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Abstract

Breast cancer is one of the main causes of death world-

wide. Histopathological cellularity assessment of resid-

ual tumors in post-surgical tissues is used to analyze a tu-

mor’s response to a therapy. Correct cellularity assess-

ment increases the chances of getting an appropriate treat-

ment and facilitates the patient’s survival. In current clin-

ical practice, tumor cellularity is manually estimated by

pathologists; this process is tedious and prone to errors

or low agreement rates between assessors. In this work,

we evaluated three strong novel Deep Learning-based ap-

proaches for automatic assessment of tumor cellularity from

post-treated breast surgical specimens stained with hema-

toxylin and eosin. We validated the proposed methods on

the BreastPathQ SPIE challenge dataset that consisted of

2395 image patches selected from whole slide images ac-

quired from 64 patients. Compared to expert pathologist

scoring, our best performing method yielded the Cohen’s

kappa coefficient of 0.69 (vs. 0.42 previously known in lit-

erature) and the intra-class correlation coefficient of 0.89
(vs. 0.83). Our results suggest that Deep Learning-based

methods have a significant potential to alleviate the bur-

den on pathologists, enhance the diagnostic workflow, and,

thereby, facilitate better clinical outcomes in breast cancer

treatment.

1. Introduction

Breast cancer is one of the most common cancer types di-

agnosed in women in the United States and worldwide [36].

Biopsies and histological assessment allow pathologists to

analyze microscopic structures of breast tissues and, in par-

ticular, assess the cancer’s aggressiveness.

Multiple options are available to manage and monitor the

breast cancer treatment based on the information provided

from the tumor’s response to it. In addition to the treatment

effect on the tumor size, the therapy may also alter the tu-

mor’s cellularity [8]. During anticancer therapy, the size of

the tumor may remain the same, but the overall cellularity

may be drastically reduced [30]. As a result, it makes the

residual tumor cellularity an important factor in assessing

the response treatment.

Currently, tumor cellularity is manually assessed by

pathologists from hematoxylin and eosin (H&E)-stained

slides [30]. The costs of such estimation are high, the pro-

cess is tedious and subjective, and the quality and reliability

might be also be affected by high inter-observer variabil-

ity even among senior pathologists. This potentially may

affect prognostic power assessment in clinical trials [39].

The subjectivity in visual tissue assessment motivates the

use of computer-aided methods to improve the diagnosis

accuracy, reduce human error and increase inter-observer

agreement and reproducibility [27, 11]. Automated analy-

sis of the H&E slide using computer vision could provide

immediate benefits to patient care. Recent success in Deep

Learning (DL) [22, 34], and in particular the advances in

convolutional neural networks (CNN), have recently shown

high potential in this realm [9].

In this work, we evaluate three DL-methods to score

the cellularity of the breast tissue from histopathologi-

cal images. In particular, our first approach employs

a weakly-supervised segmentation model with Resnet-34

[13] encoder and Feature Pyramid Network (FPN)[24] and

a second-stage regression network that predicts the cellu-

larity score using the predicted segmentation maps. Our

second approach is also based on segmentation, however,
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Figure 1: Generic description of the methods developed and evaluated in this study. Our first approach leverages segmentation

model, feature extraction and gradient boosted trees. The second approach directly predicts the cellularity from the raw data.

Finally, in our third setting, we combine the first and the second approach and used a deep convolutional neural network to

predict the cellularity score from segmentation mask.

instead of using the segmentation maps directly, we extract

various features from them and use the gradient boosting

trees (GBT) [28] to predict the cellularity score. Finally, we

also evaluate using H&E image patches directly to predict

the cellularity score.

2. Related work

CNNs have recently been successfully applied to many

tasks in biomedical image analysis, often outperforming

conventional machine learning methods [9, 41, 35]. As

such, they have successfully been utilized for digital pathol-

ogy image analysis and have demonstrated great potential

for improving breast cancer diagnostics [38, 4, 5, 32].

Although there are not many studies focusing directly

on automated quantitative cellularity assessment, it has

been shown that this task can be solved by first segment-

ing malignant cells and then computing the tumor’s area

[29]. Many efforts have been devoted to developing su-

pervised and unsupervised methods for automated cell and

nuclear segmentation and detection [44, 21]. Supervised

segmentation models have superior performance but require

hand-labeled nuclear mask annotations [44]. In these ap-

proaches, segmented nuclear bodies are used to extract fea-

tures that are typically inspired by visual markers recog-

nized by pathologists. Commonly used features describe

morphology, texture, and spatial relationships among cell

nuclei in tissue [29, 19].

