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Abstract

Mammography is a major technique for early detection

of breast cancer, typically through detection of masses or

calcifications. However, how to help radiologists efficiently

recognize these lesions remains a challenging problem. In

this paper, we propose comprehensive deep learning based

solutions to respectively detect masses and segment calcifi-

cations in mammograms. To achieve the optimal mass de-

tection performance, our method combines Faster R-CNN

with Feature Pyramid Networks, Focal Loss, and Non-Local

Neural Networks. We thoroughly compare the proposed

method and competing methods on three public datasets

and an in-house dataset. The best detection results on our

in-house dataset are an average precision of 0.933 and a re-

call of 0.976. Regarding calcification segmentation, we de-

sign a series of pre-processing methods including window

adjustment, breast region extraction and artifact removal to

normalize mammograms. A U-Net model with group nor-

malization is then applied to segment calcifications. The

proposed method is validated on our in-house dataset us-

ing a newly designed evaluation metric. The experimental

results have demonstrated the great potential for this task.

1. Introduction

Medical imaging has been a revolutionary way for med-

ical professionals to diagnose and treat medical diseases

over the past decades. However, interpretation of med-

ical images is a complex task, which can only be per-

formed by medical professionals who have been exten-

sively trained on reading medical images and have long-

time clinical experience. With the recent advance of Arti-

ficial Intelligence (AI) with the emphasis of deep learning

*This work was done during Xiaoyan Zhuo’s internship at PingAn

Tech, US Research Lab, USA.

methods, numerous Convolutional Neural Networks (CNN)

based approaches for computer-vision-related applications

have been proposed [14, 19]. Many research projects also

apply CNN-based methods to Computer-Aided Detection

(CADe) and Computer-Aided Diagnosis (CADx) of med-

ical images for effectively assisting doctors (or even auto-

matically) to locate lesions and determine if they are benign,

or malignant (commonly known as cancer) in medical im-

ages [17]. This promising approach is expected to reduce

radiologists’ workload and to accelerate the diagnosis pro-

cess while improving the diagnosis accuracy. These intel-

ligent applications are also capable of integrating with the

e-health system to generate a comprehensive clinical report,

and/or to provide potential personal assistance, etc. [13].

Among these applications on medical images, detecting

lesions in mammography, the primary imaging technique

used for breast screening process, is gaining the increasing

attention during recent years [23], because breast cancer is

the leading type of cancer in woman, accounting for mas-

sive death worldwide every year [4]. There are mainly four

types of abnormality patterns in mammograms: mass, calci-

fication, asymmetry, and architectural distortion. In partic-

ular, mass and calcification account for the vast majority of

all breast cancer findings. Compared to calcification, mass

does not have a clear outline, and looks similar to the normal

tissues. Due to their own distinct characteristics, develop-

ing one universal solution to both of them is not ideal. To

better understand that, we list the existing challenges and

our solutions as follows.

Challenge 1: Detection problem vs. Segmentation prob-

lem. As aforementioned, one single solution to tackle both

two types of lesions is not desired. How to formalize them

as either segmentation or detection problem is critical.

Solution: According to the common computer vision

guidance [5], mass, which is always viewed as a region and

has a vague outline, is more suitable for detection problem.

On the other hand, formalizing calcification identification



as a segmentation problem is an appropriate way thanks to

the clear contour of calcification. In our solution, we ex-

ploit an enhanced version of Region proposals with CNNs

(R-CNN) [6], Faster R-CNN [22] to solve the mass detec-

tion problem, while a U-Net [24] structure is leveraged to

segment calcification. We will detail our approaches and

contributions later in this section.

Challenge 2: Inconsistency of calcification annotation.

Calcifications have various shapes and distributions. Com-

pared to the satisfactory consistency of mass annotation,

calcification annotation depends on each radiologist’s per-

sonal annotation preference very much. Two examples with

the different annotations by radiologists can be found in

Fig. 7 later, who labeled every single calcification or as-

sumed the calcifications a large region. Such difference re-

sults in an inconsistent and imperfect dataset that limits the

model’s learning capacity.

