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Abstract

Recent advances in medical imaging techniques have led

to significant improvements in the management of prostate

cancer (PCa). In particular, multi-parametric MRI (mp-

MRI) continues to gain clinical acceptance as the preferred

imaging technique for non-invasive detection and grading

of PCa. However, the machine learning-based diagnosis

systems for PCa are often constrained by the limited ac-

cess to accurate lesion ground truth annotations for train-

ing. The performance of the machine learning system is

highly dependable on both quality and quantity of lesion an-

notations associated with histopathologic findings, result-

ing in limited scalability and clinical validation. Here, we

propose the baseline MRI model to alternatively learn the

appearance of mp-MRI using radiology-confirmed negative

MRI cases via weakly supervised learning. Since PCa le-

sions are case-specific and highly heterogeneous, it is as-

sumed to be challenging to synthesize PCa lesions using

the baseline MRI model, while it would be relatively easier

to synthesize the normal appearance in mp-MRI. We then

utilize the baseline MRI model to infer the pixel-wise suspi-

ciousness of PCa by comparing the original and synthesized

MRI with two distance functions. We trained and validated

the baseline MRI model using 1,145 negative prostate mp-

MRI scans. For evaluation, we used separated 232 mp-MRI

scans, consisting of both positive and negative MRI cases.

The 116 positive MRI scans were annotated by radiologists,

confirmed with post-surgical whole-gland specimens. The

suspiciousness map was evaluated by receiver operating

characteristic (ROC) analysis for PCa lesions versus non-

PCa regions classification and free-response receiver oper-

ating characteristic (FROC) analysis for PCa localization.

Our proposed method achieved 0.84 area under the ROC

curve and 77.0% sensitivity at one false positive per patient

in FROC analysis.

1. Introduction

Prostate cancer (PCa) is one of the most common cancer-

related diseases among men in the United States [11]. Re-

cent advances in medical imaging have led to significant im-

provements in the management of PCa. In particular, multi-

parametric magnetic resonance imaging (mp-MRI) contin-

ues to gain clinical acceptance as the preferred imaging

technique for non-invasive detection and grading of PCa.

However, the current standardized image acquisition and re-

porting structure of prostate MRI, such as Prostate Imaging

- Reporting and Data System version 2 (PI-RADSv2), has

limited ability to accurately distinguish between indolent

and clinically significant PCa due to its qualitative or semi-

quantitative assessment of the imaging [14]. As a result,

there often exists over-detection of indolent PCa and under-

detection of csPCa, which lead to detrimental overtreatment

and undertreatment. Consequently, there is an urgent clini-

cal need to achieve accurate detection and classification of

csPCa.

Recent studies have explored quantitative interpretations

of mp-MRI by training machine learning models [6, 12,

13, 15, 2]. Most of the machine models were trained un-

der strong supervision using the lesion annotations as the

ground truth, and thus the performance of the models is de-

pendent on both quantity and quality of training data asso-



ciated with ground truth annotations. However, the radio-

logic findings from mp-MRI are not easy to be fully inte-

grated with histologic findings due to misregistration or in-

sufficient histologic information, resulting in a limited num-

ber or quality of ground truth annotations available. Litjens

et al. used MR-guided biopsy dataset to identify biopsy-

confirmed lesions in MRI [6], and Fehr et al. annotated PCa

region of interest (ROI) using post-surgical whole-gland

specimens as a reference [2]. Nevertheless, both studies

used relatively small numbers of cases (348 and 147 cases,

respectively) due to the limited availability of ground truth

annotations.

In contrast, the number of mp-MRI scans has been in-

creased in recent years as mp-MRI gains clinical acceptance

for a non-invasive diagnostic tool for detecting and grading

PCa. Many of mp-MRI scans are sometimes ruled out to be

MRI negative, showing no visible MRI lesions. The nega-

tive MRI case is shown to be reliable without the need for

histologic confirmations [4]. Thus, the collection of nega-

tive MRI scans is more plausible to access in a large quan-

tity than the collection of positive MRI scans with accu-

rate lesion annotations. While the negative MRI scans are

vastly available, the existing machine learning models for

detection of PCa cannot solely learn from the negative MRI

scans since they need to be trained under strong supervision

between normal and PCa lesions.

In this work, we first propose the baseline MRI model

that learns the general appearance of prostate MRI from

the negative MRI scans. The baseline MRI model is im-

plemented as a convolutional neural network (CNN) to syn-

thesize a partially-obstructed region of a prostate MR im-

age using the rest of the unobstructed image as the input via

weakly-supervised learning. Since PCa lesions are case-

specific and highly heterogeneous, it would be difficult to

synthesize PCa lesions when the baseline MRI model is

trained with only negative MRI scans while it is relatively

easy to synthesize the normal appearance of prostate MRI.