The conventional approach most relevant to our work is

by Peikari et al. [29] who proposed an automated cellular-

ity assessment protocol. First, they used smaller patches,

or regions of interest (RoI), extracted from whole slide im-

ages to segment all present cell nuclei. Then they extracted

a number of predefined features from segmented nuclei and

used support vector machines to distinguish lymphocytes

and normal epithelial nuclei from malignant ones. Cellular-

ity estimation was done using distinguished malignant ep-

ithelial figures for every RoI.

Alternatively, segmentation-free methods that directly

estimate cellularity from histopathology imaging data and

nuclei locations annotated by human observers were also

shown promising. In particular, Veta et al. [43] proposed

a deep learning-based method that leverages an informa-

tion from a tumor’s cells nuclei locations (centroids) and

predicts the areas of individual nuclei and mean nuclear

area without the intermediate step of nuclei segmentation.

In particular, this approach was based on a 10-layer deep

neural network predicting nuclear areas quantized into 20

histogram bins. The results showed that predicted mea-

surements had substantial agreement with manual measure-

ments, which suggests that it is possible to compute the

areas directly from imaging data, without the intermediate

step of nuclei segmentation. This is in spirit similar to one

of our approaches, but we do not directly compare our meth-

ods to Veta et al. since we use different datasets and perfor-

mance metrics.

Recent works by Akbar et al. [3, 2] have compared the

conventional approach based on segmentation and feature

extraction and direct applications of deep CNNs to im-

age patches in both regression and classification settings.

Overall, they showed that the DL-based approach outper-

formed hand-crafted features in both accuracy and intra-
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Figure 2: Encoder-decoder segmentation network architecture with Resnet-34 encoder and feature pyramid network decoder.

Spatial Dropout 2D is added after multi-layer concatenation.

class correlation (ICC) with expert pathologist annotations.

Specifically, their best result was achieved by using a pre-

trained Inception [40] model that reached ICC of 0.83 and

0.81 with two expert pathologists. In this study we eval-

uate even wider range of DL-based approaches, including

segmentation-based and segmentation-free, in both regres-

sion and classification settings. We provide appropriate

performance comparisons with previously reported results1.

All the methods developed in this study are fully automatic

and do not require any involvement of the human annotators

at the test time.

3. Methods

In this study, we propose and evaluate three different

methods. The first two methods are based on the nuclei

segmentation and the third method leverages the raw image

without preceding segmentation step. Graphical illustration

of our approach is presented in Figure 1

3.1. Segmentation

Network Architecture. Most modern segmentation ar-

chitectures inherit the encoder-decoder architecture similar

to U-Net [33], where convolutional layers in the contract-

ing branch (encoder) are followed by an upsampling branch

1It is worth noting that the official BrestPathQ challenge results have

been reported only as a score distribution. Each team know their own

results only, and ours belong to the right end of the distribution, but, unfor-

tunately, we are not able to provide a comparison of our approach with

other participants. http://spiechallenges.cloudapp.net/

competitions/14#learn_the_details

that brings segmentation back to the original image size (de-

coder). In addition, skip connections are used between con-

tracting and upsampling modules to help the localization in-

formation propagate through the complex multilayer struc-

ture and eventually improve segmentation accuracy [33]. U-

Net and architectures inspired by this idea have produced

state of the art results in various segmentation problems, and

many improvements for the architecture and its training pro-

tocols have recently been proposed. In particular, Iglovikov

et al. [15] used batch normalization [17] and exponential

linear unit (ELU) as the primary activation function and

an ImageNet pre-trained VGG-11 network [37] as an en-

coder. Liu et al. [25] proposed an hourglass-shaped net-

work (HSN) with residual connections, which is also very

similar to the U-Net architecture. Rakhlin et al. [31] used

the Resnet-34 network [14] as the encoder and the Lovász-

Softmax loss function [6] along with Stochastic Weight Av-

eraging (SWA) [18] for training.

In our proposed architecture, the segmentation module

also inherits the U-Net architecture. The contracting branch

(encoder) of our model is based on the Resnet-34 [14] net-

work architecture where we have introduced several useful

modifications. In particular, we have replaced ReLU acti-

vations with ELU that does not saturate gradients and keeps

the output close to zero mean and have changed order of

batch normalization [17] and activation layers. In Section 4

we compare encoders initialized with random He’s initial-

ization [12] and pretrained on ImageNet.