Solution: We improve the annotation consistency in the

calcification dataset and to develop efficient deep learning

networks without introducing any additional overhead into

the entire framework.

We here briefly review the related research works. Re-

garding mass detection, authors in [28] leveraged conven-

tional machine learning methods in K-means and support

vector machine (SVM) classification. Abstract patterns

were extracted from malignant and benign masses, and were

then used for the prediction model training. Recently, var-

ious deep-learning-based frameworks substantially outper-

form traditional machine learning methods for object de-

tection tasks. The Faster R-CNN improved the overall de-

tection performance and significantly reduced the process-

ing overhead [22]. A recent work applied the Faster R-

CNN framework on the large mixed public mammogram

datasets to detect masses on mammograms [23]. For calci-

fication segmentation, authors in [7] leveraged a set of pre-

processing schemes with a simplified pulse-coupled neu-

ral network to detect micro-calcification clusters. A U-net

based reconstruction framework was introduced in [27] to

extract the micro-calcification proposals.

In this paper, we present our comprehensive deep-

learning-based solution for mass detection and calcification

segmentation tasks. Our key contributions are summarized

below:

1. We adopt three effective neural network techniques,

namely Feature Pyramid Networks (FPN) [15], Focal

Loss [16] and Non-Local Neural Networks [25], and

integrate them within the Faster R-CNN framework

for mass detection. The three modules employed all

results in performance improvement, and the proposed

method outperforms the baseline methods by a large

margin.

2. We propose a modified U-Net framework with a novel

series of pre-processing methods to mitigate the im-

pact of imperfect images and inconsistent annotations

in calcification datasets. To address the issues raised

by the imperfect data and labels, we develop a series

of data and label processing methods, including arti-

fact reduction, label classification and consistency pro-

cessing. With a newly designed evaluation metric, a

thorough evaluation is done overall and each category

of calcifications.

3. Aside from using three public datasets, we constitute

our in-house dataset. The proposed methods and mod-

els are applied on our private mass and calcification

datasets, and achieve the outstanding results. Such

demonstration empowers the future delivery of our ap-

proaches to the collaborative hospitals for practical on-

site use.

The rest of this paper is organized as follows. Detailed

descriptions of the proposed method are given in Sec. 2.

Sec. 3 introduce our public dataset and in-house dataset. We

evaluate our proposed methods in Sec. 4. Discussion and

future work are presented in Sec. 5. We conclude this paper

in Sec. 6.

2. Methods

In this section, we describe the details of our methods of

mass detection and calcification segmentation.

2.1. Mass detection

2.1.1 Faster R-CNN

Faster R-CNN is a two-stage deep-learning-based object de-

tection model. In the Faster R-CNN, a backbone network is

adopted to generate feature maps. Based on feature maps,

region candidates are first automatically generated by a re-

gion proposal networks (RPN) instead of the previous slow

selective search algorithm in the R-CNN version [6], and

then a CNN-based network is used to classify the object

class and detect the bounding box. Moreover, the whole

backbone convolution layers are shared layers which are

used for both region proposal networks and classification

head. This way, the overhead of the entire framework is sig-

nificantly reduced, compared to other previous transformed

versions of R-CNN.

2.1.2 FPN

FPN is a multi-scale algorithm for object detection pro-

posed in [15]. Without introducing additional calculation

overhead, FPN exploits the inherent hierarchical architec-

ture in the process of generating the top feature map layer

in the backbone network, and efficiently extracts multi-scale



(a) Least dense (b) Medium dense (c) Densest

Figure 1: Mammograms with different breast densities.

feature maps to constitute a pyramid structure for the fol-

lowing prediction tasks.

Since a typical mass does not have distinct outlines, a

clear breast background is expected where the mass can be

easily identified. However, due to the variation of radia-

tion dose used for mammography, a clear background is

not always achieved. As mammogram images have com-

plex structures, identifying mass lesions from a dense back-

ground requires specialists to observe more areas and to dis-

tinguish the possible lesions from the normal dense breast

texture. On the other hand, if a mass lies within a clear

background, a smaller and more local receptive field is pos-

sibly adequate to locate it. FPN is a practical approach to

facilitate this scalable detection, achieved by the fusion of

multi-level feature maps with different sizes.

