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Abstract

Domain Adaptation (DA) has the potential to greatly

help the generalization of deep learning models. However,

the current literature usually assumes to transfer the knowl-

edge from the source domain to a specific known target do-

main. Domain Agnostic Learning (DAL) proposes a new

task of transferring knowledge from the source domain to

data from multiple heterogeneous target domains. In this

work, we propose the Domain-Agnostic Learning frame-

work with Anatomy-Consistent Embedding (DALACE) that

works on both domain-transfer and task-transfer to learn

a disentangled representation, aiming to not only be in-

variant to different modalities but also preserve anatomical

structures for the DA and DAL tasks in cross-modality liver

segmentation. We validated and compared our model with

state-of-the-art methods, including CycleGAN, Task Driven

Generative Adversarial Network (TD-GAN), and Domain

Adaptation via Disentangled Representations (DADR). For

the DA task, our DALACE model outperformed CycleGAN,

TD-GAN, and DADR with DSC of 0.847 compared to 0.721,

0.793 and 0.806. For the DAL task, our model improved

the performance with DSC of 0.794 from 0.522, 0.719 and

0.742 by CycleGAN, TD-GAN, and DADR. Further, we vi-

sualized the success of disentanglement, which added hu-

man interpretability of the learned meaningful representa-

tions. Through ablation analysis, we specifically showed

the concrete benefits of disentanglement for downstream

tasks and the role of supervision for better disentangled

representation with segmentation consistency to be invari-

ant to domains with the proposed Domain-Agnostic Mod-

ule (DAM) and to preserve anatomical information with the

proposed Anatomy-Preserving Module (APM).

1. Introduction

Domain Adaptation (DA) has emerged as an effective

technique to help the generalization of deep learning mod-

els [23]. Although supervised deep learning models have

been very successful in a variety of computer vision tasks,

such as image classification and semantic segmentation, it

usually requires lots of labeled data and assumes that train-

ing and testing data are sampled i.i.d from the same distri-

bution. In practice, it is expensive and time-consuming to

collect annotated data for every new task and new domain.

At the same time, domain shift is common, which means

training and testing data are typically from different distri-

butions but related domains.

In medical imaging, domain shift can be caused by dif-

ferent scanners, sites, protocols and modalities, adding to

the high cost and difficulties of collecting large medical

imaging datasets annotated by experts. Progress has been

achieved to tackle this problem, especially for the domain

shift caused by different scanners, sites and protocols. Yet,

DA between different modalities is more challenging and

yet to be extensively explored due to the large domain shift

between different modalities [5]. Once achieved, it will

not only solve the scarcity of annotated data for medical

imaging, but also greatly improve the current clinical work-

flows and the integration of different modalities. For ex-

ample, both CT and MR play an important role in the di-

agnosis and follow-up after treatment of hepatocellular car-

cinoma (HCC) and they provide entirely different informa-

tion. MR provides better specificity and multi-parametric

tissue characterization along with better soft tissue contrast

which helps identify fat, diffusion, and enhancement in a

much more dynamic way, while CT merely measures per-

fusion and density of tissue. CT is quantitative due to cal-



ibration of density with Hounsfield unit, while MRI is not

[17]. It is desired to achieve domain adaptation from CT to

MR since CT is cheaper and more available in practice and

many tasks such as liver segmentation are usually required

on each modality.

Most current works on the domain shift problem assume

that the target domain is specific and known as a prior and

try to adapt the source domain into a distinct target domain.

Domain Agnostic Learning (DAL) [18] proposes a novel

task to transfer knowledge from a labeled source domain to

unlabeled data from arbitrary target domains, a difficult yet

practical problem. For example, target data could consist of

images from different medical sites, from different scanners

and protocols, or even from different modalities. The main

challenge is that the target data is highly heterogeneous and

from mixed domains.

