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Figure 1: Schematic illustration of the semantic segmentation (or tissue phenotyping) problem in computational pathology and an overview of our proposed

deep multiresolution cellular community detection for tissue phenotyping. (a) the input multi-gigapixel whole slide image (WSI) of ColoRectal Cancer

(CRC) from our local university hospital; (b) Shows an input patch of size 150× 150 captured at 20×; (c) results of cell detection and classification using

spatially constrained deep neural network [26], where red, green, blue, yellow, and black colors represent tumor epithelial cell, inflammatory cell, debris

or necrotic cell, spindle-shaped cell, and normal epithelial cell, respectively; (d) low- and high-resolution cell-level graphs – these graphs are constructed

using cell-level coarse and fine =convolutional features of the deep neural network; (e)-(f) computation of cellular interaction features and the construction

of low- and high-resolution patch-level graphs; (g) our proposed novel objective function minimized using a non-negative matrix factorization algorithm for

clustering patch-level graphs into meaningful tissue components including tumor, stroma, muscle, inflammatory, debris or necrotic, benign, and complex

stroma shown in (h); (i) results of the different tissue components overlaid on input CRC WSI (a). This problem is similar to the semantic segmentation

problem for natural scene analysis in the computer vision community.

Abstract

Tissue phenotyping in cancer histology images is a fun-

damental step in computational pathology. Automatic tools

for tissue phenotyping assist pathologists for digital profil-

ing of the tumor microenvironment. Recently, deep learn-

ing and classical machine learning methods have been pro-

posed for tissue phenotyping. However, these methods do

not integrate the cellular community interaction features

which present biological significance in tissue phenotyping

context. In this paper, we propose to exploit deep multires-

olution cellular communities for tissue phenotyping from

multi-level cell graphs and show that such communities of-

fer better performance compared to the deep learning and

texture-based methods. We propose to use deep features ex-

tracted from two distinct layers of a deep neural network at

the cell-level, in order to construct cellular graphs encoding

cellular interactions at multiple scales. From these graphs,

we extract cellular interaction-based features, which are

then employed to construct patch-level graphs. Multires-

olution communities are detected by considering the patch-

level graphs as layers of multi-level graphs, and also by

proposing novel objective function based on non-negative

matrix factorization. We report results of our experiments

on two datasets for colon cancer tissue phenotyping and

demonstrate excellent performance of the proposed algo-

rithm as compared to current state-of-the-art methods.



1. Introduction

Computational pathology is a fast-growing research area

in medical imaging research [5, 20, 28, 31]. Cell detec-

tion, classification, and tissue phenotyping are considered

as some of the main objectives of computational pathology

which operates on digitized Whole Slide Images (WSIs)

of tissue slide stained with routine Hematoxylin & Eosin

(H&E) dyes [14, 16, 26, 27]. These cancer WSIs contain

tens of billions of pixels (multi-giga pixels image data) at

the highest resolution level of 40× shown in Fig. 1 (where

we show a 150×150 pixel patch of the WSI at 20× mag-

nification level), posing computational challenges as they

are much larger in terms of image resolution than natural

images. The application of tissue phenotyping can serve

as building blocks for the development of computational

pathology tools for systematic digital profiling of the spa-

tial Tumor MicroEnvironment (TME) [16,21,22,24,27]. In

clinical practice, such tools can be employed for better can-

cer grading and prognostication [12, 20, 22, 27].

Because of the wide applications and significance of au-

tomatic tissue phenotyping, several methods have been pro-

posed in the literature [3, 7, 14–16, 19, 25, 30, 34]. Among

these methods, patch based texture analysis is a popular

approach for tissue phenotyping in which classifiers are

trained on texture features of the histology image patches

computed using local binary patterns, Gabor filters, or his-

tograms features [3, 16, 17, 19, 25, 30]. Bionci et al. pro-

posed to employ the SVM classifier on perception-like fea-

tures for tissue classification [3]. Linder et al. proposed

a simple SVM classifier trained on a set of local binary

patterns and contrast measure features [19]. These studies

were mainly limited to only stroma and tumor tissue phe-

notypes. However, ColoRectal Cancer (CRC) tissue con-

sists of a rich mixture of several different tissue phenotypes

including smooth muscle, inflammatory, necrotic, complex

stroma, and benign tissue, as shown in Figs. 1 (h)-(i). To

address the challenge of detailed tissue phenotyping, Sarkar

et al. have proposed a saliency-guided dictionary learning

method where Gabor features were computed and trained

for binary and multi-class tissue classification [25]. Kather

et al. also proposed a set of six textures features for multi-

class tissue image classification [16]. Although texture-

based feature analysis methods may be attractive due to

their simplicity, texture features do not fully capture the bi-

ological significance of tissue components resulting in per-

formance degradation [16].

