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Abstract

Degeneration of articular cartilage (AC) is actively stud-

ied in knee osteoarthritis (OA) research via magnetic reso-

nance imaging (MRI). Segmentation of AC tissues from MRI

data is an essential step in quantification of their damage.

Deep learning (DL) based methods have shown potential

in this realm and are the current state-of-the-art, however,

their robustness to heterogeneity of MRI acquisition settings

remains an open problem. In this study, we investigated two

modern regularization techniques – mixup and adversarial

unsupervised domain adaptation (UDA) – to improve the

robustness of DL-based knee cartilage segmentation to new

MRI acquisition settings. Our validation setup included two

datasets produced by different MRI scanners and using dis-

tinct data acquisition protocols. We assessed the robustness

of automatic segmentation by comparing mixup and UDA

approaches to a strong baseline method at different OA

severity stages and, additionally, in relation to anatomical

locations. Our results showed that for moderate changes

in knee MRI data acquisition settings both approaches may

provide notable improvements in the robustness, which are

consistent for all stages of the disease and affect the clin-

ically important areas of the knee joint. However, mixup

may be considered as a recommended approach, since it is

more computationally efficient and does not require addi-

tional data from the target acquisition setup.

1. Introduction

Knee osteoarthritis (OA) is the most common muscu-

loskeletal disease in the world. OA is poorly understood and

no disease-modifying treatment currently exists for it [43].

Magnetic resonance imaging (MRI) methods are commonly

used to clinically study the structural changes within the

knee joint and, specifically, in articular cartilage [27]. A

variety of MRI acquisition protocols has been introduced,

each tailored to visualize specific tissues of interest or mea-

sure particular tissue properties [1, 2]. Moreover, there is a

large number of MR scanner models available on the mar-

ket, with major differences in hardware and reconstruction

software. As a result, MR images qualitatively vary from in-

stitution to institution, from study to study, and from dataset

to dataset.

Since OA is a long-term and complex disease, large lon-

gitudinal studies have been carried out to investigate onset

and progression of OA. Currently, one of the major areas of

interest is assessment of compositional and morphological

changes in articular cartilage tissues [15]. In order to per-

form these analyses from MRI, the tissues need to be seg-

mented. However, manual delineation of cartilage tissues

is time-consuming, prone to high intra- and inter-rater vari-

ability [34], and challenging due to the large size of datasets

and the aforementioned issues related to data heterogeneity.

Consequently, there is a clear need for automatic methods

for knee cartilage segmentation, which are accurate and ro-

bust to variations in data acquisition setting.

Recently, in OA and other fields of medicine, deep learn-

ing (DL) methods have become the new state-of-the-art in

computer-aided diagnosis [39, 38, 45, 40, 16, 17]. Latest

advances in automatic segmentation methods, in particu-

lar DL-based, have demonstrated promising results in knee

tissue segmentation [28, 35, 3, 12, 36, 6]. Such methods

produce accurate and consistent results, but they often lack

evaluation on independent datasets and, therefore, are po-

tentially prone to large variations in the input data char-

acteristics. The issue originates from the fact that super-

vised DL-based algorithms, when trained on medical imag-

ing datasets that are often limited in size and diversity, tend

to incorporate dataset bias and fail to generalize to new do-

mains [20].

In this paper, we focus on regularization of DL-based

methods for knee cartilage segmentation from MRI, and

investigate two state-of-the-art approaches to improve the

generalization to new data. The contributions of this study

are the following:



• We introduce an efficient and accurate DL-based base-

line method for knee cartilage segmentation that per-

forms comparably or improves on the previous state-

of-the-art.

• We investigate the use of an end-to-end unsupervised

domain adaptation (UDA) approach for knee MRI seg-

mentation, and show how both labelled and unlabelled

data can be leveraged within the same segmentation

framework.

• We explore the use of data augmentation via mixup

in the considered semantic segmentation problem, and

report its effectiveness in multiple setups.

• We validate the baseline method and its modifications

with mixup and UDA on an independent test set and

demonstrate the improvements in model robustness.