2.1.3 Focal Loss

As aforementioned in Sec. 2.1.2, detecting lesions in dense

breasts is a challenging task, because the contrast of back-

ground will heavily impact the model’s performance. Fig. 1

presents breast examples with three different densities. In

these examples, Fig. 1c can be regarded as one type of

“hard examples” in the lesion detection task, as it has the

densest breast among these three examples. This observa-

tion enables us to reconsider the importance of “easy exam-

ples” (masses with clear backgrounds) and “hard examples”

(masses with bright backgrounds) during the training proce-

dure. After the several beginning epochs, the easy examples

tend to have less contribution to the loss. Instead, the contri-

bution of hard examples to the loss should be increased. As

observing that the original Faster R-CNN usually predicts

many false positives for mass detection, we replace the orig-

inal loss function in Faster R-CNN with the state-of-the-art

focal loss, which utilizes a weighting strategy and focuses

on hard examples. The focal loss is defined as follows [16]:

FL(p) = −(1−p)γ log(p), (1)

where

p =

{

p if y = 1
1− p otherwise,

(2)

where y ∈ {−1,+1} refers to the ground-truth binary class;

p ∈ [0, 1] denotes the predicted probability of the class with

label y = 1; γ is a focusing variable, which is not less than

0.

2.1.4 Non-Local Neural Networks

The Non-local Means (NL-means) is a traditional computer

vision algorithm originally used for image denoising [1].

Instead of calculating the mean value of a target pixel’s “lo-

cal” surrounding pixels, this algorithm computes the mean

of all “non-local” pixels of the entire image, weighted by

the similarity of each pixel to the target pixel. Therefore,

the global details that might be ignored by the local mean

approach can be maintained. Recently, authors in [25] pro-

posed non-local neural networks that applied the strategy

of NL-means to the modern deep learning architecture and

has demonstrated its efficacy of capturing long-range de-

pendencies. Such dependency is also an important concern

in mammograms. The original receptive field in the back-

bone network of Faster R-CNN model might not consider

sufficient global information to calculate the response of a

single position.

The key formula of the non-local neural networks [25]

is:

vi =
1

C(u)

∑

∀j

f(ui, uj)g(uj), (3)

where u refers to an image; i is the index of a target po-

sition; j denotes the index of all possible positions through

the image u; f calculates a scalar relationship between i and

j; g denotes an operation at the position j; v represents the

calculated outcome of this equation, which is normalized

by a factor C(u). We here adopt the embedded dot product

version as the function f .

f(ui, uj) = θ(ui)
Tφ(uj), (4)

where θ(ui) = Wθui; φ(uj) = Wφuj ; Wθ and Wφ denote

the two target weight matrices, respectively. To avoid intro-

ducing much extra computation cost, we limit the number of

non-local blocks in the late stage of our backbone network.

2.2. Calcification Segmentation

2.2.1 Data Pre-processing

Window Adjustment: Mammograms collected from dif-

ferent machines may be stored with different numbers of

bits. Hence, it is necessary to adjust the window to ensure

that the breast tissues can be well displayed in the same

value range. DICOM files contain the window center c and



Figure 2: An example of artifacts. Left: original image.

Right: corrected image.
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Figure 3: Accumulated profiles for the localization of arti-

facts. From the left to the right, plots are h(x), ĥ(x) and

h(x)− ĥ(x), respectively.

window width w. We linearly map the pixel values c−w/2
and c + w/2 as 0 and 255, respectively. In the window ad-

justed image, the pixels with negative values are set to 0.

Breast Region Extraction: After the window adjust-

ment, pixel values in the background of breast images are

zero. However, there exist non-breast components, such as

letters. To remove non-breast components, we use morphol-

ogy methods to obtain the connected regions of non-zero

pixels. The breast region is the one with the largest area and

is preserved, and values of the rest pixels are set to zero.

Artifact Removal: Mammograms usually contain vari-

ous artifacts. The left figure in Fig. 2 shows typical arti-

facts, where some black and bright pixels appear in a line.