Based on this assumption, we use the trained baseline MRI

model to infer the cancer suspiciousness map. Given a test-

ing image set that contains both negative and positive MRI,

the baseline MRI model synthesizes for different regions

from the collection of regions of interest (ROIs), and the

cancer suspiciousness map is summarized by comparing the

original image regions and the synthesized image regions.

We summarize our contributions as follows. We pro-

posed the cancer inference that utilize the baseline MRI

model to predict pixel-wise levels of overall suspiciousness

via weakly supervised learning, without the need for PCa

annotations during training. We trained the baseline MRI

model using 1,145 negative mp-MRI scans, identified from

3,127 total collected mp-MRI scans from 2016 to 2018 at a

single institution. We evaluated the proposed cancer infer-

ence in a separate testing dataset, consisting of highly cu-

Figure 1. The baseline MRI model synthesizes for the partially ob-

structed region M (shown in orange) using an unobstructed image

as input.

rated 116 positive, confirmed with histologic whole-gland

specimens, and 116 negative mp-MRI scans.

2. Materials and methods

2.1. Negative prostate MRI

With IRB approval, we collected 3,127 3 Tesla (3T)

prostate mp-MRI scans from 2016 to 2018 at a single insti-

tution. MRI scans with following conditions were excluded:

1) patients scanned with non-3T MRI scanners, 2) patients

scanned with an endorectal coil, 3) patients scanned imme-

diately after prostate biopsy, and 4) patients underwent fo-

cal therapy and/or partial prostatectomy. Clinical radiology

reports associated with mp-MRI were used to identify neg-

ative MRI cases. We parsed the plain text in the report,

reviewed by genitourinary (GU) radiologists following the

standardized interpretation guideline of PI-RADSv2 [14],

into a structured format and identify MRI-negative cases

based on two criteria: 1) no suspicious target was seen in

Finding section, and 2) no more than mildly suspicious find-

ing in Impression section. We manually examined a random

subset to ensure the correctness of the identified negative

MRI cases. A total of 1,261 negative MRI scans were iden-

tified, and we divided them into training, validation, and

testing sets, containing 1,095, 50, and 116 cases, respec-

tively.

For each scan, we used the axial turbo spin-echo

(TSE) T2-weighted (T2w) (TR/TE, 3800-5040/101ms;

FOV, 14×14cm2; matrix, 256×205; slice thickness, 3 mm;

no gap) and maps of apparent diffusion coefficient (ADC)

using single-shot echo-planar imaging (SS-EPI) DWI

(TR/TE, 4800/80ms; FOV, 21×26cm2; matrix, 130×160;

slice thickness, 3.6 mm; b-values, 0/100/400/800 s/mm2).

ADC was registered into T2w, with 0.625×0.625mm2 in-

plane resolution and 3mm through-plane resolution. Both

T2w and ADC were cropped into a small field-of-view

(8×8cm2) to improve the model convergence. Four con-

secutive slices around mid and base gland were selected for

each scan, resulting in a total of 4,380 slices for training.



2.2. Baseline MRI model

The baseline MRI model, f , aims to recover a partially-

obstructed region, defined as a binary mask M , by

synthesizing similar appearance using the unobstructed

image,(1−M) I , as input for a given image, I . When

we stack T2w (IT2w) and ADC (IADC) as different imag-

ing channels (I = (IT2w, IADC)), the baseline MRI model

synthesizes, as shown in Figure 1, the specific region of the

stacked image by,

Mf
(

(1−M) I; θ
)

→ MI, (1)

where θ is the trainable weights of the baseline MRI model.

We trained the baseline MRI model using only negative

MRI scans so that the baseline MRI model learns the vari-

ous normal prostate appearance of mp-MRI in training.

We used a U-Net CNN structure [10] for the baseline

MRI model since the encoder-decoder design of U-Net

helps to summarize the global anatomical information [1],

and the skip connections from U-Net simplify the training

for observed regions. The unmasked input was fed directly

into the last decoding layer without a need to learn through

the encoder-decoder. In addition, we used partial convolu-

tional layers instead of full convolutional layers to compen-

sate for the zeroed-out input region during encoding [7]. We

operated the baseline MRI model with 2D images due to the

non-isotropic resolution of mp-MRI.

A collection of ROI candidates, described by the com-

mon locations and shapes of PCa, was also constructed to

avoid learning from irrelevant areas in the image (e.g., mus-

cle, fat, bone, etc). A total of 1,055 2D ROIs was used from

a separate study cohort without any case overlapping [5].

For each 2D ROI, the in-plane location relative to the cen-

ter of the prostate was maintained, and the through-plane

position was ignored. Each ROI was converted into a bi-

nary mask for the baseline MRI model as an ROI candi-

date to specify a region M to synthesize. As all the ROI

candidates were considered in one plane, the collection of

ROI candidates, M, accounted for the common locations

and shapes of PCa. A prevalence map, P , constructed by

P =
∑

M∈M
M is shown in Figure 2.