Mainstream DA methods for semantic segmentation in

medical imaging such as CycleGAN [26] and its variant

TD-GAN [25] work at the pixel level. However, they as-

sume a one-to-one mapping between source and target, and

thus are unable to recover the complex cross-domain re-

lations in the DAL task [1, 9]. Furthermore, the transla-

tion in pixel-level information by making the marginal dis-

tributions of the two domains as similar as possible does

not necessarily guarantee semantic consistency [21]. This

is also the case for methods that incorporate feature-level

marginal distributions alignment which do not explicitly en-

force semantic-consistency, such as DADR [24].

In this work, we propose an end-to-end trainable model

that solves not only the problem of unsupervised DA, but

also works for DAL. Our DALACE model learns domain-

agnostic anatomical embeddings by disentanglement un-

der the supervision of a Domain Agnostic Module (DAM)

and an Anatomy Preserving Module (APM). It enforces

semantic-consistency to ensure the disentangled domain-

agnostic feature space to be meaningful and interpretable,

instead of simply aligning marginal distributions via ad-

versarial training. Our model outperforms the state-of-the-

art models on DA and generalizes naturally to the DAL

task. We show the success of disentangling anatomical

information and modality information by visualization of

domain-agnostic images and modality-transferred images.

Our model thus improves the interpretability of black-box

deep neural network models. Through ablation studies, we

show that the performance of the downstream task benefits

from the learned disentangled representations, and the pro-

posed supervision modules DAM and APM boost the disen-

tanglement. Furthermore, domain-agnostic images gener-

ated by our DALACE model have the potential for training

a better joint learning model that utilizes the annotations

from all modalities and works the best on each modality

at the same time. This initial effort to help the integration

of different modalities is valuable, as each modality has its

unique strengths and plays its unique role in clinical prac-

tice. The main contributions are summarized below.

First, this work explicitly proposes and tackles the DAL

task for medical image segmentation. With the supervision

of DAM and APM, the proposed end-to-end model learns

a domain-agnostic anatomical embedding to reduce the do-

main shift while preserving the anatomy. Second, numer-

ous experiments were conducted to show the effectiveness

of our proposed model for the DA, DAL and joint learn-

ing tasks with large CT and small MR datasets. Third, We

show the designed model by disentanglement to be more in-

terpretable through visualization. Ablation studies show the

benefit of disentanglement for the downstream task and the

role of supervision for disentanglement.

2. Related Work

Domain Adaptation has been a popular topic and is

the potential solution for generalization of deep learning

models. There are mainly two categories, feature-level do-

main adaptation that aligns features between domains and

pixel-level domain adaptation that performs style-transfer

between domains [23]. For medical images, domain adap-

tation between different domains caused by different scan-

ners, medical sites and modalities is quite important, con-

sidering the high cost of collecting and annotating medical

images from different domains and the valuable and unique

roles of different modalities in clinical practice. Most state-

of-the-art domain adaptation methods for medical image

segmentation reduce the domain shift through adversarial

learning. For example, CycleGAN [26] and its variants TD-

GAN [25] and TA-ADA [10] rely on the cycle-consistency

loss and have led to impressive results. However, they as-

sume a one-to-one mapping, instead of many-to-many, be-

tween data with complex cross-domain relations. Thus,

they fail to capture the true structured conditional distribu-

tion. Instead, these models learn an arbitrary one-to-one

mapping and generate translated output lacking in diversity

[1, 9]. DADR [24] achieves DA by disentangling medi-

cal images into content space and style space. However,

anatomy-consistency is not always guaranteed without ex-

plicitly enforcing semantic consistency on content space.

As for feature-level adaptation, while it seems effective for

tasks like classification, it is unclear how well it might scale

to dense structured domain adaptation [19, 16].

Domain Agnostic Learning. Compared to Domain

Adaptation, Domain Agnostic Learning aims to learn from

a source domain and map to arbitrary target domains in-

stead of one specific known target domain [18]. In the field

of medical imaging, it is an interesting task to explore since

it is common to get test data from different domains caused

by different scanners, sites, protocols and modalities [5]. As

for cross-modality liver segmentation, the DAL task is in

particular useful since images from many different modali-



ties (e.g. CT, MR with different phases, etc.) are routinely

acquired for better diagnosis, image guidance during treat-

ment and follow-up after treatment [17]. Mainstream DA

methods align the source and target domains by adversarial

training [15, 22]. However, with highly entangled repre-

sentations, these models have limited capacity to tackle the

DAL task. [18] proposes to solve the DAL task for classifi-

cation by learning disentangled representations.

