
KNEEL: Knee Anatomical Landmark Localization Using Hourglass Networks

Aleksei Tiulpin1,2 Iaroslav Melekhov3

Simo Saarakkala1,2

1University of Oulu, Oulu, Finland 2Oulu University Hospital, Oulu, Finland 3Aalto University, Finland

Abstract

This paper addresses the challenge of localization of

anatomical landmarks in knee X-ray images at different

stages of osteoarthritis (OA). Landmark localization can be

viewed as regression problem, where the landmark position

is directly predicted by using the region of interest or even

full-size images leading to large memory footprint, espe-

cially in case of high resolution medical images. In this

work, we propose an efficient deep neural networks frame-

work with an hourglass architecture utilizing a soft-argmax

layer to directly predict normalized coordinates of the land-

mark points. We provide an extensive evaluation of differ-

ent regularization techniques and various loss functions to

understand their influence on the localization performance.

Furthermore, we introduce the concept of transfer learning

from low-budget annotations, and experimentally demon-

strate that such approach is improving the accuracy of land-

mark localization. Compared to the prior methods, we val-

idate our model on two datasets that are independent from

the train data and assess the performance of the method

for different stages of OA severity. The proposed approach

demonstrates better generalization performance compared

to the current state-of-the-art.

1. Introduction

Anatomical landmark localization is a challenging prob-

lem that appears in many medical image analysis prob-

lems [31]. One particular realm where the localization of

landmarks is of high importance is the analysis of knee plain

radiographs at different stages of osteoarthritis (OA) – the

most common joint disorder and 11th highest disability fac-

tor in the world [2].

In knee OA research field, as well as in the other do-

mains, two sub-tasks that form a typical pipeline for land-

mark localization can be defined: the region of interest

(ROI) localization and the landmark localization itself [41].

In knee radiographs, the former one is typically applied in

the analysis of the whole knee images [3, 4, 28, 36, 38],

while the latter is used for bone shape and texture analy-
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Figure 1. Graphical illustration of our approach. At the first stage,

the knee joint area localization model is trained using low-cost

annotations. At the second stage, we leverage the weights of the

model pre-trained using the low-cost annotations and train a model

that localizes 16 individual landmarks. The numbers in the fig-

ure indicate the landmark ID (best viewed on screen). The tibial

landmarks are displayed in red and numbered from 0 to 8 (left-to-

right). Femoral landmarks are displayed in green and numbered

from 9 to 15 (left-to-right).

ses [6, 19, 34]. Furthermore, Tiulpin et al. also used the

landmark localization for image standardization applied af-

ter the ROI localization step [36, 37].

Manual annotation of knee landmarks is not a trivial

problem without the knowledge of knee anatomy, and it

becomes even more challenging when the severity of OA

increases. In particular, it makes the annotation process

of fine-grained bone edges and tibial spines intractable and

time consuming. In Fig. 2, we show the examples of an-

notations of the landmarks for each stage of OA severity

graded according to the gold-standard Kellgren-Lawrence

system (grading from 0 to 4) [20]. It can be seen from this

figure that when the severity of the disease progresses, bone

spurs (osteophytes) and the general bone deformity affect

the appearance of the image. Other factors, such as X-ray

beam angle are also known to have impact on the image

appearance [22].

In this paper, we propose a novel Deep Learning based
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Figure 2. Typical examples of knee joint radiographs at different stages of osteoarthritis severity with overlayed landmarks. Here, the

images are cropped to 140×140 mm regions of interest. KL≥ 2 indicates radiographic osteoarthritis. This figure is best viewed on screen.

framework for localization of anatomical landmarks in knee

plain radiographs and validate its generalization perfor-

mance. First, we train a model to localize ROIs in a bi-

lateral radiograph using low-cost labels, and subsequently,

train a model on the localized ROIs to predict the location

of 16 anatomical landmarks in femur and tibia. Here, we

utilize transfer learning and use the model weights from the

first step of our pipeline for initialization of the second-stage

model. The proposed approach is schematically illustrated

in Fig. 1.

Our method is based on the hourglass convolutional

network [27] that localizes the landmarks in a weakly-

supervised manner and subsequently uses the soft-argmax

layer to directly estimate the location of every landmark

point. To summarize, the contributions of this study are the

following:

• We leverage recent advances in landmark detection us-

ing hourglass networks and combine the best design

choices in our method.

