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Abstract

We propose an end-to-end tracking framework for fus-

ing the RGB and TIR modalities in RGB-T tracking. Our

baseline tracker is DiMP (Discriminative Model Predic-

tion), which employs a carefully designed target prediction

network trained end-to-end using a discriminative loss. We

analyze the effectiveness of modality fusion in each of the

main components in DiMP, i.e. feature extractor, target es-

timation network, and classifier. We consider several fusion

mechanisms acting at different levels of the framework, in-

cluding pixel-level, feature-level and response-level. Our

tracker is trained in an end-to-end manner, enabling the

components to learn how to fuse the information from both

modalities. As data to train our model, we generate a large-

scale RGB-T dataset by considering an annotated RGB

tracking dataset (GOT-10k) and synthesizing paired TIR im-

ages using an image-to-image translation approach. We

perform extensive experiments on VOT-RGBT2019 dataset

and RGBT210 dataset, evaluating each type of modality fus-

ing on each model component. The results show that the

proposed fusion mechanisms improve the performance of

the single modality counterparts. We obtain our best results

when fusing at the feature-level on both the IoU-Net and the

model predictor, obtaining an EAO score of 0.391 on VOT-

RGBT2019 dataset. With this fusion mechanism we achieve

the state-of-the-art performance on RGBT210 dataset.

1. Introduction

As an important task in computer vision, visual object

tracking, especially RGB tracking [7, 22, 4, 16, 12, 17, 10,

30, 61, 38, 11], has undergone profound changes in recent

years. Researchers mainly focus on RGB tracking as large

datasets are available [53, 28, 49]. However, RGB track-

ing obtains unsatisfactory performance in bad environmen-

tal conditions, e.g. low illumination, rain, and smog. It was

found that thermal infrared sensors provide a more stable

signal for these scenarios. Therefore, RGB-T tracking has

Figure 1. Qualitative comparison between ‘mfDiMP’ and

‘DiMP’. Two exemplar videos from RGB modality and TIR

modality on the top and bottom separately, where DiMP performs

on each of them with single modality input. Our mfDiMP can ef-

fectively track the object by fusing both modalities.

drawn more research attention recently [31, 34, 32, 35].

As multi-modal data, i.e. from the RGB and TIR modal-

ities, can provide complementary information for tacking,

multi-modal tracking is a promising research direction. Im-

ages from the RGB modality have the advantage that they

contain high-frequency texture information and provide rich

representations for describing objects. Images from the TIR

modality have the advantage that they are not influenced

by illumination variations and shadows. Moreover, objects

with elevated temperature can be distinguished from the

background as the background is normally colder. There-

fore, fusing the information from multi-modal data could

benefit the tracker because it can exploit the complemen-

tary information of the modalities to improve tracking per-

formance.

There exists relatively little research on multi-modal

tracking [52, 37, 31, 33, 35]. Most of these works are still

using the sparse representation, normally with the hand-

crafted features, for multi-modal tracking [37, 31, 33, 35].

Later on in [35], for comparison they design some base-

line RGB-T trackers by extending the single modal tracker

to a multi-modal tracker. This extension is done by di-

rectly concatenating the features from the RGB and the TIR



modalities into a single vector, which is then fed into the

tracker. They also use some deep features for concatena-

tion, but they are still off-the-shelf features pre-trained for

other tasks. Therefore, there is still no previous work which

investigates end-to-end training. We mention two main rea-

sons for this. First, it is not obvious in what part of the track-

ing pipeline the fusion should be done. Ideally, we should

fuse the information of the different modalities in such a

way that it allows for optimal end-to-end training. Second,

data scarcity of multi-modal tracking is a major obstacle

to end-to-end training. Currently there are no large-scale

aligned multi-modal datasets. These two issues, i.e. no spe-

cific fusion scheme and lack of data, limit the progress of

end-to-end multi-modal training.

To tackle this problem, in this paper we investigate how

to effectively fuse multi-modal data in an end-to-end man-

ner, which enables the optimal use of information from both

modalities (see Figure 1). We propose three end-to-end fu-

sion architectures, consisting of pixel-level fusion, feature-

level fusion, and response-level fusion. We use as baseline

tracker the RGB tracker DiMP [5]. To ensure that the pro-

posed fusion tracker can be trained in an end-to-end man-

ner, we also generate a large-scale paired synthetic RGB-T

dataset with the method proposed in [58]. We perform ex-

tensive experiments on two commonly used benchmarks for

RGB-T tracking: VOT-RGBT2019 [1] and RGBT210 [34].

Our multi-modal fusion tracker sets a new state-of-the-art

on both datasets, achieving an EAO score of 0.391 on VOT-

RGBT2019 and 55.5% success rate on RGBT210.