Disentangled Representation Learning. Disentangled

representation learning aims to model the different factors

of data variation [7]. A couple of methods have been pro-

posed to learn disentangled representations [2, 8]. Some fo-

cus on disentangling style from content [9]. In our case, we

define content as anatomy information, i.e., spatial struc-

ture, and define style as modality information, i.e., the ren-

dering of the image. Recent work [14] suggests that future

research on disentangled representation learning should in-

vestigate concrete benefits of enforcing disentanglement of

the learned representations and be explicit about the role of

inductive biases and supervision. In our work, we discuss

the performance boost by disentanglement learning and the

role of supervision from our proposed anatomy preserv-

ing module (APM) and domain agnostic module (DAM)

through ablation studies. Disentanglement learning also

plays an important role to go from the DA task to DAL task.

Interpretation by Disentanglement Deep neural net-

works are generally considered black box models. How-

ever, there has been lots of recent work on interpretation

of deep learning models, particularly in medical imaging

[13, 4]. [6] summarizes these works into three main cat-

egories, including emulating the processing of the data to

draw connections between the inputs and outputs, explain-

ing the representation of data inside the network, and de-

signing neural networks to be easier to explain. Disen-

tangled representation falls into the last sub-category since

these networks are designed to explicitly learn meaningful

disentangled representations [2, 8]. Through visualization

of transferred images and domain-agnostic images and ex-

periments on downstream tasks, we not only show the suc-

cess of disentanglement between anatomy information and

modality information, but also show the representation has

the potential for task transfer and data reconstruction. Fur-

thermore, experimental results demonstrate that the down-

stream tasks benefit from the learned disentangled repre-

sentation. These results show that our model is designed to

learn meaningful, interpretable representations.

3. Method

We propose an end-to-end trainable Domain Agnostic

Anatomical Embedding by Disentanglement (DALACE)

model to tackle the DA and DAL tasks. Of note, the

DA task is defined as transferring knowledge from a given

source labeled dataset belonging to domain Ds to a target

Figure 1. Schematic diagram of the domain adaptation task and the

domain agnostic learning task.

unlabeled dataset that belongs to a specific known domain

Dt. The DAL task is defined in a similar way, except that

the target unlabeled dataset consists of data from multiple

domains {Dt1,Dt2, ...,Dtn} without any domain label for

each sample annotating which domain it belongs to. The

ultimate goal is to minimize the target risk for downstream

tasks [18]. In our application to medical images from pa-

tients with HCC, CT has true segmentation masks while

MR does not. CT and MR are unpaired with each other.

The DA task is to transfer knowledge from CT data to pre-

contrast phase MR data, the DAL task is to transfer knowl-

edge from CT data to heterogeneous multi-phasic MR data

from mixed domains, and the downstream task of interest is

cross-modality liver segmentation. Please see the visualiza-

tion of DA and DAL in Fig. 1.

3.1. End-to-End Pipeline

Fig. 2 shows the end-to-end DALACE pipeline to learn a

domain-agnostic anatomical embedding, which is invariant

to domains but discriminative of the classes for the segmen-

tation task. Input CT and MR images are denoted as XCT

and XMR. Inspired by the MUNIT [9] model and DADR

[24] model, DALACE consists of two anatomy encoders

ECT
a and EMR

a , two modality encoders EMR
m and ECT

m ,

and two style-based generators with multi-layer perceptron

(MLP) and adaptive instance normalization (AdaIN) [11]

GCT and GMR. We propose the Anatomy Preserving Mod-

ule (APM) and Domain Agnostic Module (DAM) to gen-

erate domain-agnostic anatomical images for the DA and

DAL tasks.