To address the limited size of the BreastPathQ Cancer

Cellularity Challenge dataset, we utilized two regulariza-



tion techniques: (1) data augmentation and (2) spatial 2D

dropout incorporated into the upsampling branch [42].

The upsampling branch is implemented as a Feature

Pyramid Network (FPN) [23], reconstructing high-level se-

mantic feature maps at four scales simultaneously. We im-

plement a feature pyramid block as a convolutional layer

with 64 activation maps followed by upsampling to the orig-

inal resolution with upsampling rate of 8, 4, 2, or 1 depend-

ing on the feature map depth (see Fig. 2). In Section 4, we

compare the performance of standard and FPN decoders.

We concatenate upsampled maps into a single layer of

64 × 4 = 256 maps and add after it a spatial 2D dropout

layer, which acts as a regularizer and prevents coadaptation

of the network weights, but unlike conventional dropout it

drops out not individual neurons but rather entire activation

maps. Throughout the work, we use dropout rate 0.5, ran-

domly dropping 128 out of 256 activation maps.

Finally, the output of the model is a 4-channel sigmoid

layer that assigns every pixel with four values from 0 to 1
that represent the probabilities of belonging to the Normal,

Lymphocyte, Malignant, and Background classes.

Loss functions. Binary cross entropy (BCE), while con-

venient for training, does not directly translate into Jaccard

index, the metric commonly used to evaluate segmentation

accuracy. Hence, as the loss function we use

Lc(w) = (1− α)BCEc(w)− αJc(w), (1)

a weighted sum of BCE and the soft Jaccard loss for class

c [15, 31, 16]. In this work, we set α = 0.15, a value found

via cross-validation. The soft Jaccard loss is defined as

Jc(w) =
1

N

N
∑

i=1

(

yc
i
ŷc
i

yc
i
+ ŷc

i
− yc

i
ŷc
i

)

, (2)

where w are network parameters, yc
i

is the binary label for

pixel i and class c, ŷc
i

is the predicted probability of c for

pixel i, and N is the total number of pixels. The total loss

function is a weighted sum of class losses:

L(w) =
1

V

4
∑

c=1

Lc(w)vc, V =
4

∑

c=1

vc, (3)

where vc is a loss weight for class c. In this work we weigh

Normal, Lymphocyte, and Background as 1 and Malignant,

the class of primary importance in our problem, as 4.

3.2. Cellularity estimation from segmented cells

In this subsection, we describe the method for cellularity

assessment that leverages the output of the trained segmen-

tation network Fig. 2. We feed the segmented output into

a Resnet-34 CNN model. The model automatically learns

deep features from the 4-channel segmentation input and

regresses it onto continuous cellularity score using continu-

ous regression loss (L2). In this approach, the segmentation

model acts as a filter the aim of which is to extract only the

information about the cell morphology. We hypothesized

that this structured approach makes our method similar to

methods employed by expert pathologists, makes it trans-

parent and less sensitive to data acquisition settings.

3.3. Feature extraction-based cellularity estimation

The second type of model is Gradient Boosted Trees

(GBT) [20] in regression mode (L2 loss). The general

idea and handcrafted features are borrowed from the second

place solution for 2017 Kaggle contest for Sea Lion Popula-

tion Count in aerial imaginary [26]. The authors would like

to thank Konstantin Lopuhin for valuable discussion they

had while incorporating his method. In this study, GBT op-

erates on a vector of hand-crafted features extracted from

nuclei segmentation maps, including:

• activations and their areas aggregated over segmenta-

tion maps with different thresholds; for every segmen-

tation map in Normal, Lymphocyte, Malignant and for

7 thresholds 0.02, 0.04, 0.08, 0.16, 0.24, 0.32, 0.5, we

obtain 2 values: total area above threshold and total ac-

tivation above threshold (see Fig. 4 for an illustration);

• using the Laplacian of Gaussian (LoG) method as im-

plemented in the OpenCV library [7], we find blobs in

segmentation maps at 6 thresholds: 0.02, 0.04, 0.08,

0.16, 0.24, 0.5; for each threshold we find the number

of blobs and total activation in blob centers (Fig. 5);

• total activation for every channel, computed as a sum

of the activations at every pixel after sigmoid.

In total, we obtain 3× (7× 2+6× 2+1) = 81 features

to train the GBT model.

