth and the

bounding boxes around manually annotated segmentations

(first and last frame in each sequence) is around 68% for

both TIR and RGB. This suggests that the results from any

segmentation based semi-automatic annotation method will

not be much higher than this for this particular dataset. The

reason for this relatively low mIoU is that the available

ground truth is not always placed tight around the object.

Also, in case of occlusion, the parts not visible in that frame

1https://github.com/votchallenge/clustering

Table 1: mIoU results over bounding boxes for recursive

2-split (uniformly spread out frames), 53 sequences. k is

the number of iterations and f-TIR and f-RGB are the fused

results evaluated against the TIR/RGB ground truth.

k 0 1 3

annotations/seq 2 3 5

TIR 0.178 0.361 0.442

RGB 0.255 0.419 0.478

f-TIR 0.319 0.424 0.412

f-RGB 0.324 0.429 0.414

is included in the bounding box while at the same time not

manually annotated/segmented.

The synchronization of the two modalities as provided in

[27] shows deficits. Ground truth bounding boxes for RGB

and TIR have less than 50% overlap in 15% of the frames

in the entire dataset. The mean overlap is 75%. For that

reason, evaluation was done both with and without fusion

and in the fusion case, results were calculated both with the

infrared ground truth (f-TIR) and the visual ground truth (f-

RGB).

4.2. Failure Detection

Two different approaches for failure detection and how

to choose which frames to annotate next are evaluated:

1. The k + 2 annotated frames are uniformly spread out.

2. The proposed method, as described in Section 3.3,

based on forward/backward consistency.

4.2.1 Uniformly spread out frames

In this experiment, manual annotations were placed at the

first and last frames, half the sequence, a quarter of the se-

quence, and three quarters of the sequence. Mean Inter-

section over Union is presented in Table 1. The mIoU is

degraded when modalities are fused (f-TIR and f-RGB) for

k > 4.

4.2.2 The proposed method

For the proposed method, the proposed, automatic failure

detection method was employed. Results can be seen in

Table 2. Also here, mIoU is degraded for k > 4 when

modalities are fused.

Compared to the approach where frames are uniformly

selected, the proposed approach requires less annota-

tions/sequence while achieving similar results. Regarding

modality fusion, we believe that the large discrepancy in

ground truth between TIR and RGB affects the fused case

much stronger than the single modality case.



Table 2: mIoU results over bounding boxes for the proposed

failure detection method, 53 sequences. k is the number of

iterations and f-TIR and f-RGB are the fused results evalu-

ated against the TIR/RGB ground truth.

k 0 1 2 3

annotations/seq 2.00 2.97 3.95 4.93

TIR 0.178 0.356 0.405 0.421

RGB 0.255 0.413 0.446 0.458

f-TIR 0.319 0.437 0.424 0.421

f-RGB 0.324 0.437 0.423 0.420

The benefit of the proposed approach for failure detec-

tion is that is does not require any ground truth. However,

as the decision is based only on the consistency, it is prone

to failure in scenarios where the VOS method makes the

same mistake in all modalities.

4.3. The VOT-RGBT 2019 Dataset

The proposed method can be assisted by existing ground

truth axis aligned bounding box annotations if available.

The search area for the segmentation method is then lim-

ited to that of an enlarged region around the ground truth

bounding box. This approach reduces the number of drift

cases and was the employed approach when producing the

VOT-RGBT 2019 dataset. Mean Intersection over Union

can be seen in Table 3.

The proposed method produces object segmentations.

For the VOT-RGBT 2019 dataset, rotated bounding boxes

were required and automatically extracted from the segmen-

tations using [43]. More details on all included sequences

together with their global attributes can be seen in Appendix

A. Depending on the application, different types of anno-

tations can be extracted. For example, center coordinates,

axis-aligned bounding boxes, or the segmentations them-

selves.

The mean number of frames per sequence is 335. After

the semi-automatic annotation, we estimate that about 20%

of the frames had to be corrected. Compared to manual an-

notation of all frames, the proposed method thus reduces

the workload with about 78%. That is if correcting frames

is equated with manual annotation from scratch in terms

of time-consumption, the five manual annotations that were

needed are included, and inspection of segmentation results

of all frames is excluded.

4.4. Qualitative results

In Figure 6, we present two examples of successful semi-

automatic annotations using the proposed method as well

as two examples of failure cases. In Figure 6a and 6b, the

object is correctly segmented (white outline) and a rotated

Table 3: mIoU results over bounding boxes for the proposed

method where a bounding box refinement technique was

used to limit the search area for the VOS algorithm. The

method was evaluated on 53 sequences. k is the number of

iterations and f-TIR and f-RGB are the fused results evalu-

ated against the TIR/RGB ground truth.

k 0 1 2 3

annotations/seq 2 3 4 5

TIR 0.184 0.355 0.420 0.446

RGB 0.256 0.395 0.459 0.476

f-TIR 0.333 0.462 0.491 0.496

f-RGB 0.339 0.467 0.496 0.500

bounding box (green) encloses the segmentation. We argue

that the rotated bounding box is a more accurate annotation

of the object than the ground truth axis-aligned bounding

box (red) in some cases, e.g. in Figure 6a. In Figure 6b,

the ground truth annotation only encloses the person, while

the segmentation includes both the person and the bag. De-

pending on the annotation task, this can either be an advan-

tage or a disadvantage.

The employed VOS-algorithm sometimes includes back-

ground in the object segmentation, example in Figure 6c.

In this example, the same failure happens in both TIR and

RGB, which does not have to be the case. Figure 6d shows

an example of when the VOS-algorithm fails to segment the

whole object.

5. Conclusion

We have proposed a recursive semi-automatic annotation

pipeline utilizing a Video Object Segmentation (VOS) algo-

rithm to automatically propose tentative segmentations for

frames in multi-modal video. Tentative segmentations are

corrected by a human annotator, significantly reducing the

workload compared to full manual segmentation. We show

that using only five manual annotations per sequence, work-

load can be reduced with about 78%. The final segmenta-

tions can be use to generate a range of different types of an-

notations, e.g. center points, axis aligned bounding boxes,

or rotated bounding boxes.

The proposed pipeline is preferably combined with

our novel, automatic, failure detection method based on

forward-backward consistency also proposed in this work.

The latter is especially beneficial in the case of sequences

with difficult passages that are non-uniformly distributed.

We also propose, in the case of available axis-aligned

bounding boxes, to use these bounding boxes to assist the

VOS algorithm and limit the search space in order to re-

duce the number of drift cases. This approach was utilized

in the creation of the VOT-RBGT234 dataset and led to a



(a) Frame 324 from sequence green (b) Frame 227 from sequence crossroads

(c) Frame 53 from sequence green (d) Frame 612 from sequence crossroads

Figure 6: Examples of successful ((a) and (b)) as well as failed ((c) and (d)) semi-automatic annotations in both TIR (left)

and RGB (right). The white outline shows our object segmentation, the red box is the ground truth axis aligned bounding

box, and the green box is the rotated bounding box based on our segmentation. The frames from sequence crossroads

have been cropped for the sake of visualization.

reduction of the workload with about 78%.

Future work include incorporation of frame-wise annota-

tions of occlusions in order to prevent the failure detection

to get stuck in occlusion areas. Also, the hypothesis re-

garding RGB-TIR inconsistency affecting the fused results

much stronger could be verified in a synthetic experiment.
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