To start the pipeline, both source data xCT and target

data xMR are fed into the encoders (ECT
a , ECT

m , EMR
a and

EMR
m ) and embedded into anatomy codes aCT and aMR

(feature maps) and modality codes mCT and mMR (vec-

tors). In the next step, anatomy codes and modality codes

are fed into style-based generators GCT and GMR for self-

reconstruction via optimizing the Limg term in equation (1).

Then modality codes mCT and mMR are swapped and to-

gether with the original anatomy codes are fed into style-

based generators for cross-reconstruction/modality-transfer

generation, which is contrained by the Llatent loss term in

equation (1). Please refer to (2) and (3) for details about



Figure 2. (Best viewed in color) The end-to-end DALACE pipeline to learn domain-agnostic anatomical embeddings. The solid line shows

the self-reconstruction process while the dotted line shows the cross-reconstruction/modality-transfer generation process.

Limg and Llatent. Expectation is taken with respect to

xCT ∼ XCT and xMR ∼ XMR.

Lrecon = αLimg + βLlatent

= α(LCT + LMR)

+ β(LCT
a + LCT

m + LMR
a + LMR

m )

(1)

LCT + LMR

= E||GCT (ECT
a (xCT ), E

CT
m (xCT ))− xCT ||1

+ E||GMR(EMR
a (xMR), E

MR
m (xMR))− xMR||1

(2)

LCT
a + LCT

m + LMR
a + LMR

m

= ||EMR
a (xCT→MR)− aCT ||1

+ ||ECT
m (xMR→CT )−mCT ||1

+ ||EMR
m (xCT→MR)−mMR||1

+ ||ECT
a (xMR→CT )− aMR||1

(3)

To generate anatomy-preserving domain-agnostic im-

ages, only anatomy codes alone are fed into the generators

without modality codes. DAM encourages the anatomy em-

bedding to be domain-agnostic by adversarial training while

APM encourages the anatomy embedding to be anatomy-

preserving by adversarial training [9, 25]. In this way, the

model is designed to learn meaningful and interpretable dis-

entangled representations, thus helping us to understand the

learned representations and the model better.

3.2. Feedback Supervision Modules

3.2.1 Domain Agnostic Module

This module encourages the embedding to be domain-

agnostic in an adversarial training way. It consists of two

discriminators DCT and DMR, which try to discriminate

between real CT XCT and fake CT transferred from MR

XMR→CT and real MR XMR and fake MR transferred

Figure 3. Domain-Agnostic Module, which encourages the em-

bedding to be domain-agnostic by adversarial training.

from CT XCT→MR, respectively. The discriminators com-

pete with encoders and style-based generators to encour-

age the disentanglement of modality and anatomical infor-

mation by driving modality information into the modality

codes, thus forcing the anatomy embedding to be domain-

agnostic. Please see Equation (4) (5) (6) for details.

Lcross
adv = LCT→MR

adv + LMR→CT
adv (4)

LCT→MR
adv = E[log(1−DMR(xCT→MR))]

+ E[log(DMR(xMR))]
(5)

LMR→CT
adv = E[log(1−DCT (xMR→CT ))]

+ E[log(DCT (xCT ))]
(6)

3.2.2 Anatomy Preserving Module (APM)

The Anatomy Preserving Module helps the embedding to

preserve and align high-level semantic information for dif-

ferent modalities. It consists of two steps. In the first step,

both anatomical images from CT and MR, XCT
a and XMR

a ,

are fed into a segmentation module S, i.e. a U-Net based

model, to generate segmentation masks M̂CT
a and M̂MR

a

for both XCT
a and XMR

a . For M̂CT
a , we compute the pixel-

wise cross entropy loss (Equation (7)) between M̂CT
a and

the ground truth mask of original CT image MCT
a to en-

courage the encoders and style-based generators to keep the

anatomy information. For M̂MR
a , we train a conditional



Figure 4. Anatomy-Preserving Module, which encourages the em-

bedding to be anatomy-preserving by adversarial training. D is the

discriminator, S is the U-Net segmentation module.

GAN to differentiate between the pair of XMR
a and M̂MR

a

and the pair of XCT
a and M̂CT

a (Equation (8)), thus encour-

aging the pair of anatomical images and prediction masks

originally from CT and MR to be nondifferentiable so that

the anatomical images from MR will be anatomy preserving

in an adversarial way.