Deep learning methods have also been proposed to clas-

sify WSIs into distinct meaningful tissue regions [11,13,22,

33, 34]. These methods use deep neural networks to extract

convolutional features from histology image patches which

are then used to train the classifiers. For instance, Xu et

al. proposed an SVM classifier trained on CNN features

extracted from a pre-trained AlexNet model for multi-class

tissue classification and segmentation in CRC [34]. Kather

et al. recently used the VGG-19 network for end-to-end

classification of tissues into eight distinct classes and pre-

dicted the survival analysis of CRC patients [15].

Recently, Javed et al. have introduced the notion of cel-

lular community detection for tissue phenotyping [14]. In

their work, they used a network for cellular interaction-

based features which are then used for the detection of

patch-level tissue communities. This technique enhanced

the modeling of cellular community interaction. However, a

limitation of that work is that the interaction between nearby

cells extend beyond a single cellular network, and therefore,

a more holistic model would best represent interaction be-

tween cellular communities. To that end, we propose to use

a deep multi-resolution cellular networks to capture cellular

interactions at different levels. To the best of our knowl-

edge, such a multi-level graph network has not been used

before for tissue phenotyping in histology images.

In our approach, we consider two types of cellular net-

works capturing cellular interactions encoded at two differ-

ent resolutions by a deep neural network. At high resolu-

tion, fine cell details are encoded while at low-resolution

semantic cell information is encoded as cellular features.

These two types of features are then used for the construc-

tion of two distinct cellular networks which are then ex-

ploited for the computation of cellular interaction features at

fine and coarse levels. The cellular interaction features are

further used for the construction of two patch-level graph

networks which we consider as two layers of a multi-layer

graph. Each layer consists of the same number of nodes

but varying number of edges. Multiresolution community

detection is performed using a non-negative matrix factor-

ization method on the adjacency matrices of the multi-layer

graph [8]. Here, we propose a novel objective function that

learns a low-dimensional subspace from each graph layer

that are then fused into a common subspace on the Grass-

man manifold [1, 6, 23]. We dub our proposed algorithm as

DEep MUltiresolution Cellular-communities (DeMuC) for

tissue phenotyping and the main notion of DeMuC algo-

rithm is presented in Fig. 1.

The rest of this paper is organized as follows. A review

of recent literature on tissue phenotyping is given in Section

2. Section 3 describes the proposed algorithm in detail. Ex-

periments and results are discussed in Section 4, and finally,

conclusions and future directions are given in Section 5.

2. Related Work

In the past few years, the computational pathology re-

search community has presented a number of tissue phe-

notyping studies [2, 3, 7, 11, 14–17, 19, 24, 25, 30, 32–34].

Broadly, we group tissue image classification methods

into two categories including texture feature-based meth-

ods [3, 16, 17, 19, 25, 30] and deep learning-based methods
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Figure 2: An illustration of the low-resolution and high-resolution cellular interaction features computation which are used in the patch-level graphs

construction. Steps (a)-(c) show the input WSI of CRC, the input patch, and the results of the cell detection and classification. Step (d) shows the i-th cell

cropped from (c) containing 27× 27 pixels. Step (e) shows the low-resolution and high-resolution deep features extracted from the cell patch shown in (d).

Step (f) shows the construction of two cell-level graphs at a coarse and fine level, and step (g) shows the 15 dimensional cellular interaction features vectors

computed from cell-level graphs

[2, 7, 11, 15, 24, 32, 33].

The texture feature-based methods compute the local tis-

sue features and train classifiers to predict different tissue

phenotypes [16, 25]. For example, Tamura et al. proposed

five different perception-like features including coarseness,

contrast, directionality, line-likeness, and roughness texture

measures [30]. Bionci et al. used the SVM classifier on

these features for binary tissue classification [3]. Linder

et al. proposed to use LBP with contrast measure to train

a linear SVM classifier for tumor epithelium and stromal

tissue components [19]. These studies presented encourag-

ing results however, they were limited for the discrimina-

tion of either one or two tissue classes such as tumor and

stroma. Kather et al. recently proposed a multi-texture fea-

tures analysis method for eight class tissue classification in

colon cancer histology images [16]. They used a set of six

different texture features including, LBP, lower order and

higher order histogram features, Gabor features, gray level

co-occurrence matrix, and perception-like features. We ob-

serve that texture features do not fully capture the biological

significance of the tissue components and these features are

not robust in discriminating tumor from the complex stro-

mal component.