This paper is organized as follows. In section 2, we dis-

cuss the successful single modality tracking methods of re-

cent years and the situation of current multi-modal track-

ing. In section 3, we introduce the baseline tracker and an-

alyze its components. In section 4, we describe the pro-

posed methods and formulations for the fusion of multi-

modal tracking and provide the synthetic data for end-to-

end training. In section 5, we present our extensive ex-

periments on the VOT-RGBT2019 dataset and RGBT210

dataset. Finally, in section 6, we conclude our work and

propose future research directions.

2. Related work

2.1. Single modality tracking

Most current tracking algorithms focus on RGB im-

ages [7, 22, 4, 16, 12, 17, 10, 30, 61, 38, 11], although

several approaches track in the TIR modality instead [58,

54, 55, 35]. Despite the development of deep learning

in many computer vision tasks, object tracking contin-

ued to use hand-crafted features during the first stage of

deep learning [39, 44, 17, 10, 47]. Later on, some track-

ers [17, 10, 39] pioneered in the involvement of deep fea-

tures in tracking by using the pre-trained models for an im-

age classification task [46]. The main reasons for only us-

ing pre-trained models were the lack of large-scale training

datasets and the difficulty of designing a suitable end-to-

end training framework for tracking. Bertinetto et al. [4]

proposed to train a network end-to-end by using a video

object detection dataset [46]. Recently, several large-scale

tracking datasets [18, 43, 23, 49], e.g. GOT-10k [23], have

been released with millions of images and various cate-

gories for training. Therefore, some current tracking ap-

proaches [11, 29, 5] perform end-to-end training by lever-

aging these large-scale datasets.

RGB trackers. Bertinetto et al. [4] proposed to use a

fully-convolutional architecture to learn a similarity metric

offline, i.e. a Siamese network. After training, the Siamese

network is deployed for online tracking with high efficiency.

To learn attention on the cross correlation, Wang et al. [51]

include additional attention components in the Siamese net-

work and learn the spatial and channel weights for the ex-

emplar model. Li et al. [30] utilize a proposal network

to estimate the score maps and bounding boxes using two

branches, which provides more accurate object scales than

the traditional multi-resolution scale estimation. Later it is

extended to use deeper and wider networks achieving sig-

nificant improvement [29].

An alternative approach to Siamese networks is correla-

tion filter (CF) based tracking [7, 22, 20, 16, 56, 59, 57, 12,

14, 15, 41, 26, 38, 40], which has occupied top positions for

many years given its discriminative abilities and efficient

tracking speed. The core part of CF trackers is the calcula-

tion of a filter that is later applied to detect the object in the

search region of next frame. The calculation is performed

in the Fourier domain, which makes it highly efficient. To

overcome the issue of boundary effect in correlation filter in

tracking, Danelljan et al. [14] proposed to regularize the fil-

ter with a Gaussian window and Kiani et al. [26] proposed

to use a mask formulated in the correlation filter. Some CF

trackers [39, 13, 17, 10] also benefited from pre-trained con-

volutional features. CFNet [48] added end-to-end training

by formulating CF as one layer of the network, although

this only gives a marginal gain with respect to the baseline

model, SiamFC [4]. Park et al. [45] proposed to learn an

initial model for the correlation filter offline, accelerating

the convergence speed for the filter optimization.

TIR trackers. Contrarily to RGB tracking, most of the

top performing TIR trackers still use hand-crafted features

in their models. For example, SRDCFir [19] extends the

SRDCF [14] tracker for TIR data by combining motion fea-

tures with hand-crafted visual features, e.g. HOG [9], color

names [50], intensity, etc. EBT [60] uses edge features to

devise an objectiveness measure that generates high qual-

ity object proposals. Yu et al. [54, 55] propose structural

learning on dense samples around the object, using edge and

HOG features [9], transferred to the Fourier domain for effi-

ciency. Zhang et al. [58] propose using an end-to-end train-



able deep network. They generate a large-scale TIR track-

ing dataset for training from existing RGB tracking dataset.

They use a current image translation approach [24] to syn-

thesize a large amount of TIR images from RGB and they

transfer the corresponding object annotations. By training

the network with this data, they achieve state-of-the-art re-

sults in TIR tracking. Following this idea, we obtain a large-

scale RGB-T dataset that enables the use of deep learning

for RGB-T tracking.

2.2. Modality fusion tracking

Fusing the RGB and TIR modalities is a promising di-

rection. Some RGB-T trackers once have been proposed.

Conaire et al. [8] proposed to efficiently combine visible

and thermal features by fusing the outputs of multiple spa-

tiogram trackers, which is a derivation from mean-shift type

algorithm [6]. Wu et al. [52] used a sparse representation

for the target template by concatenating RGB and TIR im-

age patches. Similarly, Liu et al. [37] also use a sparse

representation by minimizing the coefficients from each

modality. However, these methods provide sub-optimal fu-

sions as both modalities contribute equally, while in prac-

tice one modality may have more valuable information than

the other. Li et al. [31, 33] addressed this with an adaptive

fusion scheme to integrate visible and thermal information

in the sparse representation by introducing weights to bal-

ance the contribution of each modality. In order to limit the

effect of background clutter during tracking, Li et al. [35]

introduced a ranking between the two modalities, which is

taken into account in the used patch-based features. They

effectively avoided background effects by using the learned

features with a structured SVM.