• For the first time, we propose to use MixUp [42] data

augmentation principle for anatomical landmark local-

ization and perform a thorough ablation study for the

knee radiographs.

• We demonstrate an effective strategy of enhancing the

performance of our landmark localization method by

pre-training it on low-budget landmark annotations.

• We evaluate our method on two independent datasets

and demonstrate better generalization ability of the

proposed approach compared to the current state-of-

the-art baseline.

• The pre-trained models, source code and the annota-

tions performed for the Osteoarthritis Initiative (OAI)

dataset are publicly available at http://https:

//github.com/MIPT-Oulu/KNEEL.

2. Related Work

In the literature, there exist only a few studies specif-

ically focused on localization of landmarks in plain knee

radiographs. Specifically, the current state-of-the-art was

proposed by Lindner et.al [24, 25] and it is based on a com-

bination of random forest regression voting (RFRV) with

constrained local models (CLM) fitting.

There are several methods focusing solely on the ROI lo-

calization. Tiulpin et al. [39] proposed a novel anatomical

proposal method to localize the knee joint area. Antony et

al. [3] used fully convolutional networks for the same prob-

lem. Recently, Chen et al. [9] proposed to use object detec-

tion methods to measure the knee OA severity.

The proposed approach is related to the regression-based

methods for keypoint localization [41]. We utilize an hour-

glass network which is an encoder-decoder model initially

introduced for human pose estimation [27] and address both

ROI and landmark localization tasks. Several other stud-

ies in medical imaging domain also leveraged a similar ap-

proach by applying U-Net [33] to the landmark localization

problem [12, 31]. However, the encoder-decoder networks

are computationally heavy during the training phase since

they regress a tensor of high-resolution heatmaps which is

challenging for medical images that are typically of a large

size. It is notable that decreasing the image resolution could

negatively impact the accuracy of landmark localization. In

addition, most of the existing approaches use a refinement

step which makes the computational burden even harder to

cope with. Nevertheless, hourglass CNNs are widely used

in human pose estimation [27] due to a possibility of lower-

ing down the resolution and the absence of precise ground

truth.

More similar to our approach, Honari et al. [18] recently

leveraged deep learning and applied soft-argmax layer to

the feature maps of the full image resolution to improve

landmark localization performance leading to remarkable

results. However, such strategy is computationally heavy

for medical images due to their high resolution. In contrast,

we first moderately reduce the image resolution by embed-



ding it into a feature space, utilize an hourglass module to

process the obtained feature maps at all scales, and eventu-

ally apply the soft-argmax operator that makes the proposed

configuration more applicable to high-resolution images al-

lowing to get sub-pixel accurate landmark coordinates.

3. Method

3.1. Network architecture

Overview. Our model comprises several architectural

components of modern hourglass-like encoder-decoder

models for landmark localization. In particular, we uti-

lize the hierarchical multi-scale parallel (HMP) residual

block [7] which improves the gradient flow compared to the

traditional bottleneck layer described in: [17, 27]. The HMP

block structure is illustrated in Fig. 3.
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Figure 3. Graphical illustration of the difference between the bot-

tleneck residual block [27, 17] (a) and the HMP residual block [7]

(b). Here, n and m indicate the number of input and output feature

maps, respectively. Skip connection representing 1 × 1 convolu-

tion is applied if n �= m.

The architecture of the proposed model is represented

in Fig. 4. In general, our model comprises three main com-

ponents: entry block, hourglass block, and output block.

The whole network is parameterized by two hyperparame-

ters – width N and depth d, where the latter is related to the

number of max-pooling steps in the hourglass block. In our

experiments we found the width of N = 24 and the depth

of d = 6 to be optimal to maintain both high accuracy and

speed of computations.

Entry block. Similar to the original hourglass model [27]

we apply a 7×7 convolution with stride 2 and zero padding

of 3 and pass the results into a residual module. Further, we

use a 2× 2 max-pooling and utilize three residual modules

before the hourglass block. This block allows to simultane-

ously downscale the image 4 times and obtain representa-

tive feature embeddings suitable for multi-scale processing

performed in the hourglass block.