A number of deep learning methodologies have also

been proposed in the literature for tissue phenotyping [11,

15, 32, 33]. These methods train end-to-end CNNs for di-

rect patch-based tissue classification. The training process

learns a rich hierarchy of convolutional features of each

tissue class and then predicts the tissue type based on the

soft-max classifier. Xu et al. proposed a deep network for

breast cancer histology images [33]. Huang et al. incorpo-

rated the idea of domain adaptation in the classical Alex-

Net and Google Net [11]. Yu et al. extracted deep fea-

tures from CRC WSIs and then used a linear SVM classi-

fier for classification and segmentation [34]. Bejnordi et al.

also proposed deep networks for the classification of breast

cancer WSIs [2]. More recently, Kather et al. proposed

a large-scale study to predict survival from CRC WSIs

[15]. They used a pre-trained VGG-19 model and fine-

tuned this network on nine large-scale tissue classes to es-

timate deep tumor-stroma score. The aforementioned deep

learning methods produced good results for multi-class tis-

sue classification. However, these methods require a very

large amount of histology data for training, which is not al-

ways available since WSIs require exhaustive annotations

by experienced pathologists which incur a high cost.

In contrast, in our approach, we propose a semi-

supervised algorithm for seven class tissue classification.

We use automatic cell classification for estimating cellular

interaction among different cellular components. Our cellu-

lar interaction features encode more biological significance

as compared to texture features and deep convolutional fea-

tures and hence, has more potential for improving the per-

formance of tissue phenotyping.

3. Proposed Algorithm

The pipeline of the proposed algorithm is shown in Fig.

1 and the computation of cellular interaction features is pre-

sented in Fig. 2. The main components of the proposed

algorithm include a cell detection and classification net-

work which is also used as a deep multi-resolution fea-



tures extractor, the construction of multi-resolution cell-

level graphs, computation of cellular interaction features,

construction of multi-layer patch-level graph, and estima-

tion of cellular communities using non-negative matrix fac-

torization method. In the later subsections, we describe

each step of the proposed algorithm in detail.

3.1. Cell Detection, Classification, and Feature Ex-
traction

We first extract non-overlapping patches from each WSI

of CRC. In this work, we use a patch of size 150×150 pixels

captured at 20x magnification level. For cell detection, we

use a spatially constrained deep neural network proposed by

Sirinukunwattana et al. [26]. For cell classification, a deep

neural network is trained to classify five different cell types

including Tumor epithelial (T), Debris (D), Inflammatory

(I), Spindle-shaped (S), and Normal epithelial (N). This net-

work consists of two convolutional layers each followed by

a max-pooling layer which is followed by three fully con-

nected layers. The output of the network is a set of five

different types of cell nuclei’s as shown in Fig. 2 (c). For

each cellular component, the same network is also used for

multi-resolution deep features extraction. After each convo-

lutional layer, the coefficients are extracted and used as fea-

tures for the input cell patch. The first convolutional layer

provides fine image details while the second convolutional

layer provides the semantic information regarding the input

cell as shown in Fig. 2 (e).

3.2. Cell-Level Graphs Construction

The features extracted from each convolutional layer are

used for the construction of the cell-level graph among the

cells in a particular patch. The strength of the connection

between two cells is assumed to be inversely proportional

to the Euclidean distance between their respective features

as given below.

A(i, j) =

{

1, if exp(− ||fi−fj ||2
2σ2 ) ≤ τ1,

0, otherwise .
(1)

where Ai,j is the edge weight between i-th and j-th cells,

fi and fj are the corresponding cell deep features and σ
is the bandwidth parameter controlling edge weigh decay

with increasing distance between two cells in the feature

space. The edges between cells which are relatively at a

larger distance are removed based on a threshold, τ1. The

edges between cells which are relatively closer, having dis-

tance less than the threshold, are assigned a unit weight.

This will result in a binary adjacency matrix representing an

unweighted graph. The two cell-level graphs corresponding

to coarse and fine resolutions are shown in Fig. 2. It should

be noted that the number of cellular components as a nodes

are same in both cell-level graphs but varying edges which

show different kind of similarities among cell types.

3.3. Patch-Level Cellular Interaction Features

Using the graphs of cells contained in a particular patch,

we compute the patch-level cellular interaction features,

yp ∈ R
m, where p is the patch index and m is the dimen-

sion of cellular interaction features (m = 15 in this work).

