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Abstract

Wireless Capsule Endoscopy (WCE) is a minimally-

invasive procedure that, based on a vitamin-size camera

that is swallowed by the patient, allows the visualization

of the entire gastrointestinal tract. This technology was de-

veloped 20 years ago to perform useful and safe studies of

different bowel disorders. However, especially the number

of captured images and their difficult interpretation has hin-

dered its deployment in some clinical scenarios.

Deep learning methods have the necessary capacity to

deal with WCE image interpretation, but training good

models is still an open problem for some bowel disorders

due to the fact that obtaining a sufficiently large set of posi-

tive cases, for the creation and validation of the model, is an

arduous task. Moreover, technological advances are rapidly

moving forward proposing new hardware able to obtain im-

ages with a substantially improved quality. Given these two

facts, it is obvious that highly accurate models can only be

built by considering heterogeneous datasets composed of

images captured by different cameras, and if training meth-

ods are able to find invariances with respect to the image

acquisition systems.

In this paper, we study the use of deep metric learning,

based on the triplet loss function, to improve the gener-

alization of a model over different datasets from different

versions of WCE hardware. The obtained results show ev-

idence that with just a few labeled images from a newer

camera set, a model that has been trained with images from

older systems can be easily adapted to the new environment.

1. Introduction

Wireless Capsule Endoscopy (WCE) is a medical proce-

dure that enables the visualization of the entire gastrointesti-

nal tract. WCE is based on a vitamin-size capsule, equipped

with a light source, camera, an optical lens, radio transmit-

ter, and a battery, that is swallowed by the patient and pro-

pelled by the peristalsis along all GastroIntestinal (GI) tract,

allowing the full visualization of it, from inside, without

pain or sedation.

The use of a WCE capsule produces a long video

that contains thousands of images that must be individu-

ally reviewed by a medical specialist, making the inter-

pretation and analysis of WCE data a complex and time-

consuming activity. To overcome this drawback we can use

a Computer-Aided Decision system (CAD) to support hu-

man interpretation.

The first difficulty that researchers must tackle when de-

veloping CADs for WCE is the need to build representa-

tive databases for some specific disease or condition. The

creation of these databases is time-consuming and econom-

ically expensive because of technical questions and also be-

cause of the scarcity of positive cases. For this reason, most

of the methods we can find in the literature are built and

validated with very small datasets.

Another important point that should not be overlooked is

that, in the medical field, technological advances are rapidly

moving forward. Since the presentation of the first WCE

device in 2001, new devices have been periodically pre-

sented with better image resolution, illumination or larger

field of view. Today, we can find different WCE devices,

coming from different manufacturers, that present differ-

ent technical specifications. Table 1 illustrates some of the

most known WCE devices with their main specs, and Fig-

ure 1 shows images captured by two different capsules from

Medtronic: PillCam SB2 and PillCam SB3. As it can be ap-

preciated, images from PillCam SB3 are better. It is clear

that if a model is trained with data from an older capsule,

it might not give the expected results when it is evaluated

on a newer one since the same data distribution is not guar-

anteed. However, when the cost of creating a database is

that high, it is not acceptable to lose previous databases and

build a new one from scratch each time a new device is re-

leased.

To overcome this problem, we propose a domain adapta-

tion method based on deep metric learning using the triplet

loss. The proposed method aims to adapt the embedding

space trained with a large training data set to a new domain

where only comparatively few labeled images are available.

The embedding space is adapted by generating triplets of

images from both domains, with the goal that two images



Capsule
Size Weight Battery Resolution Frames Field

(mm) (g) life (h) (pixels) per second of view

PillCam SB2 - Given Imaging 26.0 × 11.0 3.40 8 256×256 2 fps 156◦

PillCam SB3 - Given Imaging 26.2 × 11.4 3.00 >8 340×340 2-6 fps 156◦

EndoCapsule - Olympus America 26.0 × 11.0 3.50 >8 512×512 2 fps 145◦

MiroCam - IntroMedic Company 24.5 × 10.8 3.25 - 4.70 >11 320×320 3 fps 170◦

OMOM Jinshan - Science and Technology 27.9 × 13.0 6.00 >6 - 8 640×480 2 fps 140◦

Table 1: Capsule endoscopy devices used to perform endoscopy operations. The table contain a summary of the main features

of each one.

Figure 1: Frames from different capsules present different

technical quality. (a) PillCam SB2 capsule image (b) Pill-

Cam SB3 capsule image. Image in (b) is clearly better that

image in (a).

in the same category are closer than images belonging to

different domains. The obtained results show that by using

a small labeled dataset from the new domain, the embed-

ding space can be adapted to work in both domains with

high performance.