Hourglass block. This block starts with a 2 × 2 max-

pooling and recursively repeats dual-path structure d times

as can be seen in Fig. 4. In particular, each level of the hour-

glass block starts with a 2 × 2 max-pooling subsequently

followed by 3 HMP residual blocks. At the next stage, the

representations from the current level i are passed to the

next hourglass’ level i + 1 and also passed forward to be

summed with the up-sampled outputs of the hourglass level

i + 1. Since spatial resolution of the feature maps at level

i and i+ 1 is different, the nearest-neighbours up-sampling

is used [27]. At level d, we simply feed the representations

into the HMP block instead of the next hourglass level due

to the reached limit of hourglass’ depth.

Output block. The final block of the model uses the rep-

resentations coming from the hourglass module and sequen-

tially applies two blocks of dropout (p = 0.25) and 1 × 1
convolutional block with batch normalization and ReLU. At

the final stage, a 1× 1 convolution and soft-argmax [8] are

utilized to regress the coordinates of each landmark point.

Soft-argmax. Since soft-argmax is an important compo-

nent of our model, we review its formulation in this para-

graph. This operator can be defined as a sequence of two

steps, where the first one calculates the spatial softmax for

pixel (i, j):

Φ(β,h, i, j) =
exp[βhij ]

∑W−1
k=0

∑H−1
l=0 exp[βhkl]

(1)

At the next stage, the obtained spatial softmax is multi-

plied by the expected value of landmark coordinate at every

pixel:

Ψd(h) =
W−1
∑

i=0

H−1
∑

j=0

W
(d)
ij Φ(β,h, i, j), (2)

where

W
(x)
ij =

i

W
,W

(y)
ij =

j

H
. (3)

3.2. Loss function

We assessed various loss functions for training our

model and finalized our choice at wing loss [15] that is

closely related to L1 loss. However, in the case of wing

loss, the errors in a small vicinity of 0 – (−w,w) are better

amplified due to the logarithmic nature of the function:

L(y, ŷ) =

{

w log
(

1 + 1
ǫ
|y − ŷ|

)

|y − ŷ| < w

|y − ŷ| − C otherwise
, (4)

where y – is a ground truth, ŷ – prediction, (−w, w) – range

of non-linear part of the loss, C – constant smoothly linking

the linear and non-linear parts.
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Figure 4. Model architecture with an hourglass block of depth d = 6. Here, N is a width of the network and M is the number of output

landmarks.

3.3. Training techniques

MixUp We use a MixUp technique [42] to improve the

performance of our method. In particular, MixUp mixes the

data inputs x1 and x2, the corresponding keypoint arrays p1
and p2:

λ ∼ Beta(α, α) (5)

λ′ = max(λ, 1− λ) (6)

x′ = λ′x1 + (1− λ′)x2 (7)

p′ = λ′p1 + (1− λ′)p2, (8)

thereby augmenting the dataset with the new interpolated

examples. Our implementation of mixup does not differ

from the one proposed in the original work1 and we do

not compute the mixed targets p′. In contrast, we rather

optimize the following loss function calculated mini-batch-

wise:

L′(x1, x
′, p1, p2) = λL(p1, o1) + (1− λ)L(p2, o

′), (9)

where o1 and o′ are the outputs of the network for x1 and

x′, respectively. Here, the points p2 for every point p1 are

generated by a simple mini-batch shuffling.

Data Augmentation. Medical images can vary in appear-

ance due to different data acquisition settings or patient-

1https://github.com/facebookresearch/

mixup-cifar10

related anatomical features. To tackle the issue of limited

data, we applied the data augmentation. We use geometric

and textural augmentations similarly to to the face landmark

detection problem [16]. The former included all classes

of homographic transformations while the latter included

gamma correction, salt and pepper, blur (both median and

gaussian) and the addition of a gaussian noise. Interestingly,

the homographic transformations were shown effective in

improving, for example, self-supervised learning [23, 26],

however only more narrow class of transformation (affine)

has been applied to the landmark localization [16] in faces.

Transfer learning from low-budget annotations. As

shown in Fig. 1, the problem of localizing the landmarks

comprises two stages: identification of the ROI and the ac-

tual landmark localization. We previously mentioned the

two classes of labels that are needed to train such a pipeline:

low-cost (1 − 2 points / image) and high-cost labels (2+
points). The low-cost labels can be noisy / inaccurate and

are quick to produce, while the high-cost labels require the

expert knowledge. In this work, we first train the ROI local-

ization model (1 landmark per leg) on the low-cost labels –

knee joint centers (see Fig. 1) and then re-use the pre-trained

weights from this stage to train the landmark localization

model (16 landmarks per knee joint).