If there is an edge between two cells, we assume those cells

are interacting with each other. For five cellular types, we

obtain fifteen different cellular interactions including T to

T, T to I, T to S, T to D, T to N, I to I, I to S, I to D, I to N,

S to S, S to D, S to N, D to D, D to N, and N to N as shown

in Fig. 2 (g). The probability distribution of these cellular

interactions is used as a patch-level feature. The probabil-

ity distribution is estimated as a histogram of different types

of cellular interactions. All patch features are concatenated

into a matrix Y = {yp}np=1, where n is the total number of

patches in a CRC WSI. We get two such input matrices Yl

and Yh corresponding to low and high-resolution features.

3.4. Multi-layer Patch-Level Graphs Construction

Using cellular interaction features, we construct two

undirected graphs Gl = (Vl,Al) and Gh = (Vh,Ah) cor-

responding to low resolution and high-resolution features.

A vertex vl in Gl corresponds to yl in the low resolution

features matrix Yl. Al ∈ R
n×n is the adjacency matrix of

Gl, which is computed by employing chi-squared distance

as:

Al(i, j) =

{

1, if exp (− 1
σ

∑m

k=1
(y

l
(i,k)−y

l
(j,k))2

y
l
(i,k)+y

l
(j,k) ) ≤ τ2,

0, otherwise .
(2)

similarly, the adjacency matrix Ah ∈ R
n×n of graph Gh is

computed using Eq. (2). τ2 is a threshold on the chi-square

similarity shown by Eq. (2). If the similarity between two

patches (nodes) is less than a τ2, then it is considered as zero

or unconnected, otherwise, it is considered as 1.

3.5. DeMuC Mathematical Formulation

A network community may be defined as a set of nodes

more densely connected to each other compared to the other

nodes on that network. The problem of community detec-

tion is to find the community assignment of all nodes. Let

C ∈ {0, 1}n×k, be the community membership matrix for

n nodes and k communities, Cij = 1, if node i belongs

to community j, and Cij = 0, otherwise. Since the com-

munities considered in the tissue phenotyping problem are

non-overlapping therefore, only one element in each row of

C can be 1 and all others will be zero,
∑k

j=1 Cij = 1.

For a given adjacency matrix Ai, for i ∈ {l, h}, the

community matrix Ci, for i ∈ {l, h}, is found using a



projective non-negative matrix factorization method [35].

We factorize each adjacency matrix as Al ≈ ClC
⊤
l Al and

Ah ≈ ChC⊤
h Ah. The community matrices Cl and Ch are

a low-rank representation of the corresponding adjacency

matrices Al and Ah. These matrices are further constrained

to be non negative as {Cl,Ch} ≥ 0, and orthogonal as

C⊤
h Ch = C⊤

l Cl = I, where I is the identity matrix. To

enforce these properties, the objective function can be writ-

ten as:

min
Ci≥0,CiC⊤

i
=I
||Ai − CiC

⊤
i Ai||2F , for i ∈ {l, h}, (3)

where ||·||F is the Frobenius norm and it is equal to ||C||F=
√

∑n

i=1

∑k

j=1|c(i, j)|2.

For the multi-layer network having low resolution and

high resolution networks as layers, we intend to compute a

common community matrix C across both layers such that

C is close to both Cl and Ch. Combining the individual and

combined community matrices computation, we formulate

our novel objective function as follows:

min
C≥0,CC⊤=I

∑

i∈{l,h}

di(C;Ai) + γ
∑

i∈{l,h}

di(C;Ci), (4)

where
∑

i∈{l,h} d(C;Ai) is the objective function for clus-

tering individual layers, and
∑

i∈{l,h} d(C;Ci) is the loss

function which minimizes the distance between the consen-

sus low-rank community representation matrix C and each

individual low-rank community representation matrix Ci

(Cl and Ch already computed using Eq. (3)), and γ > 0 is

the parameter that assigns relative importance to both terms

while minimizing Eq. (4). In the following subsections, we

provide the solutions of the proposed objective functions (3)

and (4).

3.6. DeMuC Optimization

In this section, we derive the multiplicative update rules

to solve the objective functions (3) and (4). Similar to [18],

these multiplicative update rules are used for finding the lo-

cal minimum of the optimization problems (3)-(4).

3.6.1 Update Rules for Solving (3)

We provide the multiplicative update rule using projective

non-negative matrix factorization method [35] for each ad-

jacency matrix Ai, to estimate each low-dimensional sub-

space known as low-rank community representation matrix

Ci as:

∀i ∈ {l, h},Ci(jk) ← Ci(jk)
[AiA

⊤
i Ci]jk

[CiC
⊤
i AiA

⊤
i Ci]jk

, (5)

where Ci(jk) is the j-th element in the k-th community

for i-th low-rank community matrix Ci. (5) converges to

the optimal solution if the difference between the matrices

Ci(t) and Ci(t − 1) is less than a tolerance factor ζ, where

t is the iteration index.

