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Abstract

Grading breast density is highly sensitive to normaliza-

tion settings of digital mammogram as the density is tightly

correlated with the distribution of pixel intensity. Also, the

grade varies with readers due to uncertain grading crite-

ria. These issues are inherent in the density assessment of

digital mammography. They are problematic when design-

ing a computer-aided prediction model for breast density

and become worse if the data comes from multiple sites.

In this paper, we proposed two novel deep learning tech-

niques for breast density prediction: 1) photometric trans-

formation which adaptively normalizes the input mammo-

grams, and 2) label distillation which adjusts the label by

using its output prediction. The photometric transformer

network predicts optimal parameters for photometric trans-

formation on the fly, learned jointly with the main predic-

tion network. The label distillation, a type of pseudo-label

techniques, is intended to mitigate the grading variation.

We experimentally showed that the proposed methods are

beneficial in terms of breast density prediction, resulting in

significant performance improvement compared to various

previous approaches.

1. Introduction

Breasts can be categorized as dense or fatty by the por-

tion of parenchyma in the breasts. A fatty breast indicates

that the breast is mostly composed of fat tissue, whereas

a dense breast has more dense tissue that shows dense

parenchymal patterns on mammograms. Readers should be

more careful when dealing with mammograms with dense

parenchymal pattern since suspicious malignant lesions can

be hidden, resulting to a false-negative [6]. Also, it has been

reported that a dense breast has a higher risk of breast cancer

than average [1]. For this reason, BI-RADS [11], which is

a standard protocol for breast imaging, guides the interpret-

ing readers to report density category as an essential field

of case reports form(CRF). In BI-RADS taxonomy, breast

density is categorized into four grades: a, b, c, d, meaning

“almost entirely fatty”, “scattered areas of fibro-glandular

tissue”, “heterogeneously dense”, and “extremely dense”,

respectively.

Based on the collected mammograms and their density

categories in CRFs, it is straight-forward to regard a density

prediction task as classification. However, breast density

prediction is not a typical classification task. The BI-RADS

criteria for breast density are 1) the portion of parenchyma

within a breast, which is discretization of the continual

score, and 2) specific dense parenchyma pattern in part of

the image, determined by the reader. Thus, the density la-

bels in a training dataset will have inter-readers biases.

Intensity normalization of mammograms is an impor-

tant factor when grading the breast density, since the mam-

mographic parenchymal pattern is highly correlated with

the pixel intensity. However, intensity distribution of the

parenchyma and the fat tissue varies according to different

vendors of imaging devices as well as different hospitals. To

compensate these variations, readers often manually adjust

the contrast of each mammogram to determine the grade

properly.

In this paper, we propose two methods that tackle the

problems caused by the normalization and inter-reader

grading variance. The first method is a learnable nor-

malization module, called photometric transformer net-

work (PTN), that predicts normalization parameters of input

mammogram. It is seamless to main prediction network so

that optimal normalization and density grade can be learned

jointly. The second one is a label distillation method, which

is a type of pseudo-label technique, taking the grading vari-

ation into consideration.

Our test shows that proposed two methods help to im-

prove performance, especially in multi-site configurations.

Our final model outperforms other public-available previ-

ous models in a test set with neutral configurations. Experi-

mental results show that the proposed method improves the

accuracy and dAUC (a novel evaluation metric of the den-
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Figure 1. An overview of our model architecture. Before a mammogram is input to the classifier network, the intensity distribution of the

mammogram is changed with S which are outputs of transformer network.

sity grading) from 55% to 79% and from 0.9204 to 0.9663,

respectively. The proposed method also outperforms previ-

ous state-of-the-arts based on an evaluation on external test

data, which is collected from a separate institution for fair

comparison between similar approaches.