These bright dots are very similar to micro-calcifications, so

it is essential to remove these artifacts before training and

testing. This kind of artifact has the following two charac-

teristics: 1) The size of each black or bright artifact dot is

about 1 pixel; 2) The distribution of artifact dots is along a

vertical line. According to these features, we designed an

artifact localization and removal strategy.

Let u(x, y) be the value of pixel (x, y), and Ω(x, y) de-

fines a set of neighboring pixels of pixel (x, y). uj is the jth

neighboring pixel of (x, y) for j ∈ Ω(x, y). In this work, 8-

neighborhood is selected as Ω(x, y). We find the minimum

absolute value of a pixel and its neighboring pixels. The ob-
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Figure 4: Architecture of U-Net model for calcification seg-

mentation.

tained minimum absolute values are accumulated along the

vertical direction to generate function h(x). This operation

is summarized in the formula (5).

h(x) =
∑

y

min{|u(x, y)− uj |}|{j∈Ω(x,y)} (5)

The left plot in Fig. 3 presents the h(x) of the example

showed in Fig. 2. There is an obvious pulse at x = 1279,

which matches the location of artifacts. To automatically

detect this location, we process h(x) with median filtration

to get a smooth curve ĥ(x) as shown in the middle plot of

Fig. 3. Then h(x)− ĥ(x) removes the contribution of back-

ground in the image as shown in the right plot in Fig. 3,

and a threshold is applied to detect the location of artifacts.

Finally, each pixel value u(x, y) along artifact lines is re-

placed with median of its neighborhood Ω(x, y), and arti-

facts are removed. As shown in the right of Fig. 2, artifacts

have been successfully removed while other pixels remain

unchanged.

2.2.2 Training Methods

U-Net is a CNN-based segmentation network which has

been proved effective in medical images [24]. Fig. 4 illus-

trates the architecture of U-Net used in this work. This U-

Net consists of 3 downsample stages and 3 upsample stages

with skip connections. Each stage has two convolution lay-

ers, and each one followed by a group normalization [26]

and ReLu [21].

Instead of using an entire image as the training input, we

crop it into a number of 512×512 patches. The correspond-

ing cropping procedure is also performed on the pixel-level

binary mask of this image. Consequently, a patch-based

training set is constructed.

Since every patch still has the dominant proportion of

background (black) pixels, our patch-based training dataset

is extremely imbalanced in terms of positive vs. negative

pixels. To overcome this issue, we sample positive and

negative patches in every mini-batch up to the ratio of 1:1.

Besides, to avoid the parameter-updating leans toward the

negative pixels, we apply weighted cross-entropy loss to ag-



gregate more penalty on positive samples. The Adam opti-

mizer [10] is utilized, and the learning rate is initially set as

0.01, and then decreases gradually.

In the test stage, the pixel-based prediction of a patch

from the test set is performed. All patches then reconstruct

the entire image by their original locations and map their

pixel-based prediction probabilities to every pixel of the

whole image.

3. Datasets

3.1. Public Dataset

Our public dataset comprises Curated Breast Imaging

Subset of Digital Database for Screening Mammography

(CBIS-DDSM) [11], INbreast [20], and Breast Cancer Dig-

ital repository (BCD) [18]. The original DDSM database

[12] is a well-known public breast disease database. How-

ever, since the mammograms were collected using different

equipment by several hospitals in the United States, the im-

age quality was diverse. We thus adopt CBIS-DDSM, an

updated version of DDSM, which eliminates the defective

images and forms a standardized subset for more convenient

use. CBIS-DDSM has ∼1,600 images for mass lesions and

∼1,630 images for calcification lesions, respectively. IN-

breast has a total of 115 mass and 128 calcification images.

BCD dataset consists of 535 mass images only.

3.2. In-House Dataset

We are collecting an in-house dataset from the collabo-

rative hospitals to evaluate the proposed methods for future

on-site delivery. The dataset currently consists of 910 mass

images with a total of 1128 mass labels and 1776 calcifi-

cation images, containing 8157 calcification labels, which

were annotated by two radiologists. Fig. 7 presents the cal-

cification examples of our in-house dataset.