The rest of the paper is organized as follows: first, we

give an overview of the related work in the field. This is

followed by a description of our methodology, presenting

the system architecture, followed by the experimental setup

and results. Finally, we conclude the paper and give direc-

tions for future work.

2. Related Work

Deep Learning for WCE analysis. Several deep learn-

ing methods have been proposed for WCE image analysis,

dealing with different pathologies such as bleeding, hemor-

rhages, angiectasia, polyps/cancer, ulcers and hookworms.

For example, Zou et al. [24] proposed a CNN-based method

to classify the different organs of the digestive system such

as stomach, small intestine, and colon; Segui et al. proposed

in [20] a classification method of motility events such as tur-

bid, bubbles, clear blob, wrinkle, and wall; finally, Yuan et

al. [23] proposed a stacked sparse autoencoder-based ap-

proach for detecting polyps [23].

Metric Learning. Metric learning has been extensively

used in many machine learning and computer vision appli-

cations [15]. Inspired by the success of deep neural net-

works, deep metric learning has become popular in the last

years. These methods aim to learn a discriminative feature

embedding, using deep neural networks, such that similar

samples are represented by similar embedding vectors and

different samples are represented by dissimilar ones. In

order to learn these features, embedding deep neural net-

works are trained using special loss functions such as the

Contrastive loss [10], the Triplet loss [13] or the Quadru-

plet loss [4]. Triplet loss has shown very good results on

several image retrieval tasks [2, 9] and in many image clas-

sification problems such as facial recognition [19], person

re-identification [5, 12] or action recognition [16].

The selection of the triplets is one of the key factors when

implementing the triplet loss. In the literature, we can find

several methodologies, such as the Batch All or Batch Hard

[7], that face the problem of triplet sampling for each batch.

Domain Adaptation. Domain adaptation methods are

designed to deal with the problem of distribution shift

across domains. Many domain adaptation (or transfer learn-

ing) approaches have been proposed for computer vision ap-

plications [18, 8, 3]. To our knowledge, the use of triplet

loss in the domain adaptation problem has been limited.

Huang et al. [14] defined a triplet visual similarity con-

straint for learning to rank across two sub-networks using

online and offline images. Yu et al. [22] used the triplet loss

to correct the selection bias in the triplet selection. Deng et

al. [6] used the triplet loss and pseudo-labels for unsuper-

vised domain alignment.

3. Method

The architecture of our system is illustrated in Figure 2.

As it can bee seen, the system architecture consists of a clas-

sical neural network architecture followed by a normaliza-

tion layer L2 and an embedding layer which is optimized

with the triplet loss.

In this section, we firstly introduce the triplet loss func-



Figure 2: Overview of the proposed CNN structure. The input of the network consists of a batch of images from both

domains, source Ds and target Dt. A set of triplets is generated, where anchor images and negative images are from the

same domain while positive images are from a different domain but belonging to the same class as the anchor image. The

architecture is defined as a standard CNN Architecture followed by L2 normalization and an embedding layer. It is optimized

by using the triplet loss over the generated triplets.

tion for deep metric learning and then we consider its role

in the problem of domain adaptation in our scenario.

3.1. Triplet loss for Deep Metric Learning

Let X , Y denote two random variables, which indicate

data and label, respectively. Let D be the set of data sam-

pled from P (X,Y ). The goal of metric learning is to learn

a distance function that assigns small (or large) distance val-

ues to a pair of similar (or dissimilar) images. Deep metric

learning uses a deep neural network to learn a feature em-

bedding x′ = Φ(x) with the goal of learning a non-linear

distance function as follow:

d2(xi, xj) = ||Φ(xi)− Φ(xj)||22

In order to learn this embedding representation Φ(xi),
the triplet loss function is defined as follows:

Ltriplet =
∑

(xa,xp,xn)∈D

[

d2(xa, xp)− d2(xa, xn) + α
]

+

where
[

·
]

+
= max(·, 0), α > 0 and xa, xp and xn refers to

anchor, positive and negative examples respectively. Hence,

the set of triplets used to train the network is defined as:

τ = {(xa, xp, xn)|ya = yp and ya �= yn}

This loss function has shown excellent results learning

feature embedding mappings, requiring that the distance

between Φ(xa) and Φ(xp) is smaller than the distance be-

tween Φ(xa) and Φ(xn).