2. Related works

With the drastic advance of deep learning, breast den-

sity prediction based on deep neural networks has also been

introduced recently. [4] applied the unsupervised feature

learning based on auto-encoder to predict the breast den-

sity. [7, 9, 14] employed convolutional neural networks

(CNNs) that is learned with a cross-entropy loss for breast

density prediction. Motivated by these approaches, we also

cast the breast density prediction as a CNN-based classifi-

cation task, but address the two practical problems caused

by multi-site configuration.

From the perspective of dynamic estimation of the pa-

rameters which are appropriate for a target task, our PTN

is similar to the spatial transformer network [3]. Spatial

transformer network predicts appropriate geometric trans-

formation parameters, while our PTN tries to find a set of

photometric transformation parameters that is optimal for

breast density prediction.

The proposed label distillation is motivated by pseudo-

labeling techniques, devised especially for handling label

noise [8, 12]. In [8], an auxiliary network trained with

small clean examples were used to predict pseudo-labels,

in addition to the main network trained with large examples

with given pseudo-labels. Similarly in [12], a sub-network

jointly optimized with a main network tries to find appropri-

ate pseudo-labels. Our approach is distinct from [8, 12], in

that pseudo-labels are given to only selected samples and

applied in iterative ways to prevent distillation of model

bias.

3. Methods

A density estimator f is a neural network that predicts

breast density y ∈ {a, b, c, d} from an input mammogram

x ∈ R
H×W . The input x is normalized by the PTN denoted

by fn, and the classifier fc estimates density ŷ from the

normalized input as

ŷ = fc(fn(x; θn); θc), (1)

where fn and fc are parameterized by θn and θc, respec-

tively. Our goal is to learn parameters θ = θn ∪ θc with our

dataset D = {(xi, yi) | i = 1, · · · , N}.

θ∗ = argmin
θ

1

N

∑

(x,y)∈D

L(ŷ, y) (2)

where L is the loss function. To successfully estimates θ,

we propose the photometric transformer module fn in Sec-

tion 3.1, and a distillation method to handle label grading

variance problem in Section 3.2.

3.1. Photometric transformer networks

The fn normalizes an input x by a function h. The func-

tion h is determined by a parameter set S, and the parameter

set S is predicted by a CNN g from the input x. For a pixel

intensity x(i, j) at a location (i, j), it can be expressed as

xn(i, j) = h(x(i, j), S) where S = g(x; θn), (3)

and is illustrated in the left of Figure 1.

We introduce the function h that works well in breast

density prediction. Let us assume the intensity range of in-

terests is [u, v)1. We split the range into K sub-intervals,

giving Tk = [u + t(k − 1), u + tk) where t = (v − u)/K
and k = 1, · · · ,K. Then, the function h is defined as

h(x(i, j), S) =

⎧
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u+ s0(x(i, j)− u)

if x(i, j) ∈ (−∞, u)

u+
∑k−1

l=1 slt+ sk(x(i, j)−min(Tk))

if x(i, j) ∈ Tk

u+
∑k

l=1 slt+ sK+1(x(i, j)− v)

if x(i, j) ∈ [v,∞)
(4)

1Generally, it is determined by window center & width value in stan-

dard DICOM protocols.
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Figure 2. Example graph of the proposed function h. The domain

of h is divided into K +1 intervals. The slope of each interval are

defined with the parameters generated by the network g.

where S is {s0, · · · , sK+1}, and min(Tk) is a minimum

value of an interval Tk. Figure 2 is illustrating this function

h. Each component of S can be interpreted as a slope of the

corresponding line segment.

The function h is continuous but can fluctuate if a part of

S is negative. To make h be an increasing function, we add

a hinge regularization term to the cross entropy loss LCE.

The loss function in Equation (2) is finally defined as

L(ŷ, y) = LCE(ŷ, y) + λ ·

k+1
∑

i=0

min(−si,−ǫ) + ǫ (5)

where ǫ is a small positive constant and λ is a scaling con-

stant. We have empirically found that adding this regular-

ization term yields better performance.

3.2. Label distillation

We propose a novel approach to train a model in the sit-

uation that having inter-reader (i.e., inter-labeler) grading

variance. The dataset D is divided by Ds which is labeled

by a single reader and the rest Dr. Ds is the set having

small samples but free from the variance, while Dr is the

large set suffering from the variance from arbitrary readers.