4. Experiments

4.1. Datasets

Annotation Process For all the following datasets, we

applied the same annotations process. Firstly, for all the

images in all the datasets we run BoneFinder tool (see

Sec. 4.2). At the second stage, for every image, a person

experienced in knee anatomy and OA manually refine all

the landmark points. In Fig. 1, we highlight the number-

ing of the landmarks that we use in this paper. Specifically,

we marked the corner landmarks in tibia from 0 to 8 and

in femur from 9 to 15 (lateral to medial). To perform the

annotations, we used VGG image annotation tool [14].

OAI. We trained our model and performed model selec-

tion using the images from Osteoarthritis Initiative (OAI)

dataset2. Roughly 150 knee joint images per KL grade were

sampled to be included into the dataset. The final dataset

size comprised 748 knee joints in total. In the case of the

ROI localization, we used a half of the image that corre-

sponded to each knee.

Dataset A. These data were collected at our hospital

(Oulu University Hospital, Finland) [32], and thus, it comes

from a completely different population than OAI (from

USA). It includes the images from 81 subjects, and KL

grade-wise the data have the following distribution: 4 knees

with KL 0, 54 knees with KL 1, 49 knees with KL 2, 29
knees with KL 3 and 25 knees with KL 4. From this dataset,

we excluded 1 knee due to an implant, thereby using 161
knees for testing of our model.

Dataset B. This dataset was also acquired from our hos-

pital (Oulu University Hospital, Finland; ClinicalTrials.gov

ID: NCT02937064) and included originally 107 subjects.

Out of these, 5 knee joints were excluded, thereby making

a dataset of 209 knees (4 implants and 1 due to error during

the annotation process). With respect to OA severity, these

data had 35 cases with KL 0, 84 with KL 1, 51 with KL 2,

37 with KL 3 and 2 with KL 4. This dataset was also used

solely for testing of our model.

4.2. Baseline methods

We used several baseline methods at the model selec-

tion phase and one strong pre-trained baseline method at

the test phase. In particular, we used Active Appearance

Models [10] and Constrained Local Models [11] with both

Image Gradient Orientations (IGO) [40] and Local Binary

Patterns Features (LBP) [29]. Our implementation is based

on the available methods with default hyperparameters from

the Menpo library [1].

At the test phase, we used pre-trained RFRV-CLM

method [25] implemented in BoneFinder tool. Here, the

2https://oai.epi-ucsf.org/datarelease/

RFRV-CLM model was trained on 500 images from OAI

dataset. However we did not have access to the train data

to assess which samples were used for training this method,

therefore, we used this tool only for testing on datasets A

and B.

4.3. Implementation Details

Ablation experiments All our ablation experiments were

conducted on the same 5-fold patient-wise cross-validation

split stratified by a KL grade to ensure equal distribution

of different stages of OA severity. Both ROI and landmark

localization models were trained using the same split.

During the training, we used exactly the same hyper-

parameters for all the experiments. In particular, we used

N = 24 and d = 6 for our network. The learning rate and

the batch size were fixed to 1e − 3 and 16, respectively. In

some of our experiments where the weight decay was used,

we set it to 1e− 4. All the models were trained with Adam

optimizer [21]. The pixel spacing for ROI localization was

set to 1 mm and for the landmark localization to 0.3 mm.

We used bi-linear interpolation for image resizing.

All the ablation experiments were conducted solely on

landmark localization task and eventually, after selecting

the best configuration, we used it for training the ROI lo-

calization model due to the similarity of the tasks. We used

the ground truth annotations to crop the 140×140 mm ROIs

around the tibial center (landmark 4 in Fig. 1) to create the

data for model selection and training the landmark localiza-

tion model. In our experiments, we flipped all the left ROI

images to look like the right ones, however this strategy was

not applied for the ROI localization task.

When performing the fine-tuning of landmark localiza-

tion model using the pre-trained weights of the ROI local-

ization model, we simply initialized all the layers of the for-

mer with the weights of the latter one. We note here that the

last layer was initialized randomly and we did not freeze the

pre-trained part for simplicity.

In our experiments, we used PyTorch v1.1.0 [30] on a

single Nvidia GTX1080Ti. For data augmentation, we used

SOLT library [35]. For training AAM and CLM, we used

Menpo [1], as mentioned earlier.

Evaluation and Metrics To assess the results of our

method, we used multiple metrics and evaluation strategies.