We also provide a detailed analysis of the results and

examine the performance of the methods in relation

to the anatomical locations that are the most clinically

relevant (e.g. weight bearing areas of the knee joint).

• Finally, we make our source code and the pre-trained

models publicly available.

2. Related Work

Due to the wide adoption of MR imaging methods, semi-

automatic and automatic knee cartilage segmentation from

MRI has been studied already for several decades, with

more focus recently on purely automatic methods [33, 24].

However, despite the availability of large imaging cohorts,

such as Osteoarthritis Initiative (OAI) [30], large-scale anal-

ysis of such data in scope of OA research remains extremely

challenging due to the lack of annotations. Same applies to

the datasets from numerous hospitals, which are typically

less standardized and the annotations are even more sparse

and of lower quality.

Several recent studies [28, 26, 3, 12] have shown that

specifically DL-based approaches for knee cartilage and

meniscus segmentation can achieve accuracy close to the

human level and superior to the conventional atlas-based

methods [10]. However, no validation of those DL-based

methods on independent datasets acquired in various hospi-

tals has yet been conducted. Therefore, the general appli-

cability of all the previously published DL-based cartilage

segmentation methods remains unclear.

To tackle the robustness-related issues in modern deep

neural networks, a wide range of techniques of different

complexity has been proposed [23]. Their effectiveness in

the specific tasks and domains, however, is still to be prac-

tically investigated.

One of the recent effective techniques to improve model

generalization and reduce memorization of the training data

was mixup [48]. The idea of mixup was to use a convex

combination of the inputs and the targets to augment the

training data with such interpolated examples. Mixup has

been applied in several image classification problems and

has shown to notably reduce the overfitting and stabilize

the convergence of models [47, 19]. Nonetheless, the ap-

plicability of the technique and its performance in semantic

segmentation problems remains unclarified, and very few

studies investigated this topic [14, 5]. Our goal was to adapt

the technique to knee cartilage segmentation problem and

evaluate its performance in different settings.

Another approach that has attracted great interest dur-

ing the recent years is domain adaptation (DA) [11, 9]. A

great number of the popular DA techniques is based on the

following hypothesis: in order to have a good generaliza-

tion for any machine learning method, the representations

of data samples (including the samples from different do-

mains or datasets) have to share a large common subspace

or be somewhat aligned. Ganin et al. [18] and Tzeng et

al. [42] were among the first to discover how this alignment

can be applied to DL-based models, and moreover, how to

perform it in a semi-supervised way, such that both labelled

and unlabelled data from different domains can be incorpo-

rated into the training process. The framework was called

Unsupervised Domain Adaptation (UDA) and its potential

for the development of robust models has been shown in

various applications.

In medical imaging, UDA has been studied in several

fields for which multiple diverse datasets are publicly avail-

able: brain MRI [20, 4], chest X-ray [7], cardiac MRI-

CT [13] and others. However, very few studies investi-

gated the use of UDA techniques in knee MRI domain and,

more specifically, knee cartilage segmentation. Joint mul-

titask learning of deep segmentation and registration net-

works was suggested by Xu et al. [46]. Liu [25] proposed

to train joint segmentation and cycle-consistent image-to-

image translation between the labelled and unlabelled do-

mains. Both of the approaches, however, are rather compli-

cated and depend on the performance of an auxiliary task –

registration or image-to-image translation respectively.

In this work, we explored UDA via cross-domain align-

ment of deep representation spaces. The chosen method has

only moderate computational costs, can be easily scaled to

larger number of domains and extended with other regular-

ization techniques.

3. Materials and Methods

3.1. Problem Statement

Our goal was to assess how different regularization tech-

niques, namely, mixup and UDA, perform in combination

with a strong baseline method yielding state-of-the-art re-

sults in knee cartilage segmentation task. To assess the gen-



eralization, we validated all our methods on independent

data. For UDA, we assumed that the unlabelled data from

a dataset similar to the test dataset is available during train-

ing. In total, our setup included three datasets: two datasets

from different MRI scanners and data acquisition protocols

(Datasets A and B), and a third dataset (Dataset C) acquired

similarly to Dataset B, but in an independent clinical study

(see Figure 1). Train subset of Dataset A and whole Dataset

B were used for development of the approaches. Test subset

of Dataset A and whole Dataset C were used for evaluation

purposes.