LCE = −Σ ytruelog(ypred) (7)

L
pair
adv = E[log(1−D(xMR

a , M̂MR
a ))]

+ E[log(D(xCT
a , M̂CT

a ))]
(8)

3.3. Implementations Details

Anatomy encoders consist of 1 convolutional layer of

stride 1 with 64 filters, 2 convolutional layers of stride 2

with 128, 256 filters respectively and 4 residual layers with

256 filters followed by batch normalization, while modality

encoders are composed of 1 convolutional layer of stride

1 with 64 filters, 4 convolutional layers of stride 2 with

128, 256, 256, and 256 filters, a global average pooling

layer, and a fully-connected layer with 8 filters without any

batch normalization. Style-based generators with MLP take

the anatomy codes (feature maps of size 64x64x256) and

modality codes (vector of length 8) as inputs, which consist

of 4 residual layers with 256 filters, 2 upsampling layers

of 2x, and 1 convolutional layer of stride 1. The modality

codes are used as inputs to the MLP to generate affine trans-

formation parameters. Residual blocks in the style-based

generators are equipped with an Adaptive Instance Normal-

ization (AdaIN) layer to take the affine transformation pa-

rameters from the modality codes via the MLP. Discrimina-

tors are convolutional neural networks for binary classifica-

tion. As for the DAM and APM modules, the segmentation

network is a standard U-Net [20] architecture and the dis-

criminators are also convolutional binary classifiers. The

Adam optimizer [12] is used for optimization. To update

the parameters in the DALACE model, First, alpha and β

Figure 5. Examples of images from different modalities, from left

to right: CT, pre-contrast phase MR, 20s post-contrast phase MR

and 70s post-contrast phase MR.

are set as 2.5 and 0.01 for minimization of the loss function

in equation (1): minEa,Em,G Lrecon = αLimg + βLlatent.

Second, adversarial training is applied for the loss func-

tion in equation (4): minEa,Em,G maxD Lcross
adv . Thhird,

loss functions in equation (7) and (8) are optimized as

minS LCE , minEa,G maxD L
pair
adv , where S denotes the

segmentation module in APM.

Learning rate is set as 0.001 except 0.0001 for

minEa,G maxD L
pair
adv . In total, 2600 epochs are trained for

each fold. In the first 600 epochs, L
pair
adv is not optimized.

Experiments were conducted on two Nvidia 1080ti GPUs.

The training time each fold is ∼ 2.5h. The testing time

each fold is within a minute.

4. Experimental Results

4.1. Data and Preprocessing

We tested our DALACE model on slices from unpaired

CT and MR scans: 130 CT scans from the LiTS challenge

at ISBI and MICCAI 2017 [3] and multi-phasic MR scans

from 20 patients at a local medical center, including pre-

contrast phase MR, 20s post-contrast phase (arterial phase)

MR and 70s post-contrast phase (venous phase) MR. Please

see Fig. 5 for image examples. Not only is the huge domain

shift from CT to MR observed, the domain shifts between

multi-phasic MR images can not be neglected. The multi-

phasic MR dataset of 20 patients was collected with Institu-

tional Review Board (IRB) approval and manual liver seg-

mentation masks were created by a radiology expert. Both

MR and CT data are normalized and resliced to be isotropic

in three dimensions. Bias field correction is applied on MR

data. For all the experiments, both CT and MR datasets are

partitioned into 5-folds for cross-validation purposes.

4.2. Domain Adaptation

For the DA task, to transfer knowledge from CT to pre-

contrast phase MR, competing models are trained with la-

beled CT images and unlabeled pre-contrast phase MR im-

ages. Model performance was assessed using the dice sim-

ilarity coefficient (DSC) between true and predicted liver

segmentations.