Firstly, we performed the ablation experiments and used

the landmarks 0, 8, 9, 15 for evaluation of the results (see

Fig. 1). At the test time, when comparing the performance

of the full system, we used an extended set of landmarks for

evaluation – 0, 4, 8, 9, 12, 15. The intuition here is to com-

pare the landmark methods on those landmark points that

are the most crucial in applications (tibial corners for land-

mark localization as well as tibial and femoral centers for

the ROI localization). Besides, we excluded all the knees

with implants from the evaluation.



As as the main metric for comparison, we used Percent-

age of Correct Keypoints (PCK) @ r to compare the land-

mark localization methods. This metric shows the percent-

age of points that fall within the neighborhood of a ground

truth landmark having the radius r (recall at different preci-

sion thresholds). In our experiments, we used r of 1 mm,

1.5 mm, 2 mm and 2.5 mm for quantitative comparison.

Finally, we also assessed the amount of outliers in the

landmark localization task. An outlier was defined as a

landmark that do not fall within the 10 mm neighbourhood

of the ground truth landmark. This value was computed for

all the landmark points in contrast to PCK.

4.4. Ablation Study

Conventional approaches. We first investigated the con-

ventional approaches for landmark localization. The bench-

marks of AAM and CLM with IGO and LBP features with

default hyperparameters from Menpo [1] showed satisfac-

tory results. The best model here was CLM with IGO fea-

tures (Tab. 1).

Loss Function. In the initial experiments with our model

we assessed different loss functions ( see Tab. 1). In par-

ticular, we used L2,L1, wing [15] and elastic loss (sum of

L2 and L1 losses). Besides, we also utilized a recently in-

troduced general adaptive robust loss with the default hy-

perparameters [5]. Our experiments showed that wing loss

with the default hyperparameters as in the original paper

(w = 15 and C = 3), produces the best results.

Effect of Multi-scale Residual Blocks. The experiments

done for loss functions were conducted using the HMP

block. However, it is worth to assess the added value of

this block compare to the bottleneck residual block. Tab. 1

demonstrates that the bottleneck residual block (”Wing +

regular res. block” of the Table) fell behind of HMP (”Wing

loss”) in terms of PCK.

MixUp vs. Weight Decay After observing that the wing

loss and HMP block yield the best default configuration, we

experimented with various forms of regularization. In this

series of experiments, we used our default configuration and

applied MixUp with different α. Our experiments showed

that using MixUp the default configuration and weight de-

cay degrades the performance (Tab. 1). However, MixUp

itself is also a powerful regularizer, therefore, we conducted

the experiments without weight decay (marked as no wd in

Tab. 1). Interestingly, setting weight decay to 0 increases

the performance of our model with any α. To assess the

strength of regularization, we also conducted an experiment

with α = 0.75 (best) and without dropout. We observed

that having dropout helps MixUp.

CutOut vs. Target Jitter Besides MixUp, we tested two

other data augmentation techniques – cutout [13] and noise

(a) (b)

Figure 5. Cumulative plots reflecting the performance of ROI

(a) and landmark (b) localization methods on cross-validation.

ROI localization was assessed at the pixel spacing of 1 mm and

the landmark localization at 0.3 mm, respectively. GT indicates

ground truth.

addition to the ground truth annotations during the train-

ing (uniform distribution, ±1 pixel). We observed that

the latter did not improve the results of our configuration

with MixUp, however the former helped to lower down the

amount of outliers twice while yielding nearly the same lo-

calization performance. This configuration had a cutout of

10% of the image. These results are also presented in Tab. 1.

Transfer Learning from Low-cost Labels. At the final

stage of our experiments, we used the best configuration

that included the wing loss, MixUp with α = 0.75, weight

decay of 0 and 10% cutout to train the ROI localization

model. Essentially, both of these methods are landmark

localization approaches, therefore, in our cross-validation

experiments, we also assessed the performance of ROI lo-

calization using PCK. In our experiments, we found that

pre-training of the landmark localization model on the ROI

localization task significantly increases the performance of

the former (see the last row of Tab. 1). The performance

of both these models on cross-validation is presented in

Fig. 5. Quantitatively, ROI localization model yielded PCK

of 26.60%, 50.27%, 66.71%, 79.14% at 1 mm, 1.5 mm,

2 mm and 2.5 mm thresholds, respectively and had 0.13%
outliers.

