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Abstract

Data fusion techniques provide opportunities for com-

bining information from multiple domains, such as meta

and medical report data with radiology images. This

helps to obtain knowledge of enriched quality. The objec-

tive of this paper is to fuse automatically generated im-

age keywords with radiographs, enabling multi-modal im-

age representations for body part and abnormality recog-

nition. As manual annotation is often impractical, time-

consuming and prone to errors, automatic visual recogni-

tion and annotation of radiographs is a fundamental step

towards computer-aided interpretation. As the number of

digital medical images taken daily rapidly increases, there

is a need to create systems capable of appropriately de-

tecting and classifying anatomy and abnormality in radiol-

ogy images. The Long Short-Term Memory (LSTM) based

Recurrent Neural Network (RNN) Show-and-Tell model is

adopted for keyword generation. The presented work fuses

multi-modal information by incorporating automatically

generated keywords into radiographs via augmentation.

This leads to enriched sufficient features, with which deep

learning systems are trained. To demonstrate the proposed

approach, evaluation is computed on the Musculoskele-

tal Radiographs (MURA) using two classification schemes.

Prediction accuracy was higher for all tested datasets using

the proposed approach with 95.93 % for anatomic regions

and 81.5 % for abnormality classification, respectively.

1. Introduction

Due to the fast development in hardware, software, and

digital imaging technologies in the medical domain, the

amount of information collected per patient scan has rapidly

increased [1, 2]. To decrease the burden on radiologists and

maintain the maximum interpretation of these radiology re-

ports, the need to implement systems capable of fusing dif-

ferent input domains and thereby obtaining a consolidated

data representation, has become more urgent cause. Ex-

amples for the medical domain include, incorporating text

reports and meta data into radiology images, alongside with

combining ECG audio files with medical report findings.

There is no restriction to the usage of the fused data, as it

can be applied for image classification and annotation [3].

To create effective classification and recognition sys-

tems, the selection and fusion of features for a sufficient

image representation is essential. As shown in [4, 5, 6, 7, 8],

multi-modal representation achieve higher prediction rates

in biomedical annotation tasks. The combination of visual

and text representation is aimed to sufficiently represent

biomedical images. The achieved text features are further

adopted for visual recognition tasks, such as body part clas-

sification and semantic tagging for substantial structuring

of radiographs, as well as abnormality recognition as over

1.7 billion patient worldwide suffer from musculoskeletal

problems [11].

However, for real clinical cases and some image clas-

sification tasks such as the Musculoskeletal Radiographs

(MURA) dataset [9], corresponding text representations are

not available. In this paper, the Radiology Objects in COn-

text (ROCO) dataset [10] is utilized to automatically gener-

ate keywords, which are fused with visual features to obtain



multi-modal radiology image representations. Built on the

presented work in [8], we extend the fused image represen-

tation using a different technique and evaluate the proposed

approach for clinical diagnostic recognition.

The presented approach can be adopted to combine dif-

ferent meta data, as well as medical report findings with

radiology images to optimize classification prediction accu-

racy.

Figure 1. Overview of the proposed approach workflow.

Figure 1 shows the complete workflow for the proposed

approach. PART 1 displays necessary steps for creating a

keyword generator and is described in Section 3. This is a

distinct and stand-alone process which does not need PART

2 for application. The keyword generator can be further

adopted for several purposes, such as image classification

and retrieval.

In PART 2 detailed in Section 4, the keyword generator

is used to create keywords for medical datasets that lack text

representations. This second part is dependable on the first

part. A medical datasets containing grayscale radiographs

and two classification schemes representing different clin-

ical objectives was utilized in PART 2, however there is

no restriction to x-rays, as the keyword generator was cre-

ated using radiology images containing a broad variety of

modalities.

For biomedical imaging, several early fusion multi-

modal approaches such as [12, 13, 14] have been presented.

These attempts combine image and text representation into

one vector, with which the image classifiers are trained on.

Adopting this method, the connections in low-level features

can be exploited. In [15, 16], late fusion methods were

applied, where decision values from several classifiers are

fused to make the final classification prediction.