We trained the baseline MRI model using the combina-

tion of L1 loss, perceptual loss, and style loss [3]. The

VGG-19 network pre-trained for image classification is

used for the calculation of perceptual loss and style loss.

We only take the feature map from the first convolutional

layer for perceptual loss and style loss, since the network is

trained for natural images and the higher-level features are

not applicable to our context. The same weighting for loss

terms is used as in [7]. The baseline MRI model was trained

for 4,000 epochs using a mini-batch of eight 128 × 128
training images. The learning rate was set to 0.0002 in first

1,000 epochs and was reduced to 0.00005 in the remaining

3,000 epochs with the batch normalization for the encoder

Figure 2. The prevalence map, P , constructed by the collection of

ROI candidates, accounting for the common locations and shapes

of prostate cancer.

turned off as suggested in [7]. Common image augmenta-

tions, including shifting, left-right flipping, and gray value

variations [10], were applied. We also randomly combined

multiple ROI candidates together to accelerate training. The

training took two days using one NVIDIA Titan Xp GPU.

2.3. Cancer inference via baseline MRI model

The baseline MRI model was utilized to predict pixel-

wise levels of overall suspiciousness for a given testing im-

age. The baseline MRI model is assumed to synthesize bet-

ter when negative MRI is partially obstructed than when

positive MRI is partially obstructed since it was trained by

only negative MRI cases. The regions were considered to

be highly suspicious when the difference between the orig-

inal and synthesized regions is nontrivial. In each time, we

specify a region to synthesize from the collection of ROI

candidates, M ∈ M, and the synthesized image region

from the baseline MRI model is Mf ((1−M) It; θ) where

It = (It
T2w

, It
ADC

) is the testing image. By synthesizing

different image regions with different ROI candidates, we

can obtain the suspiciousness map by

Susp
(

It
)

=
1

P

∑

M∈M

dist
(

MIt,Mf
(

(1−M) It; θ
))

,

(2)

where dist
(

Iori, Isyn
)

is the distance function measuring

the pixel-wise difference between the original image region

and the synthesized image region, and P is the prevalence

map to normalize the suspiciousness map. Figure 3 illus-

trates the proposed cancer inference utilizing the baseline

MRI model via weakly supervised learning.

Two common distance functions were tested individu-

ally: T2w SSIM and ADC Increment, where SSIM is the

structural similarity, and Increment is the signal intensity

increment of the synthesized region compared with the orig-

inal. We evaluated the variation of T2w by T2w SSIM, s.t.,

dist
(

Iori, Isyn
)

= 1 − SSIM
(

Iori
T2w

, I
syn
T2w

)

, since T2w

typically contains structural information. We measured

the ADC intensity increment of the synthesized region
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Figure 3. The inference of the PCa suspiciousness map using the trained baseline MRI model given an input testing image. The baseline

MRI model synthesizes regions specified from the collection of ROI candidates. dist is the distance function for the original image region

and the synthesized image region.

compared with the original region by dist
(

Iori, Isyn
)

=

max
(

I
syn
ADC

− Iori
ADC

, 0
)

since ADC is quantitative imaging,

and PCa lesion usually has lower ADC intensity than nor-

mal tissues [8]. The suspicion for PCa is high if the ADC

intensity in the original region is lower than in the synthe-

sized negative MRI region.

3. Experiments

3.1. Evaluation dataset

A separate independent dataset was used for testing the

cancer inference, which consisted of 116 positive and 116

negative mp-MRI cases. For positive MRI, we included pre-

operative 3T mp-MRI scans prior to robotic-assisted laparo-

scopic prostatectomy from 2013 to 2015. Patients with prior

radiotherapy or hormonal therapy were not included. The

grountruth annotations for positive MRI cases were done

by GU radiologists who retrospectively reviewed mp-MRI,

referring to whole-gland surgical specimens and pathology

reports. Each MRI visible lesion was matched to the cor-

responding location on the prostate specimen through vi-

sual co-registration. Later, clinical research fellows, super-

vised by GU radiologists, annotated all MRI-visible PCa

lesions (Gleason Score≥3+4). We also included prospec-

tively missed PCa lesions (false positives) that are visible

in mp-MRI in a retrospective review, but MRI non-visible

missed PCa lesions were not included in the study. The

negative MRI cases (116 out of 1,261) were from the same

negative prostate MRI dataset pool, described in 2.1. The

ground truth ROIs were annotated on T2w, and the FOV and

slice were determined in the same way.