4.5. Test datasets

Testing on the full datasets Testing of our model was

conducted on datasets A and B, respectively. We provide

the quantitative results in Tab. 2. In this table, we present

two versions of our pipeline, one is a single stage, where

the landmark localization follows directly after the ROI lo-

calization step, and also a two-stage pipeline that includes

ROI localization as a first step, initial inference of the land-

mark points as a second step, and re-centering of the ROI

to the predicted tibial center and a second pass of landmark

localization model as a third step.



Setting 1 mm 1.5 mm 2 mm 2.5 mm % out

AAM (IGO [40]) 7.29± 4.06 17.18± 5.39 28.07± 5.29 39.51± 6.33 7.49

AAM (LBP [29]) 2.41± 0.19 8.02± 1.13 15.17± 3.12 24.33± 4.73 9.22

CLM (IGO [40]) 24.53± 3.31 39.84± 4.92 50.60± 3.69 61.43± 4.25 3.61

CLM (LBP [29]) 2.67± 1.51 10.03± 3.21 18.65± 5.77 28.81± 5.58 9.36

L2 loss 0.00± 0.00 0.00± 0.00 0.07± 0.09 0.07± 0.09 92.78

L1 loss 17.45± 5.20 45.45± 5.48 66.11± 5.39 80.08± 3.78 2.67

Robust loss [5] 13.97± 0.47 35.83± 1.70 57.35± 1.89 72.06± 1.89 4.68

Elastic loss 4.14± 3.40 13.97± 7.66 27.21± 9.74 41.58± 10.59 9.36

Wing loss [15] 31.68± 5.10 61.83± 7.09 78.68± 5.58 87.50± 3.31 2.14

Wing + regular res. block 25.74± 3.31 55.48± 3.97 73.46± 3.69 83.82± 3.03 2.67

Wing + mixup α = 0.1 27.54± 0.19 58.42± 1.70 77.21± 1.42 87.17± 0.57 2.27

Wing + mixup α = 0.2 29.88± 4.25 58.96± 2.84 78.07± 6.05 86.16± 3.50 2.94

Wing + mixup α = 0.5 29.61± 1.42 59.36± 3.03 77.81± 3.78 86.30± 2.55 2.67

Wing + mixip α = 0.75 30.75± 3.40 59.63± 4.92 77.07± 5.20 86.36± 2.84 3.48

Wing + mixup α = 0.1 (no wd) 34.89± 5.29 63.64± 7.56 81.15± 5.48 89.24± 3.12 1.47

Wing + mixup α = 0.2 (no wd) 35.16± 5.86 64.17± 7.00 82.15± 5.58 89.91± 4.25 1.34

Wing + mixup α = 0.5 (no wd) 36.30± 6.33 65.04± 6.33 81.82± 4.16 89.91± 2.55 1.47

Wing + mixup α = 0.75 (no wd) 37.97± 5.48 67.45± 4.25 82.02± 1.80 90.51± 0.95 1.60

Wing + mixup α = 0.75 (no wd, no dropout) 37.10± 5.39 65.64± 3.97 81.75± 4.44 89.30± 3.21 1.47

Wing + mixup α = 0.75 + jitter (no wd) 36.63± 4.16 65.98± 5.58 83.09± 3.88 90.84± 3.31 1.60

Wing + mixup α = 0.75 + cutout 5% (no wd) 34.96± 3.69 63.30± 6.14 80.15± 4.06 89.30± 1.32 1.07

Wing + mixup α = 0.75 + cutout 10% (no wd) 37.83± 4.35 65.78± 4.35 81.35± 3.50 90.24± 1.51 0.53

Wing + mixup α = 0.75 + cutout 25% (no wd) 35.56± 3.97 62.50± 5.01 80.01± 4.06 88.50± 2.84 0.94

Wing + mixup α = 0.75 + cutout 10% (no wd, finetune) 45.92± 8.79 72.39± 8.60 85.36± 4.63 90.91± 3.21 1.34

Table 1. Results of the model selection for high-cost annotations on the OAI dataset. The values of PCK/recall (%) at different precision

are shown as average and standard deviation for the landmarks 0, 8, 9, 15, while the amount of outliers is calculated for all the landmarks.

The comparison is done at 0.3 mm image resolution (pixel spacing). Best results are highlighted in bold.