C (Annotated, Test)B (Unannotated, Train)A (Annotated, Train & Test)

Figure 1. Examples of MRI images from Datasets A, B, and C.

Here, we show only the tibiofemoral areas, which enclose femoral

cartilage, tibial cartilage, and menisci.

Let Xa be a mini-batch of image samples from the an-

notated dataset, Ya - corresponding reference annotations,

Xb - a mini-batch of image samples from the unannotated

dataset. S is a model that takes as input a mini-batch of

images X (either Xa or Xb) and produces the segmentation

masks Ŷ. In all the experiments the models were trained to

perform the segmentation slice-wise (i.e. in 2D).

3.2. Baseline Method

Our baseline approach (Figure 2a) was based on U-

Net [32]. Similarly to [37] we used 24 filters in the first

convolutional block and doubled the number of filters at

each depth level. The total model depth was set to 6. In

the expanding path we used bilinear upsampling instead of

2 × 2 up-convolutions. As a results of an extensive experi-

mental search we found that such model parameters yielded

the best performance in the considered task. The network

was trained to produce 5 mutually exclusive segmentation

masks: no cartilage, femoral cartilage (FC), tibial cartilage

(TC), patellar cartilage (PC), and menisci (M). For training

we used multi-class cross-entropy (MCE) loss, which was

calculated between the randomly sampled masks Ya and the

model predictions Ŷ produced from the corresponding Xa.

3.3. Regularization Techniques

Mixup. We followed the original implementation1 and

adapted mixup to our problem. Here, the samples from the

mini-batch and its permuted version were paired. Then, the

virtual inputs were constructed from the pairs and passed

1https://github.com/facebookresearch/

mixup-cifar10

S-network

Annotated

Mixup

(a)

D-network(s)

S-network (shared)Unannotated

Annotated

Mixup

(b)

Figure 2. Schematic view of our approaches – without (a) and with

(b) UDA. Mixup, if used, is applied only during the training. In

UDA setting (b), the S- and D- networks are trained in an adver-

sarial manner. During the testing, only the S-network is utilized.

through the network S:

λ ∼ Beta(α, α) (1)

Xperm,Yperm = permute(X,Y) (2)

Xmix = λX + (1− λ)Xperm (3)

Ŷ = S(Xmix), (4)

where parameter α configured the augmentation strength.

The segmentation loss for the settings with mixup was de-

fined using the model predictions and the corresponding

pairs of reference annotations:

Lmix = λLsegm(Ŷ,Y) + (1− λ)Lsegm(Ŷ,Yperm) (5)

Unsupervised Domain Adaptation. Differently from

mixup, UDA allows to utilize both labelled and unlabelled

data. In this study we adapted the method from [41] (see

Figure 2b). In particular, the segmentation model here was

trained to produce the representations that do not incorpo-

rate dataset-specific biases. This was done by aligning the

output and, optionally, penultimate representation spaces of

the network across the datasets. For this, two networks –

a segmentation network S and a discriminator network D

– were trained in an adversarial manner. Network S was

trained to predict the segmentation masks of the cartilage

tissues and menisci by minimizing a sum of losses:

γsegmLsegm(S,Xa,Ya)+

γadvLadv(D,S,Xb) → min
S

,
(6)

where S and D are parameters of S and D, and Ladv is an

adversarial loss:

Ladv(D,S,Xb) = BCE(0, D(S(Xb))), (7)



where BCE is the binary cross-entropy and 0 is a matrix of

all zeros having the same shape as Xb.