3.4. Cellularity estimation from the raw images

The third type of model is a deep convolutional net-

work implemented in regression or classification settings

(L2 or categorical cross-entropy loss functions respec-

tively). These models do not use intermediate segmenta-

tion and predict the cellularity score immediately from the

microscopic image. For classification, we categorize cel-

lularity into 101 class using regular bins with thresholds

0.00, 0.01, . . . , 1.00. The idea of direct regression of an im-

age into continuous value using CNN is not new. In particu-

lar, it was implemented in [16] where the authors use CNN

to predict bone age from radiograph.

3.5. Evaluation metrics

We assessed the results using several metrics. The main

evaluation metric is the mean squared error (MSE) between
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Figure 3: Light micrograph of a histologic specimen of breast tissue stained with hematoxylin and eosin (top). The bottom

row shows nuclei segmentation masks synthesized from weak labels: Malignant — red, Normal — green, Lymphocyte —

blue.

(a) 0.04 (b) 0.16 (c) 0.32 (d) 0.50

Figure 4: Segmentation results at thresholds (a) - (d) of

Malignant channel superimposed with the original image.

Masks generated after thresholding were used for feature

extraction.

(a) 0.02 (b) 0.08 (c) 0.16 (d) 0.24

Figure 5: Nuclei blobs detected from the Malignant seg-

mentation maps using the Laplacian of Gaussian method at

thresholds (a)-(d). The blobs were used for feature extrac-

tion.

the cellularity score obtained in our experiments and ground

truth provided by an expert pathologist.

In order to make our results comparable with previous

work, we also report Cohen’s kappa coefficient agreement

and the intra-class correlation coefficient (ICC) between ex-

pert and automated methods, similar to [29]. In all ex-

periments, we find our results superior to our predeces-

sors; however, the cellularity score itself in [29] is evaluated

based on binning it into four categories of 0–25%, 26–50%,

51–75%, and 76–100%. Such 4-class categorization is rel-

atively coarse and, in our opinion, does not represent a suit-

able evaluation metric for continuous cellularity estimation

that is our goal in this work.

4. Experiments and results

4.1. Data

The data used in this study had been acquired from the

Sunnybrook Health Sciences Centre with funding from the

Canadian Cancer Society and was made available for the

BreastPathQ challenge sponsored by the SPIE, NCI/NIH,

AAPM, and the Sunnybrook Research Institute [29].

In our experiments we used 2, 395 patches of 512× 512
pixels in size, extracted from 96 haematoxylin and eosin

(H&E) stained whole slide images (WSI) acquired from 64

patients. Each patch in the training set has been assigned

a tumor cellularity score by an expert pathologist. In Fig-

ure 6, we present a distribution of the cellularity scores in

the dataset.

Besides the image data, we used the annotations (X

and Y coordinates) to identify lymphocytes, malignant ep-

ithelial, and normal epithelial cell nuclei in the additional

153 patches. Using these weak annotations, we generated

the segmentation masks that were used in our experiments.

Here, at each XY location, we simply fit a blob of 15 pixels

in diameter. In Figure 3 we present the generated masks for
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Figure 6: Cellularity score distribution.

various classes.

4.2. Weakly-supervised cell segmentation

In this study, characteristic features of the data present a

serious challenge for developing segmentation models: 1)

the data features no segmented cells, only their coordinates

(that is why we use semi-supervised segmentation); 2) an-

notated nuclei are present only in 154 microscopic images,

each containing 0-50 malignant cells. However, cell seg-

mentation is not a distinct goal of this study. As mentioned

in Section 1 and in [8, 30, 10], cellularity within the tumor

area is assessed by estimating the percentage area of the

overall tumor bed comprised of invasive tumor cells. Ag-

gregated area of individual invasive cell areas serves as a

proxy and does not represent the ultimate cellularity value.

Cellularity is affected by cell density, localization, and tis-

sue structure. We use segmented cells essentially as an in-

terpretable visualization of an invasive tumor within the tu-

mor bed.

In our ablation studies, we evaluated our model in

four different settings to find how different design choices

influence the segmentation accuracy and generalization.

Namely, we compared the model as described in Section 3

with a standard U-Net decoder against an FPN decoder, and

with the encoder initialized randomly against the encoder

initialized with weights pretrained on ImageNet. In all set-

tings, the model was trained for 150 epochs with the Adam

optimizer and gradually decreasing learning rate from 10−4

to 10−5.