3.3. Strategy of Dataset Usage

For our mass detection task, the CBIS-DDSM data are

randomly split as training, validation and test data with

the percentage of 60%, 20%, and 20%, respectively. The

other two public datasets (INbreast and BCD) along with

the separated training subset of CBIS-DDSM constitute the

training set, while the remaining validation and test sub-

sets of CBIS-DDSM are respectively sole validation and

test sets. Compared to the plentiful mass lesion data in the

public dataset, the mass samples in our in-house dataset are

currently limited. Similar to the apportionment of CBIS-

DDSM, the in-house dataset is randomly split as training,

validation, and test data with the proportions of 60%, 20%,

and 20%, respectively. The best model obtained using the

public dataset is fine-tuned on the in-house training data,

then the fine-tuned model is validated and evaluated on the

in-house validation and test data, respectively.
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Figure 5: FROC curves of different models. “FL” refers to

focal loss, “NL” is non-local operation, and “vanilla” de-

notes the original Faster R-CNN model.

For calcification segmentation, the public datasets are

not adopted to train or evaluate the model. BCD dataset

does not contain calcification labels, while INbreast has la-

bels for only part of the calcifications. Although CBIS-

DDSM contains complete calcification annotations, its an-

notation areas are much larger than their actual calcifica-

tion lesions, which introduces too much unnecessary back-

ground. Additionally, its annotation style is very differ-

ent from our in-house dataset. Hence, we only use the in-

house dataset to train and test the calcification segmentation

model. The in-house data are randomly grouped as training,

validation and test data with proportions of 60%, 20% and

20%, respectively.

4. Experiments and Results

4.1. Mass Detection

4.1.1 Settings and Parameters

We here describe the settings and the key parameters ap-

plied to mass detection using the Faster-RCNN model.

ResNet-50 [8] is used as the backbone network of our Faster

R-CNN, where the hyper-parameters are loaded from the

pre-trained model on ImageNet [3]. Each original train-

ing image is down-sampled to a small size to ensure that

the short edge has 1200 pixels. The Adam optimization

method [10] is used in the model training. There are 500

steps in each epoch, and the training process terminates af-

ter 200 epochs.

In the Faster R-CNN, the amount of proposals that are

sent to the Fast R-CNN classifier has an impact on both the

computation resource and calculation workload for the head

function. Since there could only be a limited number of

mass lesions in one mammogram, we set a small number of



(a) One mass is successfully predicted. (b) Multiple masses are successfully predicted. (c) One prediction is correct while one false

positive occurs.

Figure 6: Example prediction results of mass detection in mammograms. Bounding boxes in ground truth are labeled in blue,

and the predicted masses are highlighted in red bounding boxes, respectively.

Table 1: Prediction results of different models on the public

dataset. “FL” refers to focal loss, “NL” is non-local, and

“vanilla” denotes the original Faster R-CNN model.

Method AP Recall

Faster R-CNN (vanilla) 0.762 0.950

Faster R-CNN+FPN 0.789 0.965

Faster R-CNN+FPN+FL+NL 0.805 0.977

“candidate” proposals generated from RPN to the classifi-

cation head. Since the amount of training images is not very

large, there is a risk of over-fitting issue. We utilize several

data augmentation methods, such as horizontally flip, trans-

lation, and scaling, in training to generate more data.

4.1.2 Effectiveness of Modules

We first evaluate the individual and joint effectiveness of the

three described modules embedded into the Faster R-CNN

model. The commonly used paradigm, Free-response Re-

ceiver Operating Characteristic (FROC), is adopted as our

metric. Fig. 5 shows that the FROC curves of various com-

binations of the modules with the vanilla Faster R-CNN

model. We observe that 1) the Faster R-CNN model with

all of three modules together outperform the others; 2) the

effectiveness of FPN is the most outstanding; 3) the other

two modules, focal loss and non-local operation, indeed im-

prove the model. However, compared to their individual ef-

ficacy, the joint improvement is notable.