Network D, which enforced the domain-agnostic be-

haviour of S, acted as a domain discriminator and was

trained as follows:

Ldiscr(D, S,Xa,Xb) = L0

discr + L1

discr → min
D

, (8)

where

L0

discr(D, S,Xa) = BCE(0, D(S(Xa))) (9)

L1

discr(D, S,Xb) = BCE(1, D(S(Xb))) (10)

Here, 1 is a matrix of all ones having the same shape as Xa

and X
b. The discriminator was built from 5 convolutional

layers (with 64, 128, 256, 512, and 1 filters) alternated by

4 LeakyReLU and followed by bilinear upsampling to the

input image shape. Hereinafter we call the described ap-

proach UDA1.

Additionally, we evaluated the extension of the method,

where the adaptation is also applied to the penultimate de-

coder block of S. We hypothesized that adaptation at two

levels can yield better alignment of the representations and

compensate for the potential spatial shift between the do-

main in the output space. An ASPP block [8] was added on

top of the last decoder block, and its output was bilinearly

upscaled to the dimensions of the S output. The upscaled

activations were used to compute the auxiliary segmenta-

tion loss and also as an input to the second discriminator.

This discriminator had the same architecture as the first one,

was trained following the same procedure, and contributed

to the minimization criteria in Equation 6 with a smaller

γadv . Further implementation details can be found in [41,

Section 4.2]. This approach with the adaptation of two rep-

resentation spaces is further referred to as UDA2.

3.4. Evaluation

To assess the segmentation results, we used both planar

(slice-wise) and volumetric (scan-wise) Dice similarity co-

efficients (DSCs). To examine the localization of the seg-

mentation errors, we registered the scans such that the lat-

eral and medial sides of the knees are oriented identically,

mirroring the scans where needed. Subsequently, we com-

puted the distribution of planar DSCs for each sagittal slice

index over all registered scans in the test sets. The 95%
confidence intervals were estimated using bootstrapping.

3.5. Data

Overview. As mentioned previously, our setup included

three different datasets of knee sagittal 3D double echo

steady state (DESS) MRI (see Figure 3a): Datasets A, B,

and C. Datasets B and C were collected at our hospital us-

ing the same scanner. Dataset A contained the data from a

(a) (b)

Figure 3. DESS MRI scan (a) and the annotations of knee carti-

lage and meniscal tissues (b), both rescaled to isotropic resolution.

White lines in (a) indicate the orientation of sagittal slices.

different scanner and a distinct imaging protocol (see exam-

ples in Figure 1).

All the datasets were supplemented with the Kellgren-

Lawrence (KL) scores [21], derived from the radiographs

associated to each subject. KL grading is the gold standard

system for radiographic OA severity assessment. According

to this scale, OA severity is graded from KL0 (no visible

OA) to KL4 (end stage OA).

Dataset A. The data were obtained from the Os-

teoarthritis Initiative (OAI, http://www.oai.ucsf.

edu/) database. Dataset A included 88 subjects from

the OAI baseline and 12-month follow-up examinations:

0/4/59/101/12 scans with KL0/1/2/3/4 respectively. The

data were acquired with 3T Siemens MAGNETOM Trio

scanners and quadrature transmit-receive knee coils (USA

Instruments, Aurora, OH, USA). Sagittal DESS sequence

was used (160 slices; voxel size: 0.37 × 0.37 × 0.7mm,

matrix: 384 × 384, field of view (FOV): 140mm; repeti-

tion time (TR): 16.3ms, echo time (TE): 4.7ms, flip angle:

25◦). Manual annotations were available for femoral, tibial,

and patellar cartilage tissues, and also menisci (Figure 3b).

Dataset B. The dataset included 108 subjects:

14/42/28/22/2 scans with KL0/1/2/3/4 respectively

(ClinicalTrials.gov Identifier: NCT02937064). The knees

were imaged with 3T Siemens MAGNETOM Skyra scan-

ner using a 15-channel transmit-receive knee coil (QED,

Mayfield Village, OH, USA). Sagittal DESS sequence was

used (160 slices; voxel size: 0.59× 0.59× 0.6mm, matrix:

256 × 256, FOV: 150mm; TR: 14.1ms, TE: 5ms, flip

angle: 25◦). No reference annotations for the tissues were

available.