As far as we know, all of the current RGB-T approaches

use hand-crafted features, which significantly limits their

tracking performance. Although several RGB-T tracking

datasets [31, 34, 32] have been recently released, they are

only for testing purposes and are not large enough for train-

ing a deep learning based RGB-T tracker. We propose

adapting a deep RGB tracker for RGB-T by exploring dif-

ferent types of modality fusion, and performing end-to-end

training with partly synthesized RGB-T data.

3. Baseline RGB tracker

In this section, we describe the architecture of the tracker

we have selected for our multi-modal tracking experi-

ments. We use the Discriminative Model Prediction (DiMP)

tracker [5], which was originally proposed for single modal-

ity tracking.

Discriminative Model Prediction. DiMP [5] proposed an

end-to-end trainable tracking architecture, capable of learn-

ing a powerful discriminative filter by embedding the online

learning of the target model into itself. DiMP consists of the

following components: feature extractor, model predictor,

and target estimation network (IoU-Net [25]). With these

carefully designed components and an effective optimiza-

tion method, they achieve excellent performance on RGB

tracking by setting a new state-of-the-art on several RGB

tracking datasets [27, 53, 23, 43, 18].

Feature extractor. The backbone feature extractor F nor-

mally aims to extract the deep feature representations for

the follow-up implementation models. Here, specifically

in DiMP [5], the deep representations are extracted for the

model predictor and target estimation network.

DiMP [5] employs the ResNet-18 and ResNet-50 archi-

tectures, which is trained on ImageNet, as the backbone

feature extractors for DiMP-18 and DiMP-50 separately.

They implement fine-tuning the backbone for the end-to-

end training. After an analysis on the impact of differ-

ent feature blocks in DiMP [5], they use the features from

block3 and block4 for IoU-Net, and only from block4 for

the classifier. The feature extractor F is shared and only

performed on a single image patch per frame.

For training the feature extractor F , they input data for

F with a pair of sets (Mtrain,Mtest). Each set M =

{(Ij , bj)}
Nframes

j=1 contains images Ij along with their ob-

ject bounding box bj . The target model is predicted by using

Mtrain and then evaluated on the test frames Mtest. Mtrain

and Mtest are constructed by sampling Nframes frames for

both from first and second halves of the segment respec-

tively. They pass the images through the feature extrac-

tor F , and obtain the train set Strain = {(xj , cj)}, where

xj = F (Ij), and cj is the center coordinate of the box bj .

Model predictor and response map. The Model predic-

tor is to obtain the final optimized filter f , which consists

of model initializer, which is a convolutional layer followed

by a precise ROI pooling[25], and model optimizer, which

is to solve the final model f by the steepest descent (SD).

The model filter f is solved by using multiple samples in

Strain, which happens in the model initializer. The input of

the model predictor is a set of Strain, and obtain the model

f by training on the model predictor: f = D(Strain). Then

the filter f is evaluated on the test samples Stest and finally

classification loss for offline training is computed as:

Lcls =
1

Niter

Niter
∑

i=0

∑

(x,c)∈ Stest

∥

∥

∥
l(x ∗ f (i), zc)

∥

∥

∥

2

. (1)

Where, zc is a Gaussian function centered as the target c.

f (0) is the output of model initializer. The response map

can be calculated as: s = x ∗ f, x ∈ Stest.

Bounding box estimation. DiMP uses an IoU-Net based

architecture from the ATOM tracker [11]. The function of

the IoU-Net model is to predict the IoU between the deep

feature x of an image and a bounding box candidate B.

Bounding box estimation is then performed by maximiz-

ing the IoU prediction. The network has two branches, one
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Figure 2. Overview of our multi-modal fusion framework on feature-level. We input images from RGB and TIR modalities to their

feature extractor separately. Then we fuse the deep features from different blocks of the backbone. Fused features from block3 and block4

are input to IoU modulation and IoU predictor. Fused features from block4 are input to the model predictor for the final response map.

is the IoU modulation for calculating the modulation vector

from reference image, and the other branch is IoU predic-

tor for predicting the IoU values from test image. Then the

reference branch is added with a convolutional layer, while

the test branch is added with two convolutional layers as it

dominates the IoU prediction. Both of them then are fol-

lowed by PrPool (Precise ROI Pooling)[25] and a fully con-

nected layer. Here the interaction between the two branches

is that a precomputed vector in the reference branch is used

to modulate the feature representation of the test image via

channel-wise correlation. The IoU is predicted in terms of

the bounding box B as follows:

IoU(B) = g(c(x0, B0) · z(x,B)) (2)

Where, x0, B0 are from the reference image, and x,B are

from the test image. z is the feature representation after

PrPool layer in test branch. g is the IoU predictor with three

fully connected layers. c is a modulation vector.