In an attempt combining both early and late fusion ad-

vantages, [17] fuse a text document representation with nat-

ural images before training the convolutional neural net-

works for classification. Inspired by this, we propose an

approach that brands encoded text features or meta data

onto radiographs to obtain an enhanced image representa-

tion. The text features used for encoding are word clus-

ters of automatically generated keywords adopting transfer

learning. Our contributions in this paper are:

• A novel fusion method by branding radiographs with

automatically generated keywords.

• The proposed method is further applied for clinical ob-

jective of diagnostic abnormality recognition

• Transfer Learning and LSTM-RNN is utilized for cre-

ating textual features for datasets lacking text informa-

tion.

• Three deep learning based classifiers are trained with

the branded radiographs for abnormality recognition

and body part classification and labeling.

• The proposed method is evaluated on a radiology

dataset with different classification schemes.

The rest of this paper is structured as follows: Section

2 lists the adopted dataset for keyword generation and the

dataset used for evaluating the proposed approach. In Sec-

tions 3 and 5, applied deep learning networks, visual repre-

sentation and machine learning methods for keyword gen-

eration and image classification are described. These two

sections describe PART 1 and PART 2 of Fig. 1. The pro-

posed method applied for incorporating the text features is

detailed in Section 4. The achieved results are stated in Sec-

tion 6. Finally, results are discussed, potential future work

and conclusions are drawn in Section 7.

2. Datasets

2.1. Radiology Objects in COntext (ROCO): For
Keyword Generation

This dataset is easily accessible, and can be applied for

image and information retrieval purposes. Figure 2 shows

an example of a radiology image with the corresponding

information provided. The Radiology Objects in Context

(ROCO) dataset has two classes: Radiology and Out-Of-

Class. The first contains 81,825 radiology images, which

was used for the presented work, includes several med-

ical imaging modalities such as, Computer Tomography

(CT), Ultrasound, X-Ray, Fluoroscopy, Positron Emission

Tomography (PET), Mammography, Magnetic Resonance

Imaging (MRI), Angiography and PET-CT, and examples

of the various modalities can be seen in Fig. 3.

The objective of the ROCO dataset was to provide med-

ical knowledge, originated from peer-reviewed scientific

biomedical literature with different textual annotations and

a broad scope of medical imaging techniques.



Figure 2. Example of a radiology image with corresponding cap-

tion, keywords, semantic concepts and types. The ultrasound scan

was randomly chosen from the training set of the ROCO dataset

[10].

Figure 3. Examples of radiology images contained in the ROCO

dataset, illustrating the variety of medical imaging modalities. All

images were randomly chosen from the ’Radiology’ subset.

From the PubMed [18] Open Access subset, a total

number of 6,031,814 image - caption pairs were extracted,

which were further for non-compound and radiology im-

ages using deep learning systems. Semantic knowledge

of object interplay present in the images were extracted in

form of UMLS Semantic types and Concept. In addition,

the captions were reduced to only nouns and adjectives,

which is distributed as Keywords.

2.2. Musculoskeletal Radiographs (MURA) : For
Anatomy and Abnormality Classification
Evaluation

The MURA dataset of musculoskeletal radiographs pre-

sented in [9] consists of 14,863 studies from 12,173 pa-

tients. As each study contains one or more views (images),

a total number of 40,561 multi-view radiographic images

were assembled.

Each of the radiographs belong to one of the seven stan-

dard upper extremity radiographic study types: elbow, fin-

ger, forearm, hand, humerus, shoulder, and wrist [9]. Fig-

ure 4 shows radiographs representing each of the seven

anatomy classes. All studies were labeled as normal or

abnormal by board-certified radiologists from the Stanford

Hospital, between 2011 and 2012, at the interpretation time

in the diagnostic radiology environment [9].

Figure 4. Examples of radiographs representing the anatomy clas-

sification schemes. The images ’wrist’, ’humerus’, ’shoulder’, ’el-

bow’ and ’finger’ belong in addition to the abnormality positive

class. Whereas the images ’forearm’ and ’hand’ belong to the ab-

normality negative. All images were randomly chosen from the

MURA training set [9].