Dataset C. The dataset [31] included 44 subjects:

0/16/13/15/0 scans with KL0/1/2/3/4 respectively. The



scanner and the data acquisition protocol were the same as

for Dataset B. The annotations were produced by the re-

search group and consisted of the segmentation masks for

femoral and tibial cartilage tissues.

3.6. Implementation details

Data Pre-processing. In our experiments, firstly, all the

data were rescaled to the pixel size of 0.37×0.37 mm. Sec-

ondly, the intensity histograms of the images were truncated

(from 10th to 99th percentiles). Finally, the central image

regions of 300×300 pixels were cropped and used for train-

ing and evaluation.

To avoid overfitting, we used the data augmentations dur-

ing the training. In particular, we used random left-right

flipping, gamma correction, randomly applied downscaling

followed by upscaling, and also bilateral filtering.

Training. We trained and evaluated the described regular-

ization techniques in several settings. The baseline segmen-

tation network was trained from scratch as-is, with mixup

(with and without weight decay), with UDA1, with UDA1

and mixup (without weight decay for S), and with UDA2.

Dataset A was randomly split into the train and the test

subsets using stratification by subject ID and balancing with

respect to KL grading scores. Dataset B was used solely for

training and validation, Dataset C – solely for testing. All

the methods were trained using 5-fold cross-validation fol-

lowing the stratification strategy described above. For the

methods with UDA, Dataset B was similarly divided into

5 folds and randomly combined with the folds of Dataset

A. Therefore, for each of the experiment we train 5 mod-

els. During the testing the predictions of these models were

averaged.

In all of the experiments we used Adam [22], one inde-

pendent optimizer per network, depending on the setting.

For all experiments with weight decay, the regularization

constant was set to 5 · 10−5. Parameter α in mixup, which

is, typically, in the range from 0 to 1, was set to 0.7.

The baseline method with and without mixup was trained

for 50 epochs starting with the learning rate (LR) of 10−3

(reduced to 10−4 at the 30th epoch). All the variants with

domain adaptation were trained for 30 epochs. Initial learn-

ing rates were set to 10−4 for S and 4 × 10−5 for D, both

reduced by a factor of 10 at the 25th epoch. S and D were

updated alternately on each batch of images. For the exper-

iments with mixup, Equation 5 was used as a segmentation

loss instead of MCE loss. In UDA1 experiments γsegm and

γadv were set to 1 and 10−3 respectively in order to pri-

oritize the segmentation task in the adversarial training. In

UDA2 experiment, in addition to the above, auxiliary γsegm
and γadv were set to 10−1 and 2×10−4 respectively, follow-

ing the original publication. In the experiment with combi-

nation of mixup and UDA approaches, we applied mixup

only for segmentation task. Additional forward pass of S

with unmixed data and without accumulation of gradients

was performed to produce the input for D. Otherwise, the

UDA architecture was kept the same.

Testing of the methods was performed on the test subset

of Dataset A and whole Dataset C. To conduct the experi-

ments we used NVIDIA 2080 Ti GPU and PyTorch [29].

4. Results

Baseline. We compared our baseline method to the pub-

lished state-of-the-art approaches in knee cartilage and

menisci segmentation (see Table 1). Our baseline method

performed either more accurately or on par with others

depending on the tissue. Even though it was not de-

signed to separate lateral and medial tibial cartilage tis-

sues and menisci as in [35, 3, 36], it provided other advan-

tages, namely, it was faster in training and inference, more

lightweight, and produced masks for all the considered tis-

sues simultaneously.

On Dataset A the method reached 0.907 (0.019) for

FC and 0.897 (0.028) for TC, however, on Dataset C the

scores for the respective tissues were 0.791 (0.033) and

0.629 (0.054). Such discrepancy in the scores was, presum-

ably, caused by the several factors: lack of model robust-

ness, which resulted in biased and noisy segmentations (see

Figure 5), and lower original resolution of images and an-

notations in Dataset C, which made the segmentation more

challenging and increased the cost of annotation errors.

