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Abstract

In recent years, it is verified that the deep learning net-

work is able to process not only images but also time-

series information. Since breast image analysis plays a

big role in the diagnosis of breast cancer, there have been

a large number of attempts to apply the deep learning

method for an accurate diagnosis. With the advance of

deep learning approaches, the possibility of using medical

reports (in natural language) has been increased. How-

ever, there is no public medical report dataset associated

with the breast image. Instead, in the conventional public

breast mammography datasets, the characteristics of breast

cancer are annotated according to the standardized term

(Breast Imaging-Reporting and Data System). In this study,

a breast-sentence dataset is proposed to investigate its use-

fulness in computer-aided diagnosis.1 Based on the con-

ventional breast mammography datasets, we annotated sen-

tences in the natural language according to the standard-

ized terms (defined in Breast Imaging-Reporting and Data

System) in conventional breast mammography datasets. In

the experiments, we show three use cases to verify the use-

fulness of the breast-sentence dataset: 1) CAD framework

with radiologist’s input, 2) the use of sentence dataset in

training a CAD, and 3) visual pointing guided by sentence.
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1The breast-sentence dataset based on the public breast mammography

dataset is released in the form of caseID-sentence pair.

(http://ivylabdb.kaist.ac.kr/base/dataset/breast_

sentence.php)
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1. Introduction

Since the deep learning mechanism has shown outstand-

ing performance in the image classification, it has applied

to various types of computer vision tasks. Furthermore, in

diverse studies, it has been demonstrated that deep learn-

ing approaches are suitable for analyzing not only images

but also data with diverse semantics such as natural lan-

guage. In recent years, large datasets such as MS-COCO

[2], Flickr 30K [17] which contain numerous images and

corresponding captions have been publicly accessible. The

deep learning based recurrent neural network (RNN) mod-

ule such as gated recurrent unit (GRU) [3] also developed.

Based on these previous research, it became possible for the

joint learning of the model, which learns images and other

types of data together such as image captioning.

In the medical area, image analysis is widely used for

diagnosis and treatment. However, expert knowledge of

radiologists is needed to make a diagnosis using a medi-

cal image, and each radiologist’s proficiency is different.

Therefore it is required to develop computer-aided diagno-

sis (CAD) systems. The deep learning approaches have also

got successful results in CAD research and shown remark-

able performance. In addition, there are plenty of stud-

ies which use medical image and associated report or an-

notation simultaneously [20, 28, 18, 29, 27]. [20] utilize

CNN-RNN based structure which is widely used for image

captioning to generate annotation of chest X-ray image in

the form of a series of terms including information about

disease, organ, and location. [28] proposed network archi-

tecture, which generated medical reports and classification

results by overcoming the limitation of small chest X-ray

image and report dataset. [18] reported enhanced accuracy

of diagnostic prediction by training classifier to predict se-

mantic information in the medical reports. [29, 27] aimed

to generate an artificial report similar to the report made



by the radiologist and improved accuracy of the diagnostic

decision. They added the attention module to the existing

CNN-RNN model to make spatial attention map pointing

specific regions correlated with diagnostic prediction.

For the breast image analysis such as mammography, ul-

trasound and MRI, Breast Imaging-Reporting and Data Sys-

tem (BI-RADS) [13] have been widely used. It contains six

categories to standardize diagnosis in terms of cancer risk.

Additionally, it also contains commonly accepted lexicons

among the radiologists. Each lexicon describes the appear-

ance of findings in medical image and is closely correlated

with malignancy.

Aforementioned, additional information such as medi-

cal reports can be used to convey prior knowledge to the

network explicitly and implicitly, which is effective for en-

hancing network performance. However, due to privacy

issues related to patients, there are few medical reports

datasets open to the public. In the case of breast im-

ages, mammography datasets such as the Digital Database

for Screening Mammography (DDSM) dataset [8] and the

mini-Mammographic Image Analysis Society (mini-MIAS)

dataset [22] are publicly accessible, whereas there is no

published medical report data even though there is standard

reporting guideline such as BI-RADS.

In this paper, we propose a new sentence dataset which

contains information of margin and shape included BI-

RADS lexicons portraying the breast mass. In order to give

variation to sentences, we collect word and phrase called vi-

sual word defining and explaining margin and shape lexicon

and compose sentence based on mammography with its BI-

RADS annotation. All sentences in the dataset are unique.