For comparison and research advance purposes, the

dataset was split into training (11,184 patients, 13,457 stud-

ies, 36,808 images), validation (783 patients, 1,199 studies,

3,197 images), and test (206 patients, 207 studies, 556 im-

ages) sets. The explorative analysis regarding class distri-

bution computed on the 9,045 normal and 5,818 abnormal



musculoskeletal radiographic studies is shown in Fig. 5. All

images in the training and validation sets are both annotated

with corresponding abnormality and body parts labels [9].

For evaluation of the proposed work, the validation set is

adopted as the official test set is not public accessible.

Figure 5. Explorative analysis on the distribution of the Muscu-

loskeletal Radiographs (MURA) dataset. The flow chart shows

the total distribution on both training and validation sets.

3. Keyword Generation

As deep learning techniques [19] have improved predic-

tion accuracies in object detection [20], speech recognition

[21] and in domain specific applications such as medical

imaging [22, 23], a deep learning architecture is used to cre-

ate the keyword generation model.

Deep Convolutional Neural Networks (dCNN) [24] are

applied to encode the medical images to a feature represen-

tation which is decoded using a Long Short-Term Memory

(LSTM) [25] based Recurrent Neural Network (RNN) [26]

to generate appropriate keywords for a given radiograph.

This approach, also known as Show-And-Tell model was

proposed in [27] and further improved in [28].

To produce rich visual representations of the images,

CNN is used as an image encoder by pre-training it for an

image classification task. The LSTM-RNN utilized as cap-

tion decoder generates the image keywords, using the CNN

last hidden layer as input [27].

Figure 6 shows the keyword generation model training

setup. In the first training phase, the LSTM is trained using

a corpus of paired image and keywords generated from the

radiology images in the training set of the Radiology Ob-

jects in COntext (ROCO) dataset [10]. No further dataset

were used for training. In the second phase, parameters of

the image model and LSTM are fine-tuned using the deep

learning network Inception-ResNet-V2 [24].

The parameters applied for creating the image keyword

generation model are:

• Batch size = [1. Trainingphase = 32; 2. Trainingphase

= 32]

Figure 6. Overview of Long Short-Term Memory based Recurrent

Neural Network Model applied for radiology image keyword gen-

eration.

• Number of Epochs = [1. Trainingphase = 194; 2.

Trainingphase = 583]

• Vocabulary size = 9,750 {Minimum word occurrence

≥ 4}

• Initial learning rate = 2

• Model optimizer = stochastic gradient descent

• Learning rate decay factor = 0.5

• Number of epochs per decay = 8

• Inception learning rate = 0.0005

• Inception model initialization = Inception-ResNet-V2

• LSTM embedding size = 512

• LSTM units number = 512

• LSTM initializer scale = 0.08

• LSTM dropout keep probability = 0.7

For all other parameters not mentioned above, the de-

fault values as proposed in [27] and implemented in the

Tensorflow-Slim im2txt-model [29, 30] were adopted.

Several text preprocessing methods such as reduction of

image captions to nouns and adjectives, removal of stop-

words [31] and special characters, and word stemming [32]

were performed. These text preprocessing steps are further

detailed in [33].



4. Radiograph Branding

Utilizing the keyword generation model based on the

ROCO dataset and described in subsection 2, keywords

were generated for all radiology images in the MURA

dataset. Figure 7 show these keywords for two randomly

chosen radiographs from the MURA Training Set. No fur-

ther text preprocessing methods were applied to the gener-

ated keywords, as this was done before creating the key-

word generation model.

Figure 7. Examples of keywords generated. All images were ran-

domly chosen from the Musculosketal Radiograph MURA Train-

ing Set. Keyword generation model was created using the all im-

ages from the ROCO radiology class.

Figure 8 shows a subset of the vocabulary obtained with

the generated keywords for the MURA dataset. The key-

words shown were predicted for images of the abnormality

class ’positive’.