4. End-to-end multi-modal tracking

There are two main issues when extending state-of-

the-art RGB trackers to multi-modal data such as RGB-T.

First, a fusion component is not considered as a native de-

signed component for the RGB tracker architecture, since

the tracker only considers a single modality as input. There-

fore, when extending to multi-modal data, these trackers

must be equipped with a fusion strategy. Second, the lack of

large-scale paired RGB-T training datasets complicates the

end-to-end training of feature representations, which have

been shown to significantly improve results for RGB track-

ing. To tackle the former, we investigate how to effectively

fuse multi-modal data for tracking, aiming to make the best

use of all available data modalities, in this case, RGB and

TIR. To tackle the latter, we ensure that the proposed multi-

modal tracker can be trained in an end-to-end manner by

generating a large-scale paired synthetic RGB-T dataset,

similarly to the method proposed in [58].

In this section, we first comprehensively explain our

three end-to-end multi-modal fusion architectures, namely

pixel-level fusion, feature-level fusion, and response-level

fusion. We also explain how we apply [58] to generate a

large multi-modal dataset.

4.1. Multi-modal fusion for tracking

In this subsection, we investigate three different mecha-

nisms for multi-modal fusion with the aim to find the op-

timal fusion architecture. We start the fusion work on the

input of the network (pixel-level). Then we explore the fu-

sion on the intermediate of the network. In [35], they ex-

tended some RGB trackers by concatenating the RGB and

TIR features into a single vector, and then used them as

off-the-shelf features for the classifiers of various trackers.

In contrast, we end-to-end train fused features, which are

input to both the model predictor and the target estimation

network (feature-level). Moreover, we explore fusion on the

final response maps of the network (response-level).



Pixel-level fusion. The first modality fusion we consider

is at the input of the network. We propose to fuse the RGB

and TIR images by directly concatenating the images along

the channel direction and then inputting the fused RGB-T

image to the feature extractor. To complete this fusion, we

extend the filter size of the first layer in feature extractor

from 7 × 7 × 3 × 64 to 7 × 7 × 4 × 64. The images that

are input to the feature extractor should be concatenated as

IF = [IV |IT ], where IV is the RGB image, IT is the TIR

image and the fused image is IF .

Feature-level fusion. To delay the fusion to a more se-

mantically aware network stage, we evaluate the fusion ef-

fectiveness in the intermediate part of the network archi-

tecture. Concretely, we implement the fusion after the fea-

ture extractor, i.e. fusing the deep feature representations

from the RGB and TIR modalities. We pass the RGB and

TIR images through the feature extractors separately and

extract features from both modalities independently. Then,

we concatenate the features from each modality and feed

them into the IoU predictor and model predictor. This pro-

vides a more expressive representation for the IoU predic-

tor and more discriminative features for the model predictor.

The framework of our proposed method for multi-modal fu-

sion on feature-level is shown in Figure 2, where we show

how we concatenate the feature representations output by

the feature extractors. The feature concatenation can be ex-

pressed as intuitive syntax: xF = [xV |xT ]. Here, xV is the

features from the RGB modality, xT is the features from the

TIR modality, and xF is the fused features.

Response-level fusion. To evaluate the effectiveness of an

ensemble of independently trained trackers on each modal-

ity, we perform the multi-modal fusion on the final part of

the training architecture in DiMP [5], i.e. response-level fu-

sion. For the response-level fusion, we use a pair of feature

extractors and model predictors to process each image from

RGB and TIR modalities separately. Finally, we sum their

response maps to get the fused response map. We input a

single modality to the IoU-Net component and thus there

are two cases for training the whole network, one using the

RGB modality to fine-tune IoU-Net and one using the TIR

modality instead. Assuming that we have two single modal-

ity response maps, sV from the RGB modality and sT from

the TIR modality, we calculate the fused response map by

summing them: sF = sV + sT .

4.2. RGB-T data generation

The lack of large-scale paired RGB-T training datasets

hampers end-to-end tracking in RGB-T datasets. We bor-

row the method from [58], which proposes to use image-to-

image translation methods to generate synthetic TIR data

for tracking. In their paper, they show that using such data

improves results for end-to-end training of TIR trackers.

Here we explain how we generated the training data aiming

for fine-tuning the pre-trained DiMP models. We take ad-

vantage of a normal RGB training dataset for RGB tracking,

and then generate the TIR images by a well-trained image-

to-image translation model [24]. With the above steps,

we obtain an aligned synthetic RGB-T training dataset for

RGB-T tracking. As a result, our proposed fusion archi-

tectures (see section 4.1) can also benefit from end-to-end

training. Ideally, this will allow us to obtain a performance

gain proportional to that observed for RGB tracking.

After applying the described process, we obtain two

datasets for RGB-T tracking, (Mtrain,Mtest), both of the

form M = {(IVj , ITj , bj)}
Nframes

j=1 . Here, ITj represents the

j-th synthetic TIR image generated from the aligned RGB

image IVj , and bj is their identical bounding box.