In particular, we demonstrate the efficiency of this dataset in

the case of three different situations where the CAD system

is used. In each situation, the proposed dataset provides the

semantic information which can increase the performance

of the diagnostic system or the meaningful visual justifica-

tion to explain output decision. To embed our sentence data

into a vector and fuse with the visual feature, we utilize

Bidirectional Encoder Representations from Transformers

(BERT) [6] which shows state-of-the-art performance on

various natural language processing task.

The rest of the paper is organized as follows. In the Sec-

tion 2, we introduce the related works. In Section 3, our

processes to compose the sentence in the proposed datasets

(i.e. DDSM-sentence dataset and FFDM-sentence dataset)

are described in detail. Next, in Section 4, we introduce

three useful cases of the proposed dataset with the bench-

mark results. Finally, Section 5 concludes the paper.

2. Related works

Mammography is known as a standard tool for detect-

ing breast cancer in screening. A lot of research efforts

have been devoted to developing CAD system on breast

(a) The DDSM dataset

(b) The FFDM dataset

Figure 1. BI-RADS lexicon distribution of the DDSM

dataset and the FFDM dataset.

mammographic images. Two public mammographic image

datasets are widely used, the DDSM dataset and the mini-

MIAS dataset. The DDSM dataset contains approximately

2,500 studies which include two images of each breast. The

associated information (i.e. age at the time of the study,

ACR breast density rating, subtlety rating for abnormali-

ties, ACR keyword description of abnormalities) with stud-

ies also provided. The mini-MIAS dataset contains 322

mass images from digitized films and annotations associ-

ated with each image such as the character of background

tissue and class of abnormality present. These two datasets

provide not only types of suspicious regions but also addic-

tive annotations. However, there is no dataset containing

annotation in natural language, such as a medical report in

breast mammography. In some medical imaging area such

as chest X-rays, many studies have utilized medical report

in a standard format to generate a report automatically and

enhance the interpretability of the diagnosis system. A pre-

requisite for many of the studies to deal with medical re-

port with the medical imaging is the existence of a publicly

accessible report dataset. In the case of chest X-rays, [4]

proposed chest X-ray dataset and reports through Open Ac-

cess Biomedical Image Search Engine (OpenI), containing

7,470 chest x-rays with 3,955 radiology reports. Each report

is divided into subsection such as indication and finding.

3. Construction of the senctence datasets

3.1. Data collection

For constructing sentence dataset, we selected two mam-

mogram datasets. Firstly, the DDSM dataset which is fully

available for mammographic image analysis was selected.

It contains breast X-ray mammographic images with ma-

lignancy annotations and information on the BI-RADS lex-



OBSCURED CIRCUMSCRIBED ILL-DEFINED SPICULATED

hidden well-defined Indistinct characterized by lines

hidden by superimposed or
adjacent normal tissue sharply-defined

poor definition of the
margins lines radiating

cannot be assessed sharply demarcated may be infiltration Radiating lines

be masked by the
adjacent gland

abrupt transition
between the lesion and
the surrounding tissue

no clear demarcation
between a mass and its

surrounding tissue
stellar

well marginated uneven margin short peripheral spicules

ambiguous boundary sharp lines projecting
from the mass

vague stelliform

not evident
hairlike projections
radiating away from

the lesion

blurred a small slender
pointed structure

lines are scattered
throughout

outgrowth

longish structure

Table 1. Collected visual words explaining margin lexicons of BI-RADS.

LOBULATED OVAL IRREGULAR ROUND

undulated contour elliptical cannot be characterized spherical

wavy contour egg-shaped neither round nor oval ball-shaped

concave borders and
convex borders convex borders complex shape circular

small lobes can be seen ovoid not uniform globular

bulging and sunken
including two or three

gentle undulations indefinite convex borders

curly contour uneven

winding non-uniform

bumpy complicated

embossed intricate

scalloped parts

chunks on its body

Table 2. Collected visual words explaining shape lexicons of BI-RADS.



icon. To make our DDSM-sentence dataset, the images

from scanner HOWTEK were selected, and 571 mass ROI

images were made by cropping the masses with surround-

ing parts from the whole breast image based on the anno-

tation in the original DDSM dataset. Secondly, a clinical

Full-Field Digital Mammogram (FFDM dataset) contain-

ing mammographic images of 67 patients collected from

the hospital was also utilized. 115 mass ROI images of

the FFDM dataset were collected. Images labeled as mi-

crolobulated in both datasets were excluded since the num-

ber of that image is insufficient. The margin and shape dis-

tributions of ROI images collected for the DDSM-sentence

dataset and the FFDM-sentence dataset are shown in the

Figure 1.