4.1.3 Results

We first present the prediction results of three representative

models on our public dataset in Table 1. Average precision

(AP) is a widely used evaluation metric in object detection

models. It is calculated as mean precision over several re-

call levels. When the short edge of an image is resized to

1,200 pixels, the Faster R-CNN model with all three mod-

ules achieves the best detection results of 0.805 in AP, and

0.977 in recall, respectively. Fig. 6 provides three example

prediction results of mass detection in mammograms. As

we can see, one or multiple masses are successfully located

(Fig. 6a,6b). One false positive shown in Fig. 6c occurs.

This might be caused by the sharpness of the wrongly pre-

dicted area against the background.

We then apply the best model obtained using the public

dataset to our in-house dataset, reporting an AP of 0.933

and a recall of 0.976. In addition, the best resultant point

in precision-recall (PR) curve is 0.91 (precision) and 0.90

(recall), respectively.

4.2. Calcification Segmentation

4.2.1 Data Preparation

Remind that the inconsistency issue of calcification annota-

tion is described in Sec. 1, and some annotation examples

are shown in Fig. 7. As shown in the right sub-figure, there

are many crowded calcification dots. It will take too many

efforts for radiologists to annotate every single calcification

dot. Hence, these crowded calcifications were annotated as

large regions. Besides, different from small scale calcifica-

tions, some calcifications exist along vessels as shown in the

middle of Fig. 7. Because calcifications were annotated in

different manners, we further processed the dataset for easy

use and evaluation. According to the area and shape of cal-

cification labels, we classified labels into three groups: dots,

vessels and large areas. Table 2 summaries the number of

each label type.

The maximum size of a mammogram image reaches

3518×2800, which is too large to fit in GPU memory. A

sliding window with the size of 512×512 moves in the orig-

inal images to extract small patches, and the moving step

was set to 256. The patches containing only black back-



Figure 7: Three examples of calcification labels. Calcifi-

cation regions were annotated by radiologists with red out-

lines. From the left to right, these examples indicate types

of dots, dots and vessel, and large region, respectively.

Table 2: Numbers of calcification labels.

Total Dots Vessels Large regions

7903 6970 146 787

Figure 8: FROCs of the calcification segmentation.

ground were removed, and tens of thousands of patches

were obtained as the training and validation data. To im-

prove the label consistency, we adopted two steps to pro-

cess training data. On the one side, the patches containing

large label regions or vessels were not included in the train-

ing and validation sets. One the other side, the labels with

area fewer than 900 pixels were dilated to 900 pixels.

4.2.2 Evaluation Metric

Some radiologists manually annotated calcification regions

are much larger than single calcification dots, while a pre-

dicted area usually only covers a single calcification dot.

Thus, there usually exist many predicted areas in one an-

notated region. Because the remarkable different sizes be-

tween prediction and annotation, the commonly used Inter-

section over Union (IoU) is not a good criterion for the eval-

uation of calcification segmentation in this work. Hence,

we introduce Intersection over Prediction (IoP) as an evalu-

Table 3: Recall at k false positive per image for all methods

on the in-house dataset.

Method k = 1 k = 2 k = 5 k = 10

U-Net BN 0.596 0.768 0.862 0.896

U-Net LN 0.724 0.852 0.924 0.932

U-Net GN 0.737 0.869 0.932 0.944

Table 4: Recall of three calcification types at k false positive

per image for U-Net GN on the in-house dataset.

Method k = 1 k = 2 k = 5 k = 10

Dot 0.691 0.843 0.918 0.933

Vessel 0.971 1.000 1.000 1.000

Large Region 0.912 0.974 0.988 0.991

ation metric. IoP is defined as the intersection area between

ground truth and prediction divided by the area of predic-

tion. If the IoP of a predicted calcification is greater than

a given threshold (0.25 in this work), this prediction is as-

sumed as a true positive. Otherwise, it is considered as false

positive. If a ground truth area contains multiple true posi-

tive predictions, it only counts as one true positive.