The selection of triplets during training is one of the key

factors in order to optimize the network using the triplet

loss. As it was said before, there exist two main method-

ologies to face the sampling problem of triplets: Batch All

and Batch Hard [7]. In Batch All strategy a batch of images

from the training set is selected and then all possible triplets

are generated to optimize the loss. On the other hand, in

Batch Hard strategy, triplets are generated by seeking, for

each sample xa in the batch, the hardest positive sample, or

farthest positive sample argmaxxp(‖Φ(xa)− Φ(xp)‖
2
2),

and the hardest negative sample, or closest negative sample

argminxn(‖Φ(xa)− Φ(xn)‖
2
2). Depending on the data

set, Batch All can lead to a sub-optimal solution while Batch

Hard can have some convergence problems as a conse-

quence of only considering the hardest samples. For our

problem, we will consider the Batch All strategy due to the

visual heterogeneity of our classes.

3.2. Domain adaption using triplet loss

In our problem, it is assumed that two datasets from dif-

ferent domains are available, the source domain dataset, Ds,

and the target domain dataset, Dt, obtained by different

capsules. Both datasets are fully labeled but Ds is expected

to contain a larger amount of images while Dt is expected

to be smaller. To goal is to adapt the model trained with

images from Ds to the new environment Dt with minimal

efforts.

We assume that there is a covariate shift on the marginal

distribution P (X) across domains while the conditional

distribution P (Y |X) remains equal. To correct the distribu-



tion shift across domains, we first learn a model that defines

the embedding function using the large labeled training set

Ds. This model is trained using the standard Batch All strat-

egy using all the images from the training set Ds. Then, in

order to align the data distributions from both domains and

then reduce the whole distribution discrepancy between the

source and target datasets, new triplets are generated using

both domains, Ds and Dt. Triplets are generated from a

batch of N images, where K images are selected from Dt

while N − K from Ds. Each triplet consists of an anchor

sample xa that can be from Ds or Dt indifferently, a posi-

tive sample xp that is from a different domain than xa but

with the same label and a negative sample xn which is from

the same domain than the anchor image xa. Formalizing,

the set of triplets used to train the system is defined as fol-

lows:

τ = {(xa
i , x

p
j , x

n
i )|y

a
i = y

p
j and yaj �= ynj and i �= j}

where i and j represent any of the classes of the dataset.

4. Experimental Results

4.1. Dataset

In order to validate the proposed system, two different

datasets have been used, named SB2D and SB3D. These

datasets have been created using two different versions of

the capsules. SB2D has been created using the PillCam

SB2 version while the SB3D dataset with the PillCam SB3

version. The most remarkable difference between these two

capsules is a 30% improvement in resolution quality (see

Table 1 and Figure 1) but also the improvement in illumina-

tion, color and the overall image quality.

Both datasets were labeled by expert physicians into 6

different classes: bubbles, turbid, clear blob, wrinkles, wall,

and undefined. All images are resized to 256 × 256 pixels.

SB2D contains a total of 120K labeled images, 20K images

per class from a total of 50 different procedures. SB3D
contains a total of 6K images, 1K images per class obtained

from a total of 10 different procedures. Figure 3 shows six

exemplary images for each class.

4.2. Implementation Details and Evaluation
Methodology

We implemented the methods using Tensorflow [1]. The

system architecture is based on the ResNet-50 [11] with an

additional normalization L2 layer and embedding layer of

size 2048. ResNet parameters are preloaded from a trained

network using Imagnet dataset. The network is trained for

a total of 50 epochs using the stochastic gradient descent

(SGD) algorithm with a cyclic learning [21] rate that moves

between 0.01 and 1e-5 with stepsize 4000. The batch size is

set to 64. All experiments are executed using the standard

Figure 3: Each row shows six exemplary images for each

category in the database: bubbles, turbid, clear blob, wrin-

kles, wall, and undefined, respectively

2-fold cross-validation methodology where images of the

same procedure strictly belong to only one partition.

4.3. Results

A first experiment is done to compare the proposed

methodology, TL SB2-3, against 3 classical training alter-

natives CE SB2, CE SB2-FT-SB3 and TL SB2. CE SB2

refers to ResNet-50 trained on SB2D with the classical

cross-entropy loss function. CE SB2-FT-SB3 consists of

the CE SB2 model where the classification layer is fine-

tunned using the standard methodology with the dataset

SB3D. TL SB2 refers to the proposed architecture pre-

sented in Figure 2, based on the ResNet-50 and optimized

with the triplet loss function with the dataset SB2D. Fi-

nally, the proposed method TL SB2-3 which is optimized

with the triplet loss function using data from both domains,

SB2D and SB3D. In order to avoid overfitting, the param-

eters of the network are initialized using the TL SB2 model

which is trained using SB2D.