3.2. Sentence annotation

BI-RADS is introduced to standardize the reading of

mammography and to avoid confusion in the interpretation

of mammography. There have been a number of papers

which report predictive values of mammographic features

specified in BI-RADS [16, 12, 24, 7]. Therefore it is rec-

ommended for radiologists to use BI-RADS terminology to

write a report. Likewise, we composed the sentence based

on BI-RADS margin and shape information, in order to

objectively annotate the sentence of the dataset. To elab-

orately describe the breast masses, we utilized words and

phrases describing the lexicons called visual words. The vi-

sual words were collected from existing medical papers and

books [15, 10, 14, 25, 19, 11, 1, 23], which have words or

phrases explaining BI-RADS lexicon. There were 4-12 vi-

sual words corresponding to each lexicon shown as Table 1

and Table 2. We made the sentences to describe mass ROI

images using combinations of visual words and their syn-

onyms. Since visual word contains various words which are

widely used to describe the state or shape of objects in com-

mon sentence, a natural language processing model trained

with large corpus can embed the proposed sentences more

abundantly and easily through this process. According to

[9], each sentence has at least 10 words and does not contain

BI-RADS lexicon as it is. Every sentence necessarily con-

tains visual words corresponding to the margin and shape

each, and most sentences also include phrases describing

the individual appearance of each mass ROI image. We

made three sentences per a mass ROI image and every sen-

tence is unique. In other words, the DDSM-sentence con-

tains 1,713 sentences and the FFDM-sentence contains 345

sentences. The sample sentences of the DDSM-sentence

and associated mass ROI image is shown in Figure 2.

4. Experiments

To provide useful use cases of the proposed dataset, we

have conducted comprehensive experiments. Our experi-

ments consist of 1) CAD framework with radiologist’s in-

There is poorly defined boundary 

wrapping around the long elliptical 

mass.

Border area of ovoid mass is

masked partly by adjacent tissues.

A well demarcated mass contain

some chunks as its body.

There are small pointed structures 

facing outer direction from 

intricate mass.

Figure 2. Examples of the DDSM-sentence.

put, 2) the use of sentence dataset in training a CAD, and

3) visual pointing guided by sentence. The main purpose of

these experiments is to validate the usefulness of the pro-

posed breast sentence datasets in the CAD use cases.

4.1. Sentence vector encoding using BERT

To use the sentence information in our medical image

analysis, we firstly encoded sentences using BERT. In other

words, the sentence was embedded as a vector in order to

make the CAD network utilize the knowledge which the

sentence has. The BERT model was used for effective em-

bedding since it showed high performance for a variety of

natural language processing tasks. BERT uses a single pre-

trained model and is fine-tuned for specific tasks. To focus

on the information on the margin and shape of the mass in

the sentence, we fine-tuned the BERT model to classify the

margin and shape of the sentences. We used BERT-base un-

cased version model with whole word masking, pre-trained

by English Wikipedia (2,500M words) and BooksCorpus

[30]. We fine-tuned the model with 1,365 sentences in the

DDSM-dataset. All hyperparameter settings were same as

that of the pre-trained BERT-base model in [6] except batch

size and learning rate. Batch size and learning rate were 256

and 0.00002. In fine-tuning stage, we validated the classifi-

cation accuracy of the BERT sentence classification model



with 348 sentences in the DDSM-sentence, which were not

overlapped with sentences used in fine-tuning stage. We

chose the fine-tuned model which showed the highest clas-

sification performance in validation. The classification ac-

curacy of the fine-tuned BERT model was 90.49% for the

margin and 96.54% for the shape. In the following exper-

iments, we used the special classification token [6] in the

fine-tined BERT model with fixed parameters as sentence

embedded vector f sent ∈ R
768.