5. Experiments

In this section, we provide a comprehensive evaluation

of the proposed tracker mfDiMP on two benchmarks, VOT-

RGBT2019 [1] and RGBT210 [34], and describe all imple-

mentation and evaluation details.

5.1. Generating the training RGB-T dataset

We use the recent Generic Object Tracking Benchmark

(GOT-10k) [23] to train our fused modality networks. GOT-

10k has over 10,000 video segments, covering 563 classes

of real-world moving objects and more than 80 motion pat-

terns, amounting to a total of over 1.5 million manually la-

beled bounding boxes. It also provides additional supervi-

sion in terms of attribute labels such as ratio of object visible

or motion type. We employ GOT-10k’s training set, which

contains 9,335 videos (1,403,359 frames), with 480 object

classes and 69 motion classes. We refrain from using the

set of 1000 prohibited videos listed in the VOT challenge

website [1], so we train our model with the remaining 8,335

videos (1,251,981 frames).

With this reduced version of GOT-10k RGB dataset,

we generate a large-scale RGB-T dataset by synthesiz-

ing paired TIR images using an image-to-image transla-

tion approach, as in [58]. Specifically, we use pix2pix [24]

for image-to-image translation given its excellent perfor-

mance [58]. To train the pix2pix model, we use a total of

87K pairs of aligned images in the RGB and TIR modal-

ities, depicting several different scenarios. These images

are carefully collected and arranged from many current ex-

isting RGB-TIR datasets [58]. We train the pix2pix model

using the default settings described in [58]. After training,

we use pix2pix to transfer the selected RGB videos in GOT-

10k [23] to synthetic TIR videos, along with the labels.

5.2. Evaluation datasets and protocols

VOT-RGBT2019 dataset [1] contains 60 public testing

sequences, with a total of 20,083 frames. It is used as the

most recent edition of the VOT challenge. We follow the

VOT protocol, which establishes that when the evaluated

tracker fails, i.e. when the overlap with the ground-truth



Fusion level Feature extractor IoU-Net Model predictor Response map EAO (↑) A (↑) R (↓)

Single modality

RGB RGB RGB RGB 0.327 0.586 0.345

TIR TIR TIR TIR 0.331 0.584 0.332

TIR TIR (ft) TIR (ft) TIR 0.336 0.587 0.331

TIR (ft) TIR TIR (ft) TIR 0.339 0.589 0.329

TIR (ft) TIR (ft) TIR (ft) TIR 0.341 0.590 0.328

RGB (ft) RGB (ft) RGB (ft) RGB 0.335 0.586 0.331

Pixel-level RGB+TIR (ft) RGBT (ft) RGBT (ft) RGBT 0.345 0.552 0.281

Response-level
RGB/TIR (ft) RGB (ft) RGB/TIR (ft) RGB+TIR 0.342 0.546 0.309

RGB/TIR (ft) TIR (ft) RGB/TIR (ft) RGB+TIR 0.349 0.554 0.291

Feature-level

RGB/TIR (ft) RGB (ft) RGB+TIR (ft) RGBT 0.346 0.545 0.266

RGB/TIR (ft) TIR (ft) RGB+TIR (ft) RGBT 0.359 0.564 0.243

RGB/TIR (ft) RGB+TIR (ft) RGB (ft) RGB 0.354 0.563 0.276

RGB/TIR (ft) RGB+TIR (ft) TIR (ft) TIR 0.366 0.601 0.261

RGB/TIR (ft) RGB+TIR (ft) RGB+TIR (ft) RGBT 0.389 0.605 0.224

RGB/TIR (ft / ft×10) RGB+TIR (ft) RGB+TIR (ft) RGBT 0.391 0.615 0.228

Table 1. Fusion mechanisms analysis on VOT-RGBT2019 [1]. We evaluate several fusion mechanisms at different levels of DiMP [5].

The results are reported in terms of EAO, normalized weighted mean of accuracy (A), and normalized weighted mean of robustness score

(R). We explicitly show the input modality for each component of the tracker. Here, ‘RGB’ and ‘TIR’ are the single modality,‘RGB/TIR’

means each modality input separately, ‘RGB+TIR’ means that both modalities are input simultaneously, and ‘RGBT’ indicates fused

features from both modalitites used in the remaining of network. Finally, (‘ft’) means fine-tuning and (‘ft×10’) means fine-tuning with a

higher learning rate. The best results are highlighted in bold font.

is below a given threshold, it is re-initialized in the cor-

rect location five frames after the failure. The main eval-

uation measure used to rank the trackers is Expected Av-

erage Overlap (EAO), which is a combination of accuracy

(A) and robustness (R). We compute all results using the

provided toolkit [1].

RGBT210 dataset [34] contains 210 highly-aligned pub-

lic RGB and TIR video pairs for testing, with 210K frames

in total and a maximum of 8K frames per sequence pair.