Figure 8. Automatically generated keywords for the radiology im-

ages in the MURA dataset. All keywords were predicted for im-

ages belonging to the abnormality class ’positive’.

To reduce the keywords to semantic concepts, the words

in the vocabularies were further grouped to k = 25 clusters

using the Natural Language Toolkit (NLTK) [31] k-means

clustering method [34, 35]. Finally the radiographs (image

size [299x299]) are branded by marking the cluster position

of the generated keywords on the image, as shown in Fig. 9.

The presence of the clusters is incorporated with a [10x10]
pixel marker. The complete implementation was done in

python.

Figure 9. Overview of the complete procedure applied for the ra-

diograph branding. The image was randomly chosen from the

MURA training set.

5. Classification

For the dCNNs, TensorFlow-Slim (TF-slim), a

lightweight package for defining, training and evalu-

ating models in TensorFlow [29] with pre-trained models,

was adopted. To optimize prediction performance, the

models were fine-tuned with all trainable weights and best

configuration in the second training phase.

Inception-v3 The pre-trained model Inception-v3 [36]

which was trained for the ImageNet [37] Large Visual

Recognition Challenge 2012 [38], was used to fine-tune

the classification model. For the Inception-v3 classification

models, the following parameters were applied:

• Optimizer: Root Mean Square Propagation (rmsprop)

• Number of epochs: [1. Trainingphase = 2.5; 2. Train-

ingphase = 25]

• Number of steps: [1. Trainingphase = 1,000; 2. Train-

ingphase = 10,000]

• Batch size: 32

• Learning rate: 0.01

• Learning rate decay type: [1. Trainingphase = fixed; 2.

Trainingphase = exponential]

• Weight decay: 0.00004

• Model name: Inception-v3

For all other parameters not mentioned above, the default

values as proposed in TF-Slim [29] were adopted.



Inception-v4 The pre-trained model Inception-v4 [24]

which is a variation of the Inception-v3, having a more

uniform simplified architecture and more inception mod-

ules, was used to train and fine-tune the second classifica-

tion model. The following parameters were applied for the

Inception-v4 classifier:

• Optimizer: Root Mean Square Propagation (rmsprop)

• Number of epochs: [1. Trainingphase = 2.5; 2. Train-

ingphase = 25]

• Number of steps: [1. Trainingphase = 1,000; 2. Train-

ingphase = 10,000]

• Batch size: 32

• Learning rate: 0.01

• Learning rate decay type: [1. Trainingphase = fixed; 2.

Trainingphase = exponential]

• Weight decay: 0.00004

• Model name: Inception-v4

For all other parameters not mentioned above, the default

values as proposed in TF-Slim [29] were adopted.

Inception-ResNet-v2 The pre-trained model Inception-

ResNet-v2 [24] which is a variation of the Inception-v3 us-

ing the ideas presented in [39, 40], was used to train and

fine-tune the third classification model. For the Inception-

ResNet-v2 classification models, the following parameters

were applied:

• Optimizer: Root Mean Square Propagation (rmsprop)

• Number of epochs: [1. Trainingphase = 2.5; 2. Train-

ingphase = 25]

• Number of steps: [1. Trainingphase = 1,000; 2. Train-

ingphase = 10,000]

• Batch size: 32

• Learning rate: 0.01

• Learning rate decay type: [1. Trainingphase = fixed; 2.

Trainingphase = exponential]

• Weight decay: 0.00004

• Model name: Inception-ResNet-v2

For all other parameters not mentioned above, the default

values as proposed in TF-Slim [29] were adopted.

Classification Schemes To evaluate the proposed ap-

proach, two classification schemes from different datasets

were applied. Both classification schemes annotate radio-

graphs according to the body parts examined.

• Musculosketal Radiograph (MURA): Anatomy

1. Elbow

2. Finger

3. Forearm

4. Hand

5. Humerus

6. Shoulder

7. Wrist

• Musculosketal Radiograph (MURA): Abnormality

1. Positive

2. Negative

6. Results

Using the proposed method, increased body parts predic-

tion and abnormality recognition accuracies are obtained on

the MURA dataset, which are shown in Table 1 and 2, re-

spectively. Both tables display the performance of the three

applied deep learning systems, baseline models, as well as

visual, textual and multi-modal results.