4.2. Experiment 1: CAD framework with radiolo-
gist’s input

In this experiment, we assumed the situation where the

CAD network was used for diagnosis and a sentence or mar-

gin/shape label associated with the input mass ROI image

was provided by radiologists. We considered sentence an-

notation associated with mass ROI image in the test dataset

as provided radiologist’s report.

4.2.1 Network architecture

We compared three network models which were 1)

trained with only the mass ROI image (i.e. baseline), 2)

trained with the mass ROI image and margin and shape one-

hot vector (i.e. one-hot), and 3) trained with the mass ROI

image and sentence embedded vector (i.e. sentences).

We used VGG16 [21] for benign/malignant diagnosis

as baseline model. Its initial weights were set from pre-

trained model with ImageNet [5]. For the situation where

a sentence is also provided as input of the network, we

modify the fully connected layers in baseline model. In

VGG16, the mass ROI image feature fmass ∈ R
m×n×k after

conv 5 3 layer passes through three fully-connected layers

(F1,F2,F3) and becomes the diagnostic prediction vector

ŷdiag ∈ R
2. In the middle of this process, fmass combines

with fsent ∈ R
768 as

ŷdiag = F3(F2(F1(fmass))⊕ fsent), (1)

where ⊕ represents vector concatenation and ŷdiag denotes

diagnostic prediction vector. For the situation where a mar-

gin and shape labels are provided with the mass ROI image,

we used 6 dimensional concatenated vector of one-hot vec-

tors {fmargin, fshape} in place of fsent.

4.2.2 Experimental setting

For the experiment, the DDSM dataset was split into

training set (455 images) and test set (116 images). In the

case of the FFDM dataset, two-fold cross-validation was

conducted. Since the number of image in the FFDM dataset

is small, the pre-trained model with the DDSM dataset

was used as an initial model for training with the FFDM

DDSM FFDM

Baseline 0.962 0.924

One-hot 0.945 0.911

Sentences 0.975 0.966

Table 3. Results of experiment 1 (AUC).

DDSM FFDM

Baseline 0.956 0.851

Multitasking 0.947 0.845

Sentences 0.962 0.856

Table 4. Results of experiment 2 (AUC).

dataset. According to [26], three margin types were con-

sidered in the experiment (circumscribed, speculated, ill-

defined-obscured). Obscured and ill-defined were merged

into a single class and as we mentioned, microlobulated

was excluded because of the small amount. Referring to

[15], the round and oval shapes belong to BI-RADS 3 both.

Therefore the shape classes in this paper were divided into

three classes (round-oval, irregular, and lobulated).

We conducted data augmentation to increase the number

of training data. The two sizes of patches were cropped

from the original image at five locations (top left, top right,

center, bottom left, bottom right). Flip and rotation (0◦, 90◦,

180◦, and 270◦) were also used. The size of mini-batch was

set to 64 and an Adam optimizer was used with learning rate

0.0001 in the case of the DDSM dataset and 0.00005 in the

case of the FFDM dataset.

4.2.3 Results

As shown in Table 3, the information in the sentence

has positive value on increasing performance of the CAD

network. We also confirmed that margin and shape infor-

mation, which are closely related to the diagnosis result,

could be delivered more effectively than simply using a one-

hot vector. Besides, the network trained with the FFDM

dataset, which has an extremely small number of image,

and sentence embedded vector showed higher performance

improvement rate than that of the DDSM dataset. Since the

margin and shape information which is important for diag-

nosis were directly input to the CAD network, this perfor-

mance can be considered as the upper bound of performance

utilizing sentence information.

4.3. Experiment 2: The use of sentence dataset in
training a CAD

In this experiment, we assumed the more general situa-

tion where we could not get the sentence and get only the

mass ROI image for input to the CAD network.



4.3.1 Network architecture

We compared three network models which were 1)

trained with only the mass ROI image (i.e. baseline), 2)

constructed for multi-task classification and trained with the

mass ROI image and margin and shape one-hot vector (i.e.

multitasking), and 3) trained with the mass ROI image and

sentence embedded vector (i.e. sentences).