Mixup. We found that applying mixup lead to a minor un-

derfitting on Dataset A (see Table 2), yet the generalization

had increased (0.804 (0.031) for FC, 0.652 (0.051) for TC

on Dataset C). Such phenomena was also reported for object

classification in Verma et al. [44]. However, since mixup it-

self is a strong regularizer, we hypothesized that avoiding

the use of weight decay could address the undefitting. In

this new setting our model largely recovered the scores on

Dataset A and further improved the performance for FC on

Dataset C (0.819 (0.025) for FC, 0.647 (0.049) for TC).

Unsupervised Domain Adaptation. An approach

with UDA1 on Dataset C yielded comparable DSCs

(0.815 (0.025) for FC, 0.647 (0.049) for TC) to the best

mixup setting, however, the scores on Dataset A were

lower (see Table 2). Performing representation alignment

at the multiple layers of the network (UDA2) improved on

top of UDA1 for Dataset A. However, on Dataset C the

performance increased only for FC, while it became worse

for TC (0.821 (0.025) for FC, 0.640 (0.055) for TC). What

concerns the efficiency, the computational costs for training

UDA approaches were up to three times higher compared

to mixup.



Method
FC TC PC M

medial lateral medial lateral

Norman et al. [28] 0.867(0.032) 0.777(0.029) 0.799(0.036) 0.767(0.091) 0.731(0.054) 0.812(0.030)

Tack et al. [35] - - - - 0.838(0.061) 0.889(0.024)

Ambellan et al. [3] 0.894(0.024) 0.861(0.053) 0.904(0.024) - - -

Desai et al. [12] 0.89 (0.02 ) - - - - -

Tack et al. [36] - 0.880(0.046) 0.913(0.023) - - -

Chaudhari et al. [6] 0.902(0.017) - - - - -

Ours (baseline method) 0.907(0.019) 0.897(0.028) 0.871(0.046) 0.863(0.034)

Table 1. Comparison of our baseline to the previously published methods on Dataset A. Numbers are the means and standard devi-

ations of volumetric DSCs. The scores are given for reference and should be compared carefully. [28, 12, 6] used slightly different

train/validation/test splits. [6] performed segmentation in 3D. [35, 3, 36] used multi-stage pipelines (2D segmentation, statistical shape

modelling, 3D refinement), 2-fold cross validation, and reported the results for 2 examinations (we present only the highest scores).

Method
Dataset A Dataset C

FC TC PC M FC TC

Baseline 0.907(0.019) 0.897(0.028) 0.871(0.046) 0.863(0.034) 0.791(0.033) 0.629(0.054)

+ mixup 0.903(0.019) 0.892(0.031) 0.865(0.054) 0.852(0.035) 0.804(0.031) 0.652(0.051)

+ mixup - WD 0.907(0.019) 0.896(0.028) 0.864(0.054) 0.861(0.033) 0.819(0.025) 0.647(0.049)

+ UDA1 0.896(0.023) 0.887(0.031) 0.852(0.064) 0.851(0.035) 0.815(0.025) 0.647(0.049)

+ UDA2 0.901(0.021) 0.892(0.031) 0.861(0.060) 0.856(0.035) 0.821(0.025) 0.640(0.055)

+ mixup - WD + UDA1 0.895(0.023) 0.886(0.027) 0.846(0.066) 0.849(0.034) 0.810(0.026) 0.635(0.052)

Table 2. Regularization approaches evaluated tissue-wise on two datasets. Numbers are the means and standard deviations of volumetric

DSCs. The best score for each tissue is highlighted in bold, the second best - is underlined. ”- WD” indicates the experiments without

weight decay.

Combined Approach. We experimented with combining

mixup and UDA approaches. Here, we took UDA1 set-

ting and applied mixup to the supervised segmentation task.

Otherwise, the architecture was kept the same, including

the input to the generator. The approach with both mixup

and UDA1 showed the worst performance among others,

yet still showed marginally better DSCs on Dataset C com-

pared to the baseline.