The baseline models for the MURA dataset are not com-

parable with the accuracies in Table 1 and 2, as these were

computed using the official test set. For body parts classi-

fication, 70.50 % was achieved with a 169-layer DenseNet

convolutional neural network [41, 9]. The baseline model

for abnormality recognition with 77.80 % was obtained by

asking six board-certified radiologists to manually annotate

the test images. In addition, Random Forest [42] models

were trained with Bag-of-Word (BoW) [43] representations

of the generated keywords to show the performance gain of

the presented approach.

Table 1. Prediction accuracies obtained using the different visual

and text representations and classifier setup, as well as the baseline

accuracy presented in [9]. Evaluation was done for body parts

classification on Musculosketal Radiographs (MURA) validation

set with 3,197 radiographs.

Classifier Setup Visual Branded Textual Multi

Inception-v3 94.09 % 95.93 % - -

Inception-v4 92.39 % 94.72 % - -

Inception-ResNet-v2 91.84 % 95.00 % - -

Random Forest + BoW - - 35.11 % -

Decaf 85.23 % - - -

Decaf + BoW - - - 86.23 %



Table 2. Prediction accuracies obtained using the different visual

and text representations and classifier setup, as well as the baseline

accuracy presented in [9]. Evaluation was done for abnormality

recognition on Musculosketal Radiographs (MURA) validation set

with 3,197 radiographs.

Classifier Setup Visual Branded Textual Multi

Inception-v3 79.85 % 81.55 % - -

Inception-v4 74.27 % 76.48 % - -

Inception-ResNet-v2 78.97 % 79.77 % - -

Random Forest + BoW - - 54.24 % -

Decaf 70.98 % - - -

Decaf + BoW - - - 73.20 %

Results obtained with the original radiographs and solely

visual features are listed in the first column of the tables.

The prediction accuracies obtained with the branded im-

ages, denoting the fused text and visual information are

shown in the second column and outperform other fea-

ture representations. This is observed for both classifica-

tion schemes. Using the automatically generated keywords

without visual representation achieved the poorest predic-

tion rate, which is shown in the third column. The fourth

column ’Multi’ shows accuracies obtained when combin-

ing visual representation from the original image with the

automatically generated keywords.

Inception-v3 proved to be the best deep learning system

for tackling the two clinical objectives. For body anatomy

classification and abnormality recognition, highest accuracy

rates were obtained using Inception-v3.

7. Conclusion

This work presents an approach to combine automati-

cally generated keywords with radiographs. Data fusion is

achieved by incorporating the textual features by augmenta-

tion of the image termed branding. This process enables an

enriched multi-modal image representation which is used

for body parts classification tasks, as multi-modal image

representation has proven to obtain higher prediction results

and some image dataset lack text representation. The con-

solidated multi-modal image representation is further ap-

plied for diagnostic recognition of abnormality, as muscu-

loskeletal conditions cause severe and long-time pain.

To create a keyword generation model, image-keywords

pairs from the training set of the Radiology Objects in COn-

text (ROCO) dataset was adopted to train Long Short-Term

Memory based Recurrent Neural Network models. Uti-

lizing the keyword generation model, text representations

were created for the radiology dataset: Musculosketal Ra-

diograph (MURA), with two classification schemes.

These automatically generated keywords were grouped

into k-means clusters and incorporated by augmentation

into the radiographs by branding the presence of each clus-

ter in the images.

For both classification schemes, the prediction accura-

cies obtained with our proposed multi-modal image repre-

sentation outperformed those achieved just solely visual and

textual features, as well other feature fusion methods. The

proposed work can be further enhanced by exploiting other

word embedding methods, as well as other branding meth-

ods, and precedes the way of combining several features of

different heterogeneous modalities.

As there are several input sources in the medical domain,

the proposed work provides perspective to other data fu-

sion techniques, such as combining meta and medical report

findings with other medical imaging modalities.
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