We constructed the baseline network base on VGG16

initialized with weights of the network pre-trained with Im-

ageNet. We did not use the sentence directly as an input

in training stage because we cannot use the sentence corre-

sponding to the ROI image in the inference process of this

case. Instead, we adjusted the output vector dimension of

the fully-connected layer in the baseline model and the sen-

tence model so that the sentence embedded vector directly

guides the intermediate feature during training stage. We

modified second fully-connected layer F2 to make interme-

diate feature fimd ∈ R
768 and constructed the network as

ŷdiag = F3(F2(F1(fmass))) = F3(fimd). (2)

In order to make fimd resemble fsent, we also modified loss

function L as

Lsent = ||fimd − fsent||2, (3)

L = λsentLsent + λclassLclass, (4)

Lclass is cross entropy loss function for binary diagnosis

and λsent and λclass are balancing parameters. For com-

parison with efficiency of margin and shape one-hot vector,

we constructed the multitasking model. It utilized three sets

of fully-connected layers as

FCdiag = {F
diag
1 ,F

diag
2 ,F

diag
3 }

FCmargin = {F
margin
1 ,F

margin
2 ,F

margin
3 }

FCshape = {F
shape
1 ,F

shape
2 ,F

shape
3 }

(5)

to predict benign/malignant, margin and shape.

F
diag
2 ,F

margin
2 and F

shape
2 have 768 dimentional vec-

tor as its output. The whole network was constructed

as

ŷdiag = F
diag
3 (F

diag
2 (F

diag
1 (fmass))) (6)

ŷmargin = F
margin
3 (F

margin
2 (F

margin
1 (fmass))) (7)

ŷshape = F
shape
3 (F

shape
2 (F

shape
1 (fmass))) (8)

where ŷmargin, ŷshape are margin and shape prediction vec-

tor each. Loss function L of the network is

L = λdiagLdiag + λmarginLmargin + λshapeLshape (9)

where Ldiag,Lmargin and Lshape denote cross-entropy loss

between prediction (malignancy, margin, shape) and ground

truth annotation. λdiag, λmargin and λshape are balancing

parameters.

4.3.2 Experimental setting

We used the DDSM dataset and the FFDM dataset

with same split and augmentation process with subsection

4.2. We also utilized three margin classes and three shape

classes mentioned in subsection 4.2. We set [λsent, λclass]
to [0, 1.0] for the baseline, [1.0, 0.5] for the sentence model

and set [λdiag, λmargin, λshape] as [1.0, 0.5, 0.5] for multi-

tasking model. The size of mini-batch was set to 64 and an

Adam optimizer was used with learning rate 0.0001 in case

of the DDSM dataset and 0.00005 in cased of the FFDM

dataset. For training with the FFDM dataset, we initialized

network parameters with parameters of the model trained

with the DDSM dataset.

4.3.3 Results

The results are shown in Table 4. In the case of sim-

ply predicting the margin and shape using a fully-connected

layer, the CAD performance was reduced, whereas the per-

formance of the CAD network trained with the sentence em-

bedded vector was increased.

4.4. Experiment 3: Visual pointing guided by sen-
tence

In this experiment, we assumed that the situation where

the pre-trained CAD network existed. We utilized the im-

age feature extracted from mass ROI image via the pre-

trained CAD network to generate a visual attentive map

which points suspicious part of mass ROI image. In train-

ing stage to generate the visual attentive map, parameters

in the pre-trained model were fixed and we utilized the pre-

trained CAD model only for extracting fmass. Therefore its

diagnostic performance can be maintained.

4.4.1 Network architecture

We compared two network models which 1) guide visual

attentive map with the sentence associated with the mass

ROI image (i.e. sentence), and 2) guide visual attentive map

with the margin and shape one-hot vector associated with

the mass ROI image (i.e. one-hot).

The general CAD network can be divided into two part

which is image feature encoder Fϕmass
(·) containing multi-

ple convolutional layers and predictor Fϕdiag
(·) containing

fully-connected layer (or multiple fully-connected layers),

respectively. Mass ROI image I(n,m) becomes a diagnos-

tic prediction vector ŷdiag ∈ R
2 through the process as fol-

lowing:

fmass(n,m, k) = Fϕmass
(I(n,m)), (10)