Dataset Method
Precision

% out

1 mm 1.5 mm 2 mm 2.5 mm

A

BoneFinder [25] 48.45± 2.64 59.63± 3.51 78.26± 7.03 89.13± 3.95 0.00

Ours 1-stage 12.73± 2.20 46.89± 5.71 78.57± 1.32 90.99± 1.32 1.24

Ours 2-stage 14.60± 4.83 47.52± 2.20 78.88± 0.88 93.48± 0.44 0.62

B

BoneFinder [25] 2.87± 3.38 13.64± 10.49 43.78± 21.31 68.90± 20.98 0.00

Ours 1-stage 9.33± 1.01 42.58± 1.35 74.40± 1.69 91.63± 1.69 0.48

Ours 2-stage 11.24± 0.34 44.98± 0.68 75.12± 2.71 92.11± 0.34 0.48

Table 2. Test set results and comparison to the state-of-the-art method (RFRV-CLM-based BoneFinder tool) by Lindner et al. [25]. Reported

percentage of outliers is calculated for all landmarks, while the PCK/recall values (%) are calculated as the average for the landmarks 0, 4,

8, 9, 12, and 15. Best results per dataset are highlighted in bold. It should be noted that BoneFinder operated with the full image resolution

while our method performed ROI localization at 1 mm and landmark localization at 0.3 mm resolutions, respectively.

Testing with Respect to the presence of Radiographic

Osteoarthritis To better understand the behaviour of our

model on the test datasets, we investigated the performance

of our 2-stage pipeline and BoneFinder for cases having KL

< 2 and KL ≥ 2, respectively. These results are presented

in Fig. 6. Our method performs on par with BoneFinder

for Dataset A and even exceeds its localization performance

for precision thresholds above 2 mm for radiograhic OA.

In Dataset B, on average, our method performs better than

BoneFinder when both methods are benchmarked for both

non-OA and OA cases. To provide better insights into the

performance of our method for different stages of OA sever-

ity, we show examples of landmark localization done by our

method, BoneFinder and manually (Fig. 7).

5. Conclusions

In this paper, we addressed the problem of anatomical

landmark localization in knee radiographs. We proposed a

new method that leverages the power of latest advances in

landmark localization and pose estimation.

Compared to the current state-of-the-art [24, 25], our

method generalized better to the unseen test datasets that

had completely different acquisition settings and patient

populations. Consequently, these results suggest that our



(a) Dataset A (no OA) (b) Dataset A (OA) (c) Dataset B (no OA) (d) Dataset B (OA)

Figure 6. Cumulative distribution plots of localization errors for our two-stage method and BoneFinder [25, 24] for cases with and without

radiographic OA on datasets A and B, respectively.

(a) Dataset A (worst) (b) Dataset A (best) (c) Dataset B (worst) (d) Dataset B (best)

Figure 7. Examples of predictions on datasets A and B (worst and best cases). We visualized ground truth landmarks as circles. Predictions

made by our method are shown using crosses and predictions made by BoneFinder are shown using triangles. Red and green show the

landmarks for tibia and femur, respectively. Best and worst cases were selected based on the average total error of our method per group.

The width of every example is 115 mm. The first row contains examples having KL 0 or 1, the second row contains examples with KL 2

and the third row with KL 3.

approach may be easily applicable to various tasks in clini-

cal and research settings.

Our study has still some limitations. Firstly, the com-

parison with BoneFinder should ideally be conducted when

it is trained on the same 0.3 mm resolution data with the

same KL grade-wise stratification, or at full image resolu-

tion. However, we did not have access to the training code

of BoneFinder, thereby, leaving more systematic compar-

ison to future studies. Another limitation of this study is

the ground truth annotation process. Specifically, we used

BoneFinder to pre-annotate the landmarks for all the im-

ages in both train and test sets. In theory, this might give an

advantage to BoneFinder compared to our method. On the

other hand, all the landmarks were still manually refined,

which should decrease this advantage.

The core methodological novelties of the study were in

adapting the MixUp, soft-argmax layer and transfer learn-

ing from low-cost annotations for training our model. We

think that the latter has applications in other, even non-

medical domains, such as human pose estimation and fa-

cial landmark localization. It was shown that compared to

RFRV-CLM, Deep Learning methods scale with the amount

of training data, and therefore, we also expect our method

to yield even better results when it is trained on a larger

datasets [12]. Besides, we also expect semi-supervised

learning [18] to help in this task.
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