To obtain training patches, we downscaled the mi-

croscopy images ×2 times, randomly cropped a 256× 256
area, and rescaled pixel values from [0, 255] to [−1, 1]. As

mentioned previously, segmentation targets were generated

as 4-channel masks with round blobs, 15 pixels in diameter

(the characteristic nucleus size), drawn in the nuclei cen-

ters. During training, we dynamically augmented images

with vertical and horizontal flips, rotation, gamma, hue, and

saturation utilizing the Albumentations library [1].

In the first series of experiments, we evaluated segmen-

tation quality as an important intermediate metric for the

evaluation of our methods. The segmentation performance

as a function of the decoder and initialization is shown in

Table 1: Segmentation results: the Jaccard index for differ-

ent decoders and initializations.

Initialization Standard decoder FPN decoder

Random 0.35 0.47

ImageNet 0.50 0.53

Table 2: Cellularity MSE with 95% confidence intervals for

the segmentation-based (first row) and for the end-to-end

methods. Our results demonstrate the importance of Ima-

geNet pre-training. C in the parentheses indicates classifi-

cation, R – regression and S – segmentation.

Model
Initialization

Random ImageNet

GBT 0.023 [0.019-0.026] 0.022 [0.019-0.026]

Resnet34 (SR) 0.013 [0.011-0.015] 0.013 [0.011-0.015]

ResNet34 (R) 0.015 [0.013-0.018] 0.011 [0.010-0.012]

ResNet50 (R) 0.025 [0.022-0.028] 0.011 [0.009-0.012]

Xception (R) 0.017 [0.015-0.020] 0.010 [0.009-0.012]

Xception (C) 0.012 [0.010-0.014] 0.010 [0.009-0.012]

Table 3: Cellularity Kappa (4 class binning) and Intra-Class

Correlation Coefficient (ICC) with 95% confidence inter-

vals for the segmentation-based (1st and 2nd rows) and for

the methods predicting cellularity directly, without segmen-

tation. All the models here utilize ImageNet pre-training. C

in the parentheses indicates classification, R – regression

and S – segmentation.

Model
Metric

Kappa ICC

GBT 0.571 [0.520-0.622] 0.787 [0.744-0.823]

Resnet34 (SR) 0.658 [0.604-0.704] 0.865 [0.835-0.891]

ResNet34 (R) 0.649 [0.599-0.700] 0.868 [0.840-0.892]

ResNet50 (R) 0.652 [0.603-0.701] 0.867 [0.844-0.894]

Xception (R) 0.669 [0.616-0.713] 0.881 [0.853-0.904]

Xception (C) 0.689 [0.642-0.734] 0.883 [0.858-0.905]

Peikari et al. [29] 0.38-0.42 0.75 [0.71-0.79]

Akbar et al. [3] — 0.83 [0.79-0.86]

Table 1. As we can see, the model with the feature pyra-

mid decoder and encoder pretrained on ImageNet achieved

significantly higher and more stable Jaccard index on the

validation set than the alternatives. Figure 7 shows an ex-

ample of generated segmentation masks in the Malignant

channel and nuclei blobs reconstructed with the Laplacian

of Gaussian method.
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Figure 7: Examples of the generated segmentation masks in the Malignant channel. Left to right: (a) original patch; (b)

ground truth segmentation superimposed on the original image; (c) activation map; (d) nuclei blobs reconstructed from the

activation map with the LoG method.
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4.3. Segmentation-based cellularity assessment

Prediction from the segmented cells. As mentioned pre-

viously, we used the output of the segmentation model as in-

put for the cellularity regressor and then trained this cascade

end-to-end. We froze the segmentation model and stack its

4-channel output with a randomly initialized Resnet-34 in

the regression setting. We trained the regression part with

cellularity targets and MSE loss until convergence. Then we

unfroze segmentation weights and fine-tuned both modules

in an end-to-end fashion, as a single model. We repeated

this experiment with Resnet-34 pretrained on ImageNet. In

the latter case, we excluded the background channel from

segmentation output to comply with the vanilla Resnet-34

architecture that has a 3-channel input.

In these experiments, we found that after fine-tuning the

accuracy of segmentation itself slightly decreases, while the

accuracy of the overall cellularity scoring increases. This

is in line with [10], which found that perfect segmenta-

tion of nuclei figures does not ensure better classification

of malignant objects from breast cancer tissues. This find-

ing suggests that the two branches of future work, tumor

bed segmentation and cellularity assessment, are relatively

independent.