3.2. Evaluation metrics

The suspiciousness map by the baseline MRI model pre-

dicts pixel-wise levels of overall suspiciousness of prostate

cancer and was used to distinguish between PCa and non-

PCa regions [12, 15]. The PCa lesions were given by the

ground truth ROIs, and non-PCa regions were defined as the

same ground truth ROIs in the negative MRI testing cases.

The average value over the region on the suspiciousness

map is calculated as the predictive value for each ROI. The

performance is evaluated by the receiver operating charac-

teristic (ROC) analysis.

We also evaluated the lesion localization performance

using the free-response receiver operating characteristic

(FROC) analysis [6, 15]. The PCa localization points were

determined by the local maximums of the suspiciousness

map [15]. A localization point was considered as a true

positive if it is within 5mm of a ground truth lesion ROI, or

it is otherwise a false negative [9]. FROC measures the le-

sion detection sensitivity versus the average number of false

positives for each patient.

3.3. Results

Figure 4 shows representative examples of the proposed

cancer inference, evaluated by an independent testing set.

The red contours on both T2w and ADC are the ground

truth annotations, indicating MRI-visible clinically signifi-

cant PCa with histological confirmation. The overall pixel-

wise suspiciousness with two distance functions, T2w SSIM

and ADC Increment, are shown, and the ADC Increment

shows excellent visual predictability of PCa in both cases.
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Figure 4. The PCa suspiciousness maps with different distance functions for testing images. The red contours on T2w and ADC are the

ground truth ROIs.

(a) (b)

Figure 5. (a) ROC analysis for the classification between PCa lesions and non-PCa regions. (b) FROC analysis for lesion localization

performance.

The ROC analysis for the classification between PCa le-

sions and non-PCa regions is shown in Figure 5. ADC In-

crement (ADC Incre.) achieved the area under the curve

(AUC) of 0.84, while the suspiciousness map using T2w

SSIM exhibited limited predictability for PCa. Compared

with ADC, T2w has a more diverse appearance for the nor-

mal tissues, potentially causing the suboptimal performance

of the cancer inference.

The FROC analysis for lesion localization is shown in

Figure 5. ADC Increment and T2w SSIM had 77.0% and

33.8% detection sensitivity for PCa lesions with 1 false pos-

itive per patient, respectively, and 89.5% and 48.8% detec-

tion sensitivity at 2 false positives per patient. ADC In-

crement received 95% sensitivity at 2.44 false positives per

patient, and T2w SSIM reached its maximum sensitivity of

66.0% at 3.54 false positives per patient.

4. Discussion

We proposed the novel cancer inference that can dis-

tinguish patients with and without PCa using weakly-

supervised learning. We first identified 1,261 radiology-

confirmed negative MRI cases out of all 3,127 in-house

prostate MRI cases from 2016 to 2018. The baseline MRI

model was built to synthesize a partially obstructed MRI

based on the understanding of the negative MRI appear-

ance, and the cancer inference that predicts pixel-wise lev-

els of overall suspiciousness was tested using a combina-

tion of negative and and highly curated positive MRI cases

(n=232). This weakly-supervised learning approach would

be robust to any potential data bias due to the nature of the

very-weak supervision and provides a scalable solution for

training deep learning models.

The PCa detection sensitivity from previous studies

ranged from 38.8% to 89.8% at 1 false positive per pa-

tient in the FROC analysis [6, 13, 15]. Despite the dif-

ferences in dataset and inconsistencies of the lesion defi-

nition, our cancer inference via weakly supervised learning

showed similar performance to the previously demonstrated

models under strong supervision. Compared with the fully-

supervised methods trained with lesion annotations, the pro-



posed method requires only negative MRI scans in training,

which is a more practical and scalable approach to medical

imaging since the method does not require a collection of

large annotated prostate MRI data and is more suitable for

multi-site, multi-vendor collaborations.

The regions are considered to be highly suspicious when

the difference between the original and synthesized regions

is large. We obtained the pixel-wise levels of overall sus-

piciousness by two distance functions, T2w SSIM and ADC

Increment. The primary reason to use these distance func-

tions is that T2w and ADC are typically used for anatomical

and function imaging. Future study could include the inves-

tigation of different distance functions, such as L2 norm and

mutual information.

5. Conclusion

We proposed the baseline MRI model via weakly su-

pervised learning using a large collection of negative mp-

MRI cases. The baseline MRI model was utilized to infer

pixel-wise levels of overall suspiciousness of prostate can-

cer, without the need for using ground truth annotations.

The baseline MRI model was trained and validated using

1145 radiology-confirmed negative mp-MRI scans, and the

cancer inference using the baseline MRI model was tested

by a total of 232 independent mp-MRI scans. The proposed

cancer inference via weakly supervised learning achieved

an AUC of 0.84 in the ROC analysis and 77.0% detection

sensitivity at 1 false positive per patient in the FROC anal-

ysis using a separate dataset with histologically confirmed

lesion annotations.
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