3.6.2 Update Rules for Solving (4)

The multiplicative update rule for the consensus low-rank

community representation matrix C in the objective func-

tion (4) can be derived similarly to (5) using projective non-

negative matrix factorization method as follows:

C(jk) ← C(jk)
[AavgC]jk

[CC⊤AavgC]jk
, (6)

where Aavg =
∑

i∈{l,h}

AiA
⊤
i + γCiC

⊤
i (7)

while we derive the solution for our collective objective

function (4) and then formulate its multiplicative update

rules. The first term di(C;Ai), ∀i ∈ {l, h}, in the objec-

tive function (4) is equivalent to (3).

For the second term d(C;Ci), ∀i ∈ {l, h}, in (4), we

utilize the orthonormal property of non-negative, low-rank

community representation matrices, Ci, and propose a dis-

tance measure based on this property. Dong et al. pro-

posed to estimate subspace on Grassman manifold [6]. A

Grassman manifold G(k, n) is a set of k-dimensional linear

subspaces in R
n. Given that, each orthonormal low-rank

community reperesentation matrix, Ci ∈ R
n×k, spaning

the corresponding k-dimensional non-negative subspace,

span(Ci) in ∈ R
n, is mapped to a unique point on the

Grassman manifold G(k, n). The geodesic distance be-

tween two subspaces can be computed by projection dis-

tance [8]. For instance, the squared distance between two

subspaces, Ci and Cj , is computed as follows:

d2proj =

k
∑

i=1

sin2θi = k−
k

∑

i=1

cos2θi = k−tr(CiC
⊤
i CjC⊤

j ),

(8)

where {θi}ki=1 are principal angles between k-dimensional

subspaces, span(Ci) and span(Cj). Following this ap-

proach, we can write the second part d(C;Ci), ∀i ∈ {l, h},

in our collective objective function (4) as:

∀i ∈ {l, h}, di(C;Ci) = k − tr(CC⊤CiC
⊤
i )

= ||CC⊤ − CiC
⊤
i ||2F .

(9)

where the consensus low-rank community representation

matrix C is computed using the multiplicative update rule

defined by (6).



We can now formulate the multiplicative update rules for

our objective function (4). Following the constrained opti-

mization theory [4] and non-negative matrix factorization

[18], we first substitute Eq. (3) and Eq. (9) into Eq. (4) as

follows:

min
C≥0

Ψ = min
C≥0,CC⊤=I

∑

i∈{l,h}

||Ai − CC⊤Ai||2F+

γ
∑

i∈{l,h}

(k − tr(CC⊤CiC
⊤
i )),

(10)

by taking the derivative of (10), we get

∇CΨ =−
∑

i∈{l,h}

4AiA
⊤
i C +

∑

i∈{l,h}

2AiA
⊤
i CC⊤C+

2CC⊤AiA
⊤
i C − 2γ

∑

i∈{l,h}

CiC
⊤
i C

(11)

where the first two terms under summation can be decom-

posed into two non-negative terms, namely:

∇CΨi(C;Ai) = [∇CΨi(C;Ai)]
+ − [∇CΨi(C;Ai)]

−,
(12)

where [∇CΨi(C;Ai)]
− = 4AiA

⊤
i C ≥ 0,

[∇CΨi(C;Ai)]
+ = 2AiA

⊤
i CC⊤C + 2CC⊤AiA

⊤
i C ≥ 0

are non-negative terms, respectively. To incorporate the

orthonormality constraint into the update rule, we employ

the notion of natural gradient [23]. Since, the columns

of matrix C span a vector subspace known as Grassman

manifold G(k, n), i.e.,span(C) ∈ G(k, n), therefore, the

ordinary gradient of the optimization problem (11) does not

represent its steepest direction, but it represents a natural

gradient [1]. We define a natural gradient to optimize our

objective function (4) under the orthonormality constraint.

The natural gradient of Ψ on Grassman manifold at C

can be written in terms of the ordinary gradient as follows

[23]:

∼

∇CΨ = ∇CΨ− CC⊤∇CΨ, (13)

where ∇CΨ is the ordinary gradient given by (11). Follow-

ing the KKT condition and preserving the non-negativity

of C, the multiplicative update rules for matrix C using the

natural gradient is as follows:

C(jk) ← C(jk)
[
∼

∇CΨ]−

[
∼

∇CΨ]+
, (14)

where the non-negative parts of the normal gradient are

written as follows

[
∼

∇CΨ]− =
(

∑

i∈{l,h}

AiA
⊤
i + γCiC

⊤
i

)

C

[
∼

∇CΨ]+ = CC⊤
(

∑

i∈{l,h}

AiA
⊤
i + γCiC

⊤
i

)

C

(15)

the consensus low-rank representation matrix C computed

from (4) is used for node assignment to the k-th commu-

nity. The entries in the i-th row of matrix C after row nor-

malization are interpreted as a posterior probability that a

node i belongs to each of the k composite communities. In

our experiments, we apply a hard clustering procedure that

is where a node is assigned to the k-th cluster that has the

largest probability value.