There are a total of 12 representative attributes, such as cam-

era moving, large scale variations and environmental chal-

lenges, which are annotated for each video. These facilitate

attribute-sensitive evaluation analyses. We compare our re-

sults with other trackers using the provided toolkit [2]. We

use precision plot and success plot to evaluate the trackers.

5.3. Implementation details

We use DiMP [5] as our base tracker with ResNet-

50 [21] as backbone network. The base architecture of

DiMP is pre-trained on several large-scale RGB training

datasets [18, 43, 23, 36]. To test the single modality ver-

sions, we simply input the images from either modality as

in traditional RGB trackers [22, 10, 4]. RGB images have

3 image channels while TIR images have 1 channel, and

so the pixel-level fusion uses 4-channel images. For the

feature-level fusion, we concatenate the convolutional fea-

tures after the feature extractors. Finally, for the response-

level fusion we add together the final confidence maps in-

dependently predicted by the RGB and TIR modalities.

We use separate, modality-specific feature extractors for

the response-level fusion and feature-level fusion. As hy-

perparameters for fine-tuning our architecture, we use the

default values used to train each component in DiMP [5],

which have been carefully set and described by the authors

in section 3.2 of [5]. We keep the default learning rates for

each component as in the DiMP model and then decrease

them by collaboratively multiplying a small gain learning

rate, i.e. 0.001 when fine-tuning. In one of our experiments,

we set the learning rate for the TIR feature extractor ×10
higher than for the RGB feature extractor. We do this con-

sidering that the RGB feature extractor was pre-trained with

a large-scale RGB dataset, leading to satisfactory RGB fea-

tures. On the other hand, the TIR feature extractor needs to

catch up with that of the RGB modality in terms of learning,

and thus it requires a higher learning rate for fine-tuning.

As a result of the stochastic nature of DiMP, the tracker

generates different results for every run. Following the pro-

cedure employed in [5], we compute the default 15 runs of

our mfDiMP tracker for VOT-RGBT2019 dataset and 5 for

RGBT210 dataset. Then we obtain the final result by aver-

aging the results of all runs.

5.4. Analysis of fusion mechanisms

Table 1 presents our analysis to determine the best loca-

tion to fuse the modalities in DiMP. The table is an extensive

evaluation of all considered fusions under different config-

urations. We start with a comprehensive evaluation of the

baseline tracker DiMP [5] for single modality. We present

several configurations in the upper part of Table 1 (‘Single

modality’) using the RGB modality or TIR modality alone.

The first two rows are the original DiMP (pre-trained for

RGB) using either RGB or TIR images during online track-

ing. We observe how the TIR images obtain a higher result.

For the next three rows, we fine-tune the feature extractor

and/or IoU-Net with synthetic TIR images. In this case,



Figure 3. Precision plot and success plot by comparing our mfDiMP with the top-10 trackers on RGBT210 dataset [34]. We can see

our mfDiMP outperforms DiMP with an absolute gain of 6.7% and 4.2% in terms of precision rate and success rate respectively.

ECO SiamFC DaSiamRPN ATOM DiMP
mfDiMP

[10] [4] [61] [11] [5]

EAO(↑) 0.265 0.254 0.324 0.318 0.327 0.391

A (↑) 0.580 0.594 0.604 0.575 0.586 0.615

R (↓) 0.480 0.533 0.482 0.374 0.345 0.228

FPS (↑) 11.2 38.1 62.4 12.1 13.6 10.3

Table 2. State-of-the-art comparison on VOT-RGBT2019

dataset. Our mfDiMP improves the baseline tracker DiMP with

an absolute gain of 6.4% in terms of EAO without significantly de-

teriorating the computational efficiency. The best results are high-

lighted in bold font.

fine-tuning the single modality network for TIR improves

the pre-trained networks with an absolute gain of 1%. Fi-

nally, we can see how fine-tuning only on RGB improves

the performance of the pre-trained model, but to a lesser ex-

tent than using TIR. In the lower part of Table 1 we analyze

the effectiveness of each fusion mechanism for DiMP [5],

which we discuss in detail in the remainder of this section.

Pixel-level fusion. From Table 1, we can observe that

pixel-level fusion improves the performance of the baseline

tracker from 0.331 to 0.345 with an absolute gain of 1.4%.

The images from the RGB and TIR modalities have com-

plementary information. Therefore, using the fused images

to train the network end-to-end can help the model to learn

better deep feature representations, which in turn improves

tracking performance.

Response-level fusion. In this case, the fusion takes place

in the final response map output by the classifier. The sig-

nals from both modalities pass through the classifier sep-

arately and both compute the response map. Then we sum

together the two response maps, obtaining the final fused re-

sponse map. Meanwhile, we input a single modality for the

IoU-Net, either RGB or TIR. Both fusion mechanisms en-

hance the tracking performance, and using the TIR modal-

ity for IoU-Net outperforms using RGB, achieving scores of

0.349 and 0.342, respectively. The results show that fusion

on response-level obtains the same effectiveness as pixel-

level fusion.