The proposed method consists of three steps. In the first

stage, training is performed with Dr, as a typical machine

learning algorithm does. In the second stage, the model is

fine-tuned with Ds. This transfer learning strategy is for re-

ducing the inter-reader variance while utilizing the general

mid-level image representation learned with a large number

of samples in Dr.

In the third stage, labels in Dr are refined to pseudo-

labels generated by the model produced by the second stage.

The new labels {ŷ|x ∈ Dr} have the grading criteria that is

more similar to that of the single reader labels in Ds. This

procedure from the first to the third stage is repeated until

the model converges.

Pseudo-labeling distillates not only the grading criterion

used in labeling Ds, but also the knowledge of the model as

Algorithm 1 Label distillation

θ := argminθ
1
N

∑

(x,y)∈D L(f(x; θ), y)
Split D into Ds and Dr

while not converged do

θ := argminθ
1
N

∑

(x,y)∈Ds

L(f(x; θ), y)

for (x, y) ∈ Dr do

if KLD(y, f(x; θ)) is top r% then

y := αy + (1− α) · f(x; θ)
end if

end for

Dtrain := Ds ∪Dr

θ := argminθ
1
N

∑

(x,y)∈Dtrain
L(f(x; θ), y)

end while

return θ

Table 1. Dataset configurations

Datasets\Grades a b c d Total

Training set Dr 1,395 6,905 33,282 4,773 46,355

Training set Ds 72 391 428 255 1,146

Validation set 78 373 421 275 1,147

Test set 9 280 455 242 986

External test set 852 3,130 3,634 590 8,206

argued in [2]. Unfortunately, hard samples that wrongly la-

beled by the model fitted to Ds distillates inaccurate knowl-

edge.

Our method tries to filter out hard samples to prevent

conveying the inaccurate knowledge. To this end, we mea-

sure a divergence KL(y, ŷ) between a one-hot encoded label

y and prediction ŷ for each sample x ∈ Dr. We empirically

found that a hard sample is prone to have a relatively small

divergence value rather than the sample with inaccurate la-

bel. We select top γ-percent samples of KL(y, ŷ) to filter

out the hard samples. After that, for each of the selected

samples, we update y with ŷ by blending operation as

y := αy + (1− α) · ŷ, (6)

where α is a constant blending factor. We then continue

training with the updated Dr. This procedure is repeated

until the model converges.

The whole procedure of the proposed method is con-

cretely described in Algorithm 1.

4. Evaluation

4.1. Experimental setup

4.1.1 Datasets

We have collected 48,648 cases of Asian women from 5

separate hospitals from South Korea. Each case comprises

four mammograms with different views of a left CC, a left



MLO, a right CC, and a right MLO. We also select approx-

imately 5% samples to refine labels by a single reader, i.e.,

a radiologist who is a breast specialist. Half of the 5% sam-

ples are used for Ds, and the rest for a validation set. As

an in-house test set, we have collected 986 cases from an-

other institution from South Korea. The same radiologist

has labeled this test set. To fairly compare ours with other

method, we have collected another test set(external test set),

which comprises 8,206 cases, from a large hospital in the

US. We have extracted the density grade for each case from

CRF field, and use it as a label. Table 1 summarizes our

datasets.

4.1.2 Baseline

For classifier fc, we adopt ResNet-18 and make it produce a

4-dimensional softmax output. We used SGD optimizer and

the learning rate is set to 0.1 in training. The model takes a

single mammogram as input, and four predictions from four

views are averaged to a case-level prediction. We decode

mammograms by the window center and width embedded

in DICOM protocol.