4. Experimental Evaluations

We evaluated the performance of the proposed tissue

phenotyping DeMuC algorithm both qualitatively and quan-

titatively on two publicly available datasets proposed by

Kather et al., including Colon Cancer Histology Images

(CCHI-1) [16] and CCHI-2 [15]. A total of 5,000 histol-

ogy images in the CCHI-1 dataset are divided into eight

different tissue classes including tumor epithelium, sim-

ple stroma, complex stroma, lymphocytes, debris, mucosal

glands, adipose, and background with 625 images in each

class. In CCHI-2 dataset, a total of 7,180 images are divided

into nine difference tissue classes including tumor col-

orectal adenocarcinoma epithelium (1,233 images), cancer-

associated stroma or complex stroma (421 images), normal

colon mucosa (741 images), smooth muscle (592 images),

mucus (1,035 images), lymphocytes (634 images), debris

(339 images), adipose (1,338 images), and background (847

images) tissue. We did not consider adipose and back-

ground tissue classes in both datasets as these tissue images

do not contain any cellular components. So, we tested a to-

tal of 3,750 tissue images of 6 classes in the CCHI-1 dataset

and a total of 4,995 tissue images of 7 classes in the CCHI-

2 dataset. In both datasets, the tissue images are manually

annotated by experienced pathologists and non-overlapping

patches of sizes 150×150 and 224×224 are extracted from

CRC WSIs in CCHI-1 and CCHI-2. Sample images of six

and seven tissue classes from both datasets are shown in

Fig. 3.

We used two main parameters γ and k to optimize the

proposed objective function (4). γ is set according to 1/
√
n,

while k denotes the number of communities which is set as

k = 6 for the CCHI-1 dataset and k = 7 for the CCHI-

2 dataset. We compared the performance of the proposed

DeMuC algorithm with 9 state-of-the-art methods includ-

ing KM-CD [27], SDLs [25], B6F-SVM [16], DFOD [32],

SHIRC [29], TPCD [14], DenseNet [10], ResNet101 [9],



Tumor Stroma Complex Stroma Mucosa Gland Debris Lymphocytes

Tumor Complex Stroma Normal Muscles Mucus Lymphocytes Debris

(a) Colon Cancer Histology Images Dataset (CCHI-2) [15]

(b) Colon Cancer Histology Images Dataset (CCHI-1) [16]

Figure 3: Samples images from both CCHI-1 [16] and CCHI-2 [15] dataset. (a) Shows the exemplar images of seven different tissue types including Tumor,

Complex Stroma, Normal, Muscles, Mucus, Lymphocytes, and Debris from the CCHI-1 dataset [15]. (b) Shows the exemplar images of six distinct tissue

types including Tumor, Stroma, Complex Stroma, Mucosa Gland, Debris, and Lymphocytes [16].

and SVM-CNN [34]. The methods, KM-CD and TPCD,

exploited cellular interaction features and performed k-

medoid and mean-shift clustering methods. The method,

B6F-SVM, used a set of six different textural features and

trained SVM classifier for multi-class tissue classification.

SDLs, DFOD, and SHIRC, trained dictionary on textural

features of the histology images. While, deep learning

methods, DenseNet and ResNet101, are end-to-end trained

for direct patch-based classification. CNN-SVM exploited

the deep features from the pre-trained AlexNet model and

trained the SVM classifier for tissue classification. The

original author’s implementation was used for the TPCD,

KM-CD, SDLs, B6F-SVM, DFOD, and SHIRC, methods,

while, we implemented deep learning methods, DenseNet,

ResNet101, and SVM-CNN, which were pre-trained on the

ImageNet database. We replaced the classification layer

and fine-tuned these networks with stochastic gradient de-

scent with a momentum of 0.8. We randomly divided both

datasets into a 70% training set and a 30% testing set for

multi-class histology images classification. We trained all

networks on a desktop workstation with two Nvidia Titan

Xp GPUs with a mini-batch size of 256 and a learning rate

of 0.0003 for 130 epochs. In all these networks, the data

augmentation techniques such as rotational invariance with

random horizontal and vertical flips were used for training.