4.2.3 Results

We here present our results of calcification segmentation on

our in-house dataset. A U-Net model with group normal-

ization (GN) was adopted. We also implemented U-Net

models with batch normalization (BN) and layer normal-

ization (LN) as competing methods. Fig. 8 compares the

FROC curves of U-Net with BN, LN and GN, respectively.

It is clear that the performance of U-Net methods with LN

and GN are remarkably better than that of U-Net BN. Re-

call of U-Net GN is slightly higher than U-Net LN when

the false positive per image is above 1. Table 3 lists re-

call at k false positive per image, which confirms the supe-

rior performance of U-Net GN to the competing methods.

To demonstrate the capability of U-Net GN for a specific

type of calcification, recall of three types of calcifications

are give in Table 4. The type of vessel has the highest recall

among all three, and all vessel calcifications were detected

when the false positive per image is no less than 2. Fol-

lowed by the class of large regions, its recall is higher than

0.91 when false positive per image is no less than 1. In

comparison, dots have the lowest recall.

Fig. 9 presents some typical calcification segmentation

results. In the top two rows, all the methods have detected

calcifications in the large region and vessel. However, U-

Net BN missed a few parts of calcifications in the vessel.

In the third row, U-Net BN missed two calcification dots,

which can be detected by U-Net LN and GN. In the bot-

tom two rows, U-Net BN presents many false positives (red

dots), while U-Net GN achieves the most precise results.



Figure 9: Comparison of calcification segmentation with

different methods. From left to right, columns are origi-

nal images, and segmentation results using U-Net BN, LN

and GN, respectively. Green regions are the calcifications

annotated by radiologists, red and yellow regions are pre-

dicted results, where yellow indicates the overlap between

annotations and predictions.

5. Discussion and Future Work

We apply different deep learning frameworks for our two

lesion identification tasks respectively. In the view of com-

puter vision, a typical calcification dot is easier to be located

because of its obvious contrast against the background. This

implies that a simpler deep learning framework (e.g. U-Net

in our approach) tends to be more robust for this task.

Authors in [9] focused on mass detection in mammo-

grams, leveraging one public and one in-house datasets to

feed the resized mammographic images along with multi-

ple small grid patches into a one-stage RetinaNet frame-

work. Compare to that work, the size of our public and

in-house datasets are larger (Public: INbreast vs. CBIS-

DDSM+INbreast+BCD; Private: 111 vs. 377 patients), and

we apply the non-local operation to the two-stage detection

framework Faster R-CNN.

Studies have shown that breast density has been a risk

of breast cancer in women is in relation to the higher breast

density. Chen et al. reported that when controlling for age

and BMI, absolute mammographic density of Asian Amer-

icans is significantly lower than African Americans, but not

compared with white women. Moreover, ethnic difference

in breast density is especially significant for women older

than 50 years old [2]. Investigating how much the race

difference will impact the prediction performance of deep

learning models is one of our next research directions.

Asymmetry and architectural distortion are two other

major breast lesion types, and will be focused later when

we collect more labeled data from our in-house dataset.

6. Conclusion

In this paper, we present our comprehensive solution to

lesion identification in mammograms with the focus of mass

detection and calcification segmentation tasks. For effec-

tively detecting mass lesions, a Convolutional Neural Net-

works (CNN) based Faster R-CNN model with a series of

effective modules, which are FPN, focal loss, and non-local

operation, is demonstrated. Our dataset comprises three

public datasets and one in-house dataset. The FROC curve

shows that the Faster R-CNN model integrated with all three

modules is the best model. Applying the best model vali-

dated on the public dataset, we achieve an AP of 0.933 and

a recall of 0.976 as the best detection results on the in-house

dataset, respectively.

To segment calcifications, we adopted U-Net with group

normalization. After pre-processing is done, calcification-

like artifacts were completely removed. Labels were pro-

cessed to improve consistency, which benefited the model

training. Moreover, a new evaluation metric was designed

to address the issues raised by the imperfect labels. The ex-

perimental results have validated the efficacy of our method.

In the future, we will collect more data to enhance the model

and deploy it at our collaborative hospitals.
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Raúl Ramos Pollán, José M Franco Valiente, César Suárez
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