Feature-level fusion. We consider inputting fused fea-

ture representations into two different DiMP components,

i.e. model predictor and IoU-Net. In the former case, only

the model predictor receives fused features, whereas the re-

maining component (IoU-Net) still uses features from a sin-

gle modality. In both cases, we improve over single modal-

ity tracking, and the version with TIR for IoU-Net obtains

a better result with 0.359, an absolute gain of 2.8% with re-

spect to the best single modality model (fine-tuned on TIR,

row 5 of Table 1). We obtain an even higher score, 0.366,

when fusing features for IoU-Net while using TIR features

for the model predictor. This demonstrates that using fused

features for IoU-Net outperforms using fused features for

the model predictor. We attribute this to the fact that IoU-

net is a more complex network than the model predictor,

where the fused feature representations can be more effec-

tive to prompt IoU-Net to its ultimate capacity. Finally, we

use fused features to feed both model predictor and IoU-

Net, which significantly improves the result to 0.389, a sub-

stantial absolute gain of 5.8%. Considering that the fea-

ture extractor is pre-trained on RGB images, it is natural

to assume that the feature extractor for TIR images needs a

stronger training signal. For this reason, we propose a vari-

ant in which the feature extractor for the TIR modality has

a higher learning rate (×10). This variant achieves 0.391,

which is the best result and significantly outperforms the

best single modality tracker with a big jump.

Form Table 1, we can see that fusion on feature-level

with end-to-end training provides significant improvements

in tracking performance. Specifically, fusion of the fea-

ture representations for both model predictor and IoU-Net

achieves the best result on VOT-RGBT2019 dataset [1]. We

can also see that as pixel-level fusion and response-level fu-

sion both take place in the extra part of the network, they are

easier to implement and only fewer variants need to be eval-

uated, compared with the fusion on the intermediate of the

network. In the following sections, we select this best per-

forming variant as our final tracker, which we call mfDiMP.



ECO CSR CMRT SGT CNN+KCF+ CFnet+
mfDiMP

[10] [38] [35] [34] RGBT[22] RGBT[48]

No Occlusion 87.7/64.3 68.1/45.2 86.1/59.4 82.4/50.7 63.7/42.9 69.7/52.2 88.9/67.3

Partial Occlusion 72.2/52.5 52.7/36.6 77.1/52.2 75.4/48.3 56.0/36.4 57.2/38.4 84.0/60.1

Heavy Occlusion 58.3/41.3 37.1/24.3 54.6/34.8 53.1/34.1 36.6/25.9 39.3/27.3 68.4/45.8

Low Illumination 66.6/45.6 47.3/31.1 71.4/46.4 71.6/44.7 52.8/34.5 49.8/33.6 77.1/53.7

Low Resolution 64.1/38.1 46.0/23.1 64.7/37.4 65.8/37.5 54.6/32.5 45.2/27.7 69.2/43.6

Thermal Crossover 82.1/58.8 43.2/29.3 65.8/43.0 64.9/40.7 49.6/33.2 42.8/29.4 76.5/55.2

Deformation 61.2/45.0 44.7/33.0 65.2/45.8 65.3/45.9 44.8/34.4 48.9/35.2 77.7/56.6

Fast Motion 58.2/39.2 42.6/25.0 58.8/34.9 58.0/33.1 37.1/24.1 36.5/23.0 76.7/52.6

Scale Variation 74.5/55.4 53.3/37.5 72.5/49.2 67.4/41.7 50.3/32.6 56.7/40.6 82.2/59.5

Motion Blur 67.8/49.9 34.7/23.8 58.4/40.5 58.6/39.6 30.4/22.0 30.3/22.4 72.5/51.2

Camera Moving 61.7/45.0 38.9/27.4 60.0/41.9 59.0/40.7 36.2/27.0 37.2/27.9 75.3/53.8

Background Clutter 52.9/35.2 38.4/23.7 58.3/35.6 58.6/35.5 42.3/28.4 43.7/28.1 71.5/45.7

ALL 69.0/49.8 49.1/33.0 69.4/46.3 67.5/43.0 49.3/33.1 51.8/36.0 78.6/55.5

Table 3. Attribute-based Precision Rate and Success Rate (PR/SR %) on RGBT210 dataset with several trackers. These trackers

include popular RGB trackers such as ECO and CSR, recent multi-modal fusion tracker like CMRT and SGT, and also extended RGB-T

trackers from KCF and CFnet. Our tracker surpasses almost all the trackers over all the attributes.

5.5. VOT-RGBT2019 dataset

In this section, we evaluate our mfDiMP on the VOT-

RGBT2019 dataset in terms of EAO in Table 2. We

compare with several high-quality RGB trackers including

ECO [10], ATOM [11], DiMP [5], SiameseFC [4], DaSi-

amRPN [61]. All of these use only the RGB modality

as input. The single modality baseline tracker DiMP [5],

which shows dominant performances on various RGB

datasets [27, 43, 18, 23], also achieves excellent results on

VOT-RGBT2019. By using our multi-modal fusion with

end-to-end training, we improve DiMP by an absolute gain

of 6.4% in terms of EAO. This significant improvement

demonstrates that our selected fusion mechanism is effec-

tive for maximally exploiting the multi-modal nature of the

given images.