ŷdiag = Fϕdiag
(fmass), (11)

where fmass(n,m, k) is mass ROI image feature which is

output of Fϕmass
(·). To reflect diagnostic result to fmass



in the form of channel attention, ŷdiag is embedded into

k-dimensional attention weight αchannel via function with

learnable parameter Eϕemb
(·) and we apply channel atten-

tion on fmass as

fmass+d(n,m, k) = fmass(n,m, k) · αchannel(k) (12)

where fmass+d is diagnosis attentive feature. fmass+d is

used as input of function Fϕvis
(·) corresponding multiple

convolutional layers to make 2D map αmap(n,m). Then,

αmap is normalized through softmax function as

αsoftmax
map (n,m) =

exp(αmap(n,m))
∑

n

∑

m

exp(αmap(n,m))
, (13)

where αsoftmax
map is 2D visual attentive map. In order to guide

αsoftmax
map using sentence associated with I(n,m), a feature

for generating sentence ftext is obtained via the process as

fmass+d+map(n,m, k)

= fmass+d(n,m, k) · αsoftmax
map (n,m),

(14)

ftext = Fϕtext
(fmass+d+map + fmass+d), (15)

where fmass+d+map is result of applying spatial attention

using αsoftmax
map and Fϕtext

(·) is function implemented by

multiple convolutional layers. ftext passed through two-

hidden-layer-stacked LSTM and became generated sen-

tence W = [w1, w2, · · · ]. All parameters in the pre-trained

CAD network (Fϕmass
(·), Fϕdiag

(·)) are fixed and other pa-

rameters are trained with cross-entropy loss between W and

ground truth sentence. To demonstrate effectiveness of sen-

tence as guidance of visual pointing, we compare results of

the network with sentence and the network with margin and

shape one-hot vector. The latter network contain two set of

multiple fully-connected layers Fϕmargin
(·) and Fϕshape

(·)
for predicting margin and shape of input mass ROI image

as

ŷmargin = Fϕmargin
(ftext), (16)

ŷshape = Fϕshape
(ftext), (17)

where ŷmargin and ŷshape denote margin and shape pre-

diction vector. The whole network except Fϕmass
(·) and

Fϕdiag
(·) is trained with cross entropy loss function between

ŷmargin, ŷshape and one-hot margin/shape vector as ground

truth. That is, we compare visual attentive map guided by

DDSM-sentence and margin/shape one-hot vector.

4.4.2 Experimental setting

For this experiment, we used mass ROI images in the

DDSM dataset as input and sentences in DDSM-sentence

as ground truth to calculate loss function. For input mass

ROI images, data augmentation process of subsection 4.2

was applied in the same way. Baseline network in subsec-

tion 4.2 was utilized as the pre-trained CAD network. fmass

corresponded feature after conv 5 3 of the baseline network.

The size of mini-batch was 64 and Adam optimizer with

learning rate 0.0005 was used.

4.4.3 Results

As shown in Figure 3, sentence guided map pointed the

mass in the image more accurately. In the case of the image

containing noise such as bright dot, one-hot vector guided

map tended to point the noised part only. However, sentence

guided map pointed the exact part located the mass even

with the noised image. In the case of the large mass which

fills most part of the image, one-hot vector guided map only

pointed parts of the mass, whereas sentence guided map

covered almost the whole mass. Additionally, we note that

the diagnosis performance of the network did not deterio-

rate during the training stage since the parameters of the

pre-trained CAD network were fixed.

5. Discussion and conclusion

In this study, we presented the sentence annotation

process and constructed new datasets called the DDSM-

sentence and the FFDM-sentence which are describing col-

lected image from breast mammography datasets. We con-

structed the sentence dataset using the terminology (i.e. BI-

RADS lexicons) provided by the conventional datasets. We

also proposed three use cases where sentence annotation

can be utilized for the CAD network. In each case, it was

demonstrated that the proposed datasets were useful to im-

prove diagnostic performance compared with cases where

margin and shape lexicons were used as one-hot vector. In

addition, the DDSM-sentence was also useful to generate

visual pointing on mass ROI images.

For further work, the sentence composing approach with

the visual words in this paper will be applied other annota-

tion of breast mammography dataset (e.g. calcification) to

make the performance of the CAD network much better by

providing additional information as a form of a sentence.

Furthermore, if it is shown that the sentence dataset with

proposed process is effective not only on diagnostic per-

formance but also on the network in other previous studies

such as generating report automatically and making cad net-

work interpretable, our annotation process would be applied

to pre-collected different disease imaging dataset which has

standardized terms to describe the pathognomonic signs.
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