All experiments are carried out on a machine with an In-

tel Core i7 4.0 GHz CPU and 64 GB RAM on which our

proposed objective function takes 9 iterations in 24.2 sec-

onds for the CCHI-1 dataset and 15 iterations and 30.8 secs

for the CCHI-2 dataset for the classification of histology im-

ages. The quantitative results are compared in terms of the

True Positive (TP) rate and F1 score as performance mea-

sures. The aim is to maximize TP and F1 score for a more

accurate classification of tissue components.

4.1. Evaluation on CCHI-1 Dataset

Table 1 shows the classification performance in terms of

TP score in % and F1 score as compared to existing state-

of-the-art methods. On average, the proposed algorithm has

performed favorably better than the compared methods in

terms of both Average True Positive (AvTP) rate and av-

Table 1: Comparative performance of multi-class tissue classification on

the Colon Cancer Histology Images-1 (CCHI-1) dataset [16]. The true

positive rate in % and average F-score of the six tissue phenotypes are

shown for the 10 methods. The true positive rate gives the % of test images

classified correctly. The two best results are shown in red and blue fonts

respectively.

Methods Tumor Stroma Complex Mucosa Debris Lympho AvTP F-score

KM-CD [27] 80.6 91.4 77.2 80.5 96.0 93.5 86.5 0.85

B6F-SVM[16] 86.3 86.4 72.4 92.4 88.1 89.3 85.8 0.89

DFOD [32] 79.3 89.3 81.5 78.8 92.4 92.6 86.6 0.81

SHIRC [29] 72.8 85.8 72.0 77.1 92.1 92.8 82.1 0.80

SDLs [25] 69.3 85.7 66.7 72.6 92.7 93.4 80.0 0.79

Deep Learning Methods Tumor Stroma Complex Mucosa Debris Lympho AvTP F-score

DenseNet [10] 85.8 90.7 87.5 86.8 93.1 97.4 90.2 0.89

SVM-CNN [34] 85.8 90.7 87.5 86.8 93.1 97.4 90.2 0.84

ResNet101 [9] 89.3 91.9 90.2 90.0 96.0 97.3 92.4 0.89

TPCD [14] 90.0 92.8 89.4 89.5 96.3 97.2 92.5 0.92

DeMuC 90.1 93.2 92.5 90.5 96.4 97.5 93.4 0.93

erage F1 score. For instance, DeMuC has achieved 93.4%

AvTP, which is 6.8% greater than the classical handcrafted

features method such as DFOD in terms of AvTP. In terms

of the F1 score, DeMuC obtained 0.93, which is 4% better

than the classical method, B6F-SVM, and 1.0% greater than

TPCD. The excellent performance of the proposed algo-

rithm is because of the encoding of multi-layer graph infor-

mation into the composite community objective function.

For the tumor tissue component, our proposed algorithm

DeMuC produced the best results of 90.1%. While the re-

maining methods could not achieve a true positive rate of

more than 86% excluding ResNet101 (89.3% ) and TPCD

(90.0% ) methods. It shows that the tumor tissue commu-

nity is one of the difficult components for almost all of the

compared methods. In the stroma tissue community, only

the proposed algorithm, DeMuC, achieved the best true pos-

itive rate of 93.2%, which is significantly better than others.

All of the remaining methods attained a true positive rate of

more than 85.0%, which demonstrates that the stroma tis-

sue images did not pose a great challenge for the compared

methods.

The complex stroma is more complicated tissue compo-

nent than other components for all of the compared meth-

ods. Only two methods ResNet101 and our proposed al-

gorithm, DeMuC, achieved the true positive score of more

than 90.0%. Our proposed algorithm obtained the best

true positive score of 92.5% which is 2.3% better than



Table 2: Comparative performance of multi-class tissue classification on

the Colon Cancer Histology Images-2 (CCHI-2) dataset [15]. The true

positive rate in % and average F-score of the six tissue phenotypes are

shown for the 10 methods. The true positive rate gives the % of test images

classified correctly. The two best results are shown in red and blue fonts

respectively.

Methods Tumor Muscle Complex Mucus Debris Lympho Norm AvTP F-score

KM-CD [27] 79.1 80.1 76.1 79.4 95.5 92.4 78.1 82.9 0.84

B6F-SVM[16] 85.4 80.2 71.4 81.6 84.2 85.6 82.3 81.5 0.87

DFOD [32] 78.1 77.3 79.1 80.1 90.1 89.1 79.3 81.8 0.79

SHIRC [29] 70.1 69.3 71.5 76.6 89.1 87.3 71.5 76.4 0.81

SDLs [25] 67.2 65.6 64.1 70.2 90.5 90.1 67.2 73.5 0.80

Deep Learning Methods Tumor Stroma Complex Mucosa Debris Lympho Norm AvTP F-score