As it can be seen in Table 2, CE SB2 and TL SB2 ob-

tain good results on SB2D but very poor results when us-

ing SB3D. On the other hand, CE SB2-FT-SB3, that uses

the classical fine-tunning procedure, obtains satisfactory re-

sults on SB3D but its accuracy on SB2D drops. The pro-

posed methods, TL SB2-3 is able to obtain good results on

SB3D without deteriorating its accuracy on the source do-

main SB2D.



Figure 4: UMAP plots of the learned embedding spaces. Each color represent a different class while (a) illustrates the

embedding space obtained with SB2D; (b) colored points represents SB3D data projected into the SB2D embedding

space (gray); and (c) illustrates the adapted embedding space with SB2D (gray) and SB3D (colored).

Methods
Accuracy (%)

SB2 SB3

CE SB2 92.5 51.7

CE SB2-FT-SB3 62.7 87.0

TL SB2 93.3 41.2

TL SB2-3 93.1 89.3

Table 2: Comparison of the different proposed methods

evaluated in target and source domains respectively, SB2D
and SB3D.

Figure 4 shows the UMAP [17] plots of the learned em-

bedding spaces. Each color represent a different class. Plot

(a) illustrates the embedding space obtained with SB2D;

in plot (b) colored points represent SB3D data projected

into the SB2D embedding space (gray); and plot (c) illus-

trates the adapted embedding space with SB2D (grey) and

SB3D (colored). As it can observed, there exists a clear

shift between the distribution from different domains which

is adapted after training with both domains.

In the second experiment (see Table 3), we evaluated the

accuracy of the system using different amount of images per

procedure. A total of 10 procedures were selected using the

standard 2-fold cross-validation strategy. As it can be seen,

with just 30 images per procedure (5 images per class), i.e.

a total of 150 images since 5 videos are used for creating

the training data, the accuracy of the system is increased

from 41.28% to 84.64%. As more images per procedure

are used, the accuracy increases, obtaining an accuracy of

89.32% when all images of all procedures are used.

Finally, Table 4 shows the behavior of the system when

Method SB3 Images Accuracy (%)

TL SB2-3

0 41.2

150 84.6

300 86.1

750 87.3

1500 88.6

3000 89.3

Table 3: Accuracy of the proposed system evaluated on

SB3D with different size of training samples from the tar-

get domain. Data is obtained uniformly per class (k = 6)

and procedure (n = 5).

more diversity of the target domain is introduced. To per-

form this experiment, the accuracy of the system is evalu-

ated when a different amount of videos are used but setting

the same amount of labeled data, 600 images. As it can be

seen, the accuracy of the system is enhanced as the number

of different used videos is increased. Hence, it is more im-

portant to use a diverse set of data, for example using more

procedures, than using a large amount of images from the

same procedure.

Finally, Figure 5 shows a set of anchor images acquired

with PillCam SB3, the target domain, and its top more sim-

ilar images from the PillCam SB2 dataset, the source do-

main. Central images in each row represent anchor images

while the three images at left are the top most similar im-

ages before adapting the domain, and the three images at the

right are the top most similar images when the embedding

has been adapted. As it can bee seen, similar images when

using the adapted embedding are really similar in shape and



Figure 5: Each row shows a query where (b) is the anchor images from the target domain SB3D capsule, (a) the three most

similar images to the anchor image without adapting the model to the target domain and (c) The thee most similar images

adapting the model to the target domain.

Method SB3 Videos Accuracy (%)

TL SB2-3

1 80.2

2 85.7

3 86.8

4 86.8

5 86.9

Table 4: Accuracy of the proposed system evaluated on

SB3D trained with 600 from SB3D using different num-

ber of procedures.

color to the anchor images, although their look and feel is

blurrier.

5. Conclusions

In this work, we have explored the use of deep metric

learning, based on the triplet loss function, to improve the

generalization of a model over different datasets from dif-

ferent versions of WCE capsules. The proposed method

is trained using a larger dataset from a source domain, us-

ing an old WCE device, and is adapted to work on a target

domain that represents images obtained by a new WCE de-

vice, with minimal labeling efforts. Results show evidence

that with just a few labeled images from a newer camera, a

model that has been trained with images from older systems

can be readily used in the new environment.

We also explored, evaluated and compared several dif-

ferent transfer learning solutions when dealing with small

target domain datasets. We have shown that the triplet loss

function may be well suited for dealing with the problem of

data distribution shift over different domains. Particularly,

we study the effects of using different amounts of images

and procedures, concluding that diversity is more important

than the amount.
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