Detailed Analysis. As previously said, cartilage tissues

degenerate over the progression of OA. Lesions start to ap-

pear, cartilage is getting worn out and, therefore, it becomes

challenging to segment. To evaluate the performance of the

methods in relation to OA severity (from doubtful OA to

end-stage OA), we computed the volumetric DSCs over the

test sets KL-grade-wise. Here, for the sake of brevity, we

compared only the baseline approach, the best of mixup,

and the best of UDA. The results are presented in Table 3.

The detailed analysis showed that both modifications

(mixup and UDA2) yielded similar significant improve-

ments on Dataset C for most of the cases, while the ap-

proach with mixup better maintained the performance on

Dataset A. The results were further analyzed with respect

to anatomical location by following the approach described

in Section 3.4. Illustrated in Figure 4, the results indicated

that both mixup and UDA2 improved the segmentation ac-

curacy for FC, with higher increase in the weight bearing

areas of femoral condyles. For TC, the improvements were

concentrated near the tibial plateaus, mainly located on the

medial side.

Several challenging examples of MR images, with the

corresponding annotations and the segmentation masks pro-

duced by the methods, are presented in Figure 5. In

these cases, the baseline and UDA2 approaches tended to

over-segment the tissues, while the baseline also produced

shifted segmentations on Dataset C. The images also high-

light inaccuracies of the reference segmentations and com-

mon limitations of the approaches.

5. Conclusions

In this study, we investigated the use of mixup and adver-

sarial domain adaptation for DL-based knee tissue segmen-

tation from MRI. We showed that the segmentation model

trained from scratch with limited data lacked generaliza-

tion and performed worse on the dataset that had different

resolution and contrast. Strong regularization techniques,

namely, supervised mixup and UDA, helped to partially al-

leviate the issue and make the model more robust. We an-

alyzed the baseline and the best performing approaches in

relation to anatomical locations and different stages of OA,

and showed that the improvements over the baseline are

consistent and clinically relevant.

This paper is the first to address the challenge of robust-

ness in knee MRI segmentation in an end-to-end manner



Method KL
Dataset A Dataset C

# FC TC PC M # FC TC

Baseline

1 - - - - - 16 0.785(0.041) 0.667(0.038)

2 11 0.920(0.015) 0.921(0.010) 0.860(0.061) 0.873(0.047) 13 0.794(0.031) 0.602(0.057)

3 21 0.904(0.019) 0.891(0.026) 0.875(0.040) 0.860(0.025) 15 0.794(0.024) 0.612(0.043)

4 4 0.892(0.003) 0.861(0.019) 0.882(0.015) 0.854(0.029) - - -

all 36 0.907(0.019) 0.897(0.028) 0.871(0.046) 0.863(0.034) 44 0.791(0.033) 0.629(0.054)

+ mixup

- WD

1 - - - - - 16 0.826(0.024) 0.674(0.038)

2 11 0.921(0.013) 0.922(0.007) 0.860(0.060) 0.872(0.043) 13 0.821(0.023) 0.636(0.048)

3 21 0.903(0.019) 0.890(0.026) 0.863(0.055) 0.857(0.026) 15 0.811(0.026) 0.627(0.047)

4 4 0.889(0.002) 0.861(0.016) 0.877(0.015) 0.856(0.027) - - -

all 36 0.907(0.019) 0.896(0.028) 0.864(0.054) 0.861(0.033) 44 0.819(0.025) 0.647(0.049)

+ UDA2

1 - - - - - 16 0.827(0.024) 0.669(0.050)

2 11 0.915(0.015) 0.918(0.007) 0.851(0.067) 0.867(0.045) 13 0.822(0.028) 0.632(0.059)

3 21 0.898(0.021) 0.885(0.030) 0.863(0.061) 0.852(0.027) 15 0.815(0.022) 0.617(0.043)

4 4 0.883(0.008) 0.856(0.017) 0.875(0.019) 0.840(0.032) - - -

all 36 0.901(0.021) 0.892(0.031) 0.861(0.060) 0.856(0.035) 44 0.821(0.025) 0.640(0.055)

Table 3. Comparison between the baseline and the best performing approaches. Here, means and standard deviations of volumetric DSCs

are presented for the subject groups of specific KL-grades (1-4) and for the full test sets. # shows the number of scans in the specific group.