DenseNet [10] 84.2 91.5 88.1 94.5 80.2 92.2 93.6 89.1 0.92

SVM-CNN [34] 84.3 89.4 84.5 90.1 79.8 90.2 85.4 86.2 0.82

ResNet101 [9] 90.1 87.4 89.1 88.1 84.3 84.1 95.4 88.3 0.90

TPCD [14] 92.0 90.5 79.8 94.1 87.6 94.0 90.6 89.8 0.89

DeMuC 95.1 91.5 90.1 95.8 90.0 90.7 92.5 92.2 0.93

ResNet101 deep features method. Most compared methods

attained a true positive score of less than 80.0%. In terms

of Mucosa gland tissue images, our proposed algorithm De-

MuC produced the best results 90.5%, in terms of the true

positive rate. The remaining methods attained good per-

formance as compared to other tissue components for the

mucosa gland class. Debris and Lymphocytes did not pose

a great challenge for all of the compared methods. Our pro-

posed algorithm, DeMuC, achieved the best results.

4.2. Evaluation on CCHI-2 Dataset

Table 2 shows the multi-class tissue classification perfor-

mance in terms of TP score in % and F1 score on the CCHI-

2 dataset as compared to existing state-of-the-art methods.

On the average, the proposed algorithm has achieved sig-

nificantly better results in terms of both AvTP and F1 score

than the compared methods. For instance, DeMuC has

achieved 92.2% AvTP and 0.93 F1 score, which is 9.0% and

6.0% greater than the classical handcrafted features meth-

ods such as KM-CD and B6F-SVM. In comparison with

deep learning methods, the proposed algorithm obtained

2.4% and 1.0% better results in terms of AvTP and F1 score.

This boost in the performance confirms the advantages of

enforcing the composite community structure in the objec-

tive function in our proposed algorithm.

In terms of tumor tissue community, our proposed al-

gorithm, DeMuC, produced the best results of 95.1%, while

ResNet101 and TPCD methods achieved a significantly bet-

ter true positive rate of 90.1% and 92.0%, respectively. The

remaining texture analysis-based and dictionary learning-

based methods, could not obtain a true positive rate of

more than 80.0% excluding B6F-SVM (true positive rate of

85.4%). It shows that the tumor tissue community posed a

great challenge for the classical handcrafted features-based

methods. Since these methods could not fully capture the

heterogeneous nature of the tumor component.

In the muscle tissue community, only the proposed al-

gorithm, DeMuC, achieved the best true positive rate of

91.5%, which is comparable with DenseNet method. All of

the remaining deep learning methods attained a true positive

rate of more than 80.0%. Only two handcrafted features-

based methods, KM-CD and B6F-SVM, produced a true

positive rate of more than 80.0% while, muscle commu-

nity was the major burden for the remaining methods. The

complex stroma was the most difficult tissue community

for the majority of the compared methods since none of

the methods could achieve a true positive rate of more than

90.0%. Only the proposed algorithm, DeMuC, obtained a

90.1% true positive rate which was 1.0% greater than the

ResNet101 method.

For the mucus tissue component, our proposed algo-

rithm, DeMuC, performed favorably better with 95.8% true

positive scores. The remaining compared methods show

some discrepancy in a true positive score for the mucus

tissue images. Majority of the compared methods ob-

tained good results for Debris and Lympho tissue compo-

nents. The proposed algorithm, DeMuC, achieved 90.0%

and 90.7%, true positive rate which is favorably better

compared to B6F-SVM, DFOD, SHIRC, ResNet101 and

SVM-CNN. In terms of normal colon mucosa (Norm) tissue

type, DeMuC achieved 92.5% while, ResNet101 method

obtained a 95.4% true positive rate. Many methods were

not able to handle Norm tissue images accurately as most

of these methods could not attain true positive rate more

than 80%.

5. Conclusions

In this work, a novel semi-supervised cellular commu-

nity detection algorithm has been proposed for tissue phe-

notyping based on a deep neural network for cell detection,

classification, and clustering of image patches into biolog-

ically meaningful groups or communities. First, deep neu-

ral networks are used for cell detection and classification

and then two cell-level graphs are constructed. Based on

cellular interaction features at the patch level, two patch-

level graphs are constructed using a chi-squared distance

measure. A novel objective function is proposed which

enforces non-negativity matrices constraints for estimating

composite communities for tissue phenotyping. The pro-

posed algorithm has shown better performance than end-to-

end deep learning methods as well as several existing algo-

rithms based on handcrafted features. In future, we aim to

exploit more graph layers into the objective function and in-

vestigate their biological significance and clinical relevance.
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