To check the sanity of our baseline networks, the base-

line is compared with other neural-network methods, [7]

and [14]. Roundabout way have to be used for comparison,

since all reported scores in other works are obtained with

different configurations and private datasets. The training

split and the test set split collected in the same site in [7]

and [14], while our training split and test split are from the

other sites. To keep the configuration of the experiment as

same as possible, we have followed same experiment set-

tings proposed in [7] and [14] for this experiment. We split

our main dataset to three parts, Dr for training, Ds for val-

idation and testing set is validation set in original split.

Two metrics are tracked same as [7] and [14]: 4-class

accuracy and 2-class(fatty vs. dense) accuracy. Class-wise

averaged accuracy is used in this sanity check. 4-class ac-

curacy and 2-class accuracy have reported approximately

77% and 87% in their papers (in same), while our base-

line reports 74% and 89%. Our baseline model is inferior

in 4-class accuracy than other models, but it is superior in

2-class accuracy. Interestingly, [7] and [14] also reported

almost same scores each other in their in-house test set.

Putting the above results together, we have concluded that

our model has almost similar accuracy to other works. It

means if generalization for inter-reader variance is not con-

sidered, even they trained with all different datasets and dif-

ferent hyper-parameters, the capability of classifying breast

density scores are almost the same. Note that the above ac-

curacy score is class-wised accuracy, while all reported ac-

curacy scores through the paper are instance-wise accuracy.

This is because make metric comparable to other works.

4.1.3 Metrics

We use the 4-way classification accuracy, as it has been the

common metric for previous works. Unfortunately, class-

averaged accuracy scores may be inaccurate in our test set

since our test set suffers class-imbalance problem, existing

only 9 samples with category a. For example, a sample with

category a contributes to accuracy 455/9 = 50.56 times

more than the another sample that category is c in class-

averaged accuracy metrics. Instead of the class-averaged

accuracy, the instance-wise average accuracy score is used

to relax this problem.

Moreover, the accuracy metric itself is also inaccurate

when it takes into accounts inter-reader variance problem.

This is because breast density prediction is not a typical

classification task. In whatever ways of grading criterion

of choosing a discrete category, the sample that is vague

to classify between two values, since the grade of the den-

sity is discretization of a continual density score that actual

physical quantity is a portion of parenchyma in a breast.

In addition to this issue, there exists a relation between

labels in breast density, where accuracy metric more inac-

curate. For example, the grade a is closer to b, rather than c
and d.

To take these issues into account, we propose a new met-

ric, called density-AUC(dAUC), which is stands for breast

density estimation algorithms. This metric is the aggrega-

tion of AUC scores between the density predictions from a

model and binarized breast density categories. The labels in

AUC should be in forms of binary domain(negative or posi-

tive), so the breast density labels in y ∈ {a, b, c, d} are split

into three ways: [a vs. b, c, d], [a, b vs. c, d], and [a, b, c vs.

d]. In results, we can obtain 3 different labels set for a given

dataset, or 3 sub-problems for dAUC. Samples having left-

side breast density categories are assigned to negative(0),

and the ones belongs to right-side are assigned to the posi-

tive value(1).

Meanwhile, in addition to label binarization, the pre-

dictions of the network needs to be reduced for each sub-

problem, since the prediction scores in AUC should be in

forms of single real value score. The format of outputs in

the proposed model is a vector having length 4, each com-

ponent represent the probability of each class(a, b, c, d). We

take an average of probabilities of each positive categories

in each sub-problems. For instance, when we measure an

AUC score of [a, b vs. c, d], a sample score is defined

as ŷc+ŷd where ŷc and ŷd are the two elements of softmax

output ŷ. This metric satisfy our assumption that defined

implicitly – lower value for fatty breast and a higher value

for dense breast. The final dAUC score is calculated by av-

eraging the three sub-problems.

Note that dAUC is just considered as a complement of

accuracy metric, not a substitution. Accuracy metric is also

tracked as an important metrics. Producing density score
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Figure 3. Original mammograms (1), (3) with the density a and d are normalized to (2), (4) by PTN. For both samples, labels are corrected

to b.

with obeying radiologist’s convention is also important in

practical use.