5.6. RGBT210 dataset

We evaluate mfDiMP on the recent RGBT210

dataset [34] using their two evaluation metrics (Fig-

ure 3). We compare against the top-10 trackers on this

dataset, including CCOT [17], ECO [10], CMRT [35],

BACF [26], SRDCF [14], SGT [34], Staple [3], Staple-

CA [42], SiameseFC [4]. We can see how our tracker

significantly outperforms the second best tracker (DiMP)

with an absolute gain of 6.7% and 4.2%, in terms of

precision rate and success rate respectively. As a result,

mfDiMP achieves a new state-of-the-art also on this

dataset, bringing further evidence to the advantages of

end-to-end training for multi-modal tracking in terms of

accurate object localization.

5.7. Attribute analysis on RGBT210 dataset

There are a total of 12 different attributes in the

RGBT210 dataset [34]. We analyze the performance of our

method on these attributes in terms of precision rate and

success rate (PR/SR %) in Table 3. We compare with some

popular RGB trackers such as ECO [10] and CSR [38].

We also compare with the state-of-the-art RGB-T trackers

on this dataset, e.g. CMRT [35] and SGT [34], and some

extended RGB-T trackers [35] from RGB modality, e.g.

KCF and CFnet. This experiment, which compares trackers

on specific scenarios, proves the robustness and generality

of our mfDiMP on RGB-T tracking. Our tracker outper-

forms all other trackers on all attributes but one (thermal

crossover). Moreover, in attributes such as partial occlu-

sion, low illumination, deformation, fast motion, camera

moving, and background clutter, mfDiMP achieves a sig-

nificant gain of about 10% in terms of Success Rate (SR)

when compared with the second best.

6. Conclusions

Most of the multi-modal trackers are still using hand-

crafted features, or simple off-the-shelf deep features. We

investigated how to effectively fuse multi-modal data in

an end-to-end training manner, which makes optimal use

of information from both modalities. We propose three

end-to-end multi-modal fusion architectures, consisting of

pixel-level fusion, feature-level fusion and response-level

fusion. To ensure that the proposed fusion tracker can

be trained in an end-to-end manner, we also generated a

large-scale paired synthetic RGB-T dataset. We performed

extensive experiments on two recent benchmarks: VOT-

RGBT2019 [1] and RGBT210 [34]. The results showed

that the proposed fusion tracker does significantly improve

the performance of the baseline tracker with respect to sin-

gle modality tracking. As a consequence, our end-to-end

multi-modal fusion tracker sets new state-of-the-art results

on both datasets.
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[12] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate

scale estimation for robust visual tracking. In BMVC, 2014.

1, 2

[13] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Fels-

berg. Convolutional features for correlation filter based vi-

sual tracking. In Proceedings of the IEEE International Con-

ference on Computer Vision Workshops, 2015. 2

[14] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In ICCV, 2015. 2, 8

[15] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.

Adaptive decontamination of the training set: A unified for-

mulation for discriminative visual tracking. In CVPR, 2016.

2

[16] M. Danelljan, F. S. Khan, M. Felsberg, and J. van de Weijer.

Adaptive color attributes for real-time visual tracking. In

CVPR, 2014. 1, 2

[17] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.

Beyond correlation filters: Learning continuous convolution

operators for visual tracking. In ECCV, 2016. 1, 2, 8

[18] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai,

Y. Xu, C. Liao, and H. Ling. Lasot: A high-quality

benchmark for large-scale single object tracking. CoRR,

abs/1809.07845, 2018. 2, 3, 6, 8

[19] M. Felsberg, A. Berg, G. Hager, J. Ahlberg, M. Kristan,

J. Matas, A. Leonardis, L. Cehovin, G. Fernandez, T. Vojir,

et al. The thermal infrared visual object tracking vot-tir2015

challenge results. In Proceedings of the IEEE International

Conference on Computer Vision Workshops, 2015. 2

[20] H. K. Galoogahi, T. Sim, and S. Lucey. Multi-channel corre-

lation filters. In ICCV, 2013. 2

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 6

[22] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2015. 1, 2, 6, 8

[23] L. Huang, X. Zhao, and K. Huang. Got-10k: A large high-

diversity benchmark for generic object tracking in the wild.

CoRR, abs/1810.11981, 2018. 2, 3, 5, 6, 8

[24] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

2017. 3, 5

[25] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition

of localization confidence for accurate object detection. In

ECCV, pages 784–799, 2018. 3, 4

[26] H. Kiani Galoogahi, A. Fagg, and S. Lucey. Learning

background-aware correlation filters for visual tracking. In

ICCV, 2017. 2, 8

[27] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,
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