Feature extraction-based method. In this series of ex-

periments, we extracted the 81 features from segmen-

tation masks as discussed in Section 3 and trained the

LightGBM [20] regression model with mean squared error

(MSE) objective. The model was trained for 600 epochs

with learning rate 0.01. The maximum tree depth was set to

5; the number of leaves, to 8. These parameters have been

selected through cross-validation.

We report LightGBM accuracy in Table 2 and show the

resulting feature importance on Fig. 9. Feature importance

was calculated based on the total gain of the loss function

from the splits formed according to this feature. As ex-

pected, all highly important features come from the Malig-

nant channel. The most important feature is the total acti-

vation above 0.5 threshold, and the second and third most

important features are the activations above 0.32 and 0.24
thresholds, as expected since activations at different thesh-

olds are highly correlated, and the segmentation quality at

threshold 0.5 was the best, so the feature based on this mask

is a natural candidate for the most important feature. Ac-

tivations at lower thresholds provide additional value, but

a big part of the information that they contain has already

been conveyed via the 0.5 threshold feature. Interestingly,

malignant cell count (detected at threshold 0.24) is only the

9th feature in order of importance.

4.4. Direct cellularity assessment from the raw im-
ages

In our final experiments, we evaluated several deep neu-

ral architectures that take the original microscopy images
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Figure 9: GBT top feature importance.

as input and output the cellularity score without interme-

diate segmentation. Similarly to previous experiments, we

trained the models with random He initialization [12] or ini-

tialized them with weights pretrained on ImageNet. In all

cases, ImageNet initialization was superior to random, and

the overall accuracy was slightly better than for the mod-

els with intermediate segmentation. The Xception model

implemented in a classification setup with random initial-

ization performed slightly better than its counterparts (MSE

0.012 vs. 0.017-0.025). Although small, this difference

could possibly be attributed to the known regression-to-

mean problem of the continuous regression with L2 loss

(e.g., see a well-explained example for a colourization ap-

plication in [45]). The mean squared error of cellularity

prediction as a function of the training epoch for different

initializations is shown in Figure 8. All the performance

evaluation metrics are presented in Table 2 and Table 3.

4.5. Discussion

As we can see in Table 2 and Table 3, direct cellularity

assessment method slightly outperforms the segmentation-

based approach, where the regression module works on top

of the segmentation feature extractor. We believe that per-

formance improves due to two main reasons. First, seg-

mentation models were not trained on accurate segmenta-

tion masks but rather on approximate masks generated from

weakly supervised labels. Second, the cellularity score de-

pends not only on the tumor masks but also on a broader set

of features, some of which could be lost during the segmen-

tation step.

While we note the record results of our end-to-end mod-

els, we believe that the modular form of the prediction

pipeline provides benefits that more than compensate for

this small difference in the final score.

The segmentation-based approach has two significant

advantages: generalizability and interpretability. In prac-

tice, the data used for medical imaging tasks comes from

different hospitals and is collected by different hardware.

Images may differ in quality, level of noise, color and

brightness distributions. In [16], the authors proposed to

use segmentation to clean and standardize the data, which

helps with overall robustness and performance of various

task-specific models.

Better interpretability is achieved by the fact that we can

visually verify the quality of the intermediate step, i.e., seg-

mented tumors. Furthermore, the decision trees model al-

lows to estimate the feature importance for every feature

based on the information gain. If segmented tumors are cor-

rect, and the most informative features make intuitive sense,

we obtain additional confidence in our model, which is very

important in the medical setting.

5. Conclusion

In this paper, we evaluate three automatic methods to

assess the cellulalarity of residual breast tumors in H&E

stained samples. Our first method leverages the weakly-

supervised segmentation masks as inputs for deep CNN. We

believe that this method will be more generalizable and ro-

bust towards the data acquisition and easier to interpret.

Our second method that leverages feature extraction

from the weakly-supervised segmentation mask yields the

highest score among the all previously published feature

extraction-based methods [3, 29].

Finally, the third method in this study is an end-to-

end approach that predicts the cellularity score without any

intermediate segmentation step. Although it is attractive

and produces the best results it lacks interpretability of the

segmentation-based methods and could perform best due to

the dataset bias.

The main limitation of this study is the dataset size and

the weak labels for the segmentation model. We think

that given a bigger dataset and good quality annotations,

segmentation-based approach could produce better results

that less deviate from the end-to-end trained models.
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