Statistically significant differences to the baseline method (p < 0.05 with two-sided Wilcoxon signed-rank test) are highlighted in bold.

For Dataset A all the differences are either negative or insignificant, for Dataset C - either positive or insignificant.

(a)

(b)

Figure 4. Distributions of the planar DSCs computed slice-wise

(from 0th to 159th slice, medial to lateral, respectively). Solid

lines indicate the distribution means, bright bands – the 95% con-

fidence intervals. Slices approx. 20-60 and 100-140 correspond

to the locations of the medial and lateral femoral condyles (i.e.

weight-bearing areas of the joint). Slices approx. 60-100 enclose

the intercondylar notch and, therefore, are of less clinical interest.

using DL. On the test set derived from OAI, our model

yielded state-of-the-art segmentation results for patellar car-

tilage and similar to other works results for other tissues,

and allowed to segment all the cartilage and meniscal tis-

sues simultaneously.

Despite the state-of-the-art results, our study has still

some limitations. In particular, we considered only 2D seg-

mentation approach. Due to several factors, such as com-

plex cartilage geometry, partial volume effect, lack of con-

textual information in 2D, and imperfect and inconsistent

annotations, most of the segmentation errors produced by

our methods were located on the tissue surfaces or in the

slices tangential to the surfaces. Volumetric methods could

potentially alleviate some of those issues and provide more

accuracy and shape consistency. However, the comparison

done to the previous studies [36, 3, 35, 6] showed similar

performance in terms of DSCs.

Another limitation of this study is that more complex ap-

plications of mixup in UDA were not investigated. We be-

lieve that more experimental work in that direction can po-

tentially lead to higher results. Future studies on knee MRI

segmentation or medical image segmentation could further

explore the potential of this idea. Besides the mentioned

limitations, we acknowledge that a more comprehensive

framework for assessment of regularization methods should

be considered. However, in knee MRI field there is a lack of

public datasets available for experiments. Our future stud-

ies will consider consolidation of various datasets in order

to perform more thorough investigations, including differ-

ent scanner manufacturers and diverse MRI sequences.

From the methodological point of view, our study

demonstrated that for, at least, a moderate range of image

variations, mixup and UDA may similarly improve the ro-

bustness of medical image segmentation. However, UDA

approach is computationally heavy and difficult to train due

to the need of careful hyper-parameter tuning. Besides



Dataset A (end-stage OA) Dataset C (healthy) Dataset C (severe OA)

Input

Ground

truth

Baseline

+ mixup

- WD

+ UDA2

Figure 5. Example images of tibiofemoral contact zones from Datasets A and C, respective annotations, and the segmentation masks

produced by the baseline and the regularized approaches. Visual differences between the datasets can be observed. Colors highlight

cartilage tissues: orange – femoral, yellow – tibial, purple – menisci. Patellar cartilage was not presented in the considered Dataset A slice,

for that reason patellofemoral zone is not shown.

that, our experiments showed that UDA may significantly

worsen the DSCs in the source domain (Dataset A). There-

fore, we think that mixup and other regularization tech-

niques should be preferred when aiming for robust medical

image segmentation using DL.

To conclude, we believe that our results will pro-

mote wider adoption of DL-based methods in OA re-

search community and facilitate further work on devel-

opment of robust segmentation methods for knee MRI.

In MRI domain, such methods may become a powerful

tool to leverage large and diverse imaging cohorts with-

out available annotations and drastically speed up and im-

prove the medical research. For instance, one impor-

tant application area – disease modifying drugs develop-

ment for OA – can directly benefit from reliable segmenta-

tions. To facilitate further knee MRI segmentation research,

our source codes and pre-trained models are made pub-

licly available: https://github.com/MIPT-Oulu/

RobustCartilageSegmentation.
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