4.2. Results and analysis

4.2.1 Photometric transformer networks

We use 6 convolution layers for transformer networks and

set K to 10. Each mammogram is resized to one-third of the

original size. We also use the instance normalization [13]

for each of the convolutions, rather than batch normaliza-

tion. We empirically found that the result image that trans-

formed by PTN is more well-normalized when PTN con-

tains instance normalization.

The standard deviation of image-level pixel mean values

in the validation set is 0.6850. Once PTN normalizes the

validation images, the standard deviation is significantly re-

duced to 0.2249. This verified that PTN suppresses inter-

image intensity variations and make the image intensities

more consistent. Fig. 3 shows some of normalization exam-

ples.

The upper part of Table 2 shows the results of normaliza-

tion methods. CLAHE [10] is selected for representative of

static normalization approach. CLAHE improves the base-

line, but PTN shows better performance.

4.2.2 Label distillation

For label distillation, we choose the best PTN model as our

baseline. The pre-trained parameters of the first two layers

are fixed, and the rest is trained with a learning rate of 0.01.

We set α and γ as 0.5 and 0.25, respectively. The lower part

of Table 2 shows the results.

23 median results of above PTN results, in perspective of validation

accuracy.
3It produces the percent of density value directly, thus the only dAUC

is reported.

The hard-labeling, which directly uses predictions of

PTN as pseudo labels, shows higher accuracy score than the

baseline but lower dAUC score. [12] is another approach,

which uses soft pseudo labels. To make [12] fairly compa-

rable to our method, we fine-tune with Ds at each epoch,

before giving pseudo labels. This trial improves both accu-

racy and dAUC scores, however, the gains are not signifi-

cant. In contrast, our label distillation method yields clear

performance gains compared to the baseline.

4.3. Comparison with others

We conduct another experiment with different settings to

compare our models to other works fairly. Instead of test set

used in 4.2, another external test set is used for this experi-

ment. (See 4.1.1 for details.) Two of our models are evalu-

ated: baseline, and the proposed PTN and label distillation

applied model. Our model is selected by the median value

of accuracy score in the in-house validation set, among five

trials of experiment. As external algorithms, LIBRA [5],

an open-source density predictor, and some other previous

works [7, 14] who have opened their model parameters in

public are selected.

The results are shown in Table 3. Although our model

is trained with the data consists of different race, our best

model achieves the best performance with large margins in

all metrics.

5. Conclusion

In this paper, we have proposed two methods for breast

density problem: PTN and label distillation. These two

methods can resolve input and label issues in the breast

density prediction task, respectively. For further research,

strict validation of dAUC metric how it is suitable for breast

density tasks is needed. Additionally, our approach should

be looked in broad views, and applied for various medical

imaging problems, since it is not limited to a specific task.



Table 2. Breast density estimation performance comparison between methods. The mean and standard deviation of 5 trials are reported.

Validation Test

Methods Accuracy dAUC Accuracy dAUC

Baseline .7015(.0179) .9595(.0153) .5452(.1078) .9204(.0207)

CLAHE [10] .7374(.0291) .9654(.0154) .7163(.0341) .9357(.0128)

PTN .7479(.0229) .9755(.0013) .7509(.0103) .9518(.0079)

PTN2 .7512(.0109) .9757(.0014) .7431(.0046) .9470(.0045)

PTN + hard labeling .7367(.0150) .9715(.0026) .7671(.0039) .9392(.0155)

PTN + [12] .7428(.0126) .9745(.0018) .7650(.0128) .9482(.0067)

PTN + [12] in Ds .7576(.0118) .9776(.0015) .7743(.0029) .9442(.0029)

PTN + label distillation .8073(.0043) .9808(.0009) .7941(.0060) .9663(.0033)

Table 3. Breast density estimation performance comparison be-

tween methods on the external test set.

Accuracy dAUC

LIBRA3 - .8877

[7] .5860 .9275

[14] .5419 .8424

Our baseline .4246 .9185

Ours .7257 .9481
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