To have a better sense of understanding of the data and

the DA task, we have a supervised U-Net trained and tested

on the small pre-contrast phase MR dataset to serve as the

upperbound. Another supervised U-Net is trained on CT



Figure 6. Two examples of DA task for cross-modality liver seg-

mentation with different methods. From left to right: original

pre-contrast phase MR images, ground truth masks, U-Net w/o

DA results, CycleGAN results, TD-GAN results, DADR results,

DALACE results.

DA task DSC (std)

lowerbound 0.260 (0.072)

upperbound 0.869 (0.044)

Method DSC (std)

CycleGAN [26] 0.721 (0.049)

TD-GAN [25] 0.793 (0.066)

DADR [24] 0.806 (0.035)

DALACE 0.847 (0.041)

Table 1. DA results. Estimated lowerbound and upperbound for

cross-modality liver segmentation with DA. Comparison of seg-

mentation results for domain adaptation with different models.

Our DALACE outperforms other methods.

and tested on pre-phase MR to serve as the lowerbound for

each task. Please see Table 2 for details. The upperbound

might be lower than the actual upperbound since the train-

ing MR data for 5-fold cross-validation is small and noisy.

Compared to the MR data, CT data is much more available

and robust to artifacts.

Settings For each cross-validation split, four folds of CT

data with segmentation masks and pre-contrast MR data

without segmentation masks are used to train, and one fold

of pre-contrast MR data without segmentation masks is

used to test. The state-of-the-art models CycleGAN [26],

TD-GAN [25], and DADR [24] are trained with the same

partition of data for the DA task. DALACE finds a shared

space to embed both CT and MR and transfers both modali-

ties into anatomical images while CycleGAN and TD-GAN

tries to transfer directly between CT and MR.

Results As shown in Table 1, our DALACE model out-

performs the current state-of-the-art models with DSC of

0.847 compared to DSC of 0.721 for CycleGAN, 0.793 for

TD-GAN, and 0.806 for DADR. Please see Fig. 6 for visual

comparison of qualitative results from different models on

cross-modality liver segmentation with DA.

4.3. Domain Agnostic Learning

For the DAL task, to transfer knowledge from CT to

multi-phasic MR, competing models are trained with la-

beled CT images and unlabeled MR images in three dif-

ferent phases.

To better assess performance on the DAL task, we have

a supervised U-Net trained and tested on MR from each

phase separately to serve as the upperbound. Another su-

pervised U-Net is trained on CT and tested on MR from all

phases to serve as the lowerbound. Please see Table 2 for

DAL task DSC (std)

lowerbound 0.228 (0.130)

upperbound 0.823 (0.057)

Method DSC (std)

CycleGAN [26] 0.522 (0.064)

TD-GAN [25] 0.719 (0.089)

DADR [24] 0.742 (0.045)

DALACE 0.794 (0.044)

Table 2. DAL results. Estimated lowerbound and upperbound

for cross-modality liver segmentation with DAL. Comparison of

segmentation results for domain adaptation with different models.

Our DALACE generalizes well to the DAL task compared to other

methods.

details. The upperbound might be lower than the actual up-

perbound given the noisy and small MR dataset for training

with 5-fold cross-validation. Among different phases, liver

in the arterial phase MR is more visually inhomogeneous

than liver in other MR phases, which might lead to down-

graded performance.

Settings For each cross-validation split, four folds of CT

data with segmentation masks and multi-phasic MR data in-

cluding pre-contrast phase, 20s post-contrast phase and 70s

post-contrast phase without segmentation masks are used to

train, and one fold of the multi-phasic MR data is used to

test. The state-of-the-art models CycleGAN [26], TD-GAN

[25] and DADR [24] are trained with the same partition of

data for the DAL task.

Results As shown in Table 2, our DALACE model out-

performs the current state-of-art models with DSC of 0.794

compared to DSC of 0.522 for CycleGAN, 0.719 for TD-

GAN, and 0.742 for DADR. The shared embedding space

from our DALACE model is modality-invariant to CT and

multi-phasic MR, thus it is effective on the DAL task where

target data is from heterogenous mixed domains. Cycle-

GAN and TD-GAN performed badly in transferring be-

tween CT and multi-phasic MR since they are assuming

multi-phasic MR to be from the same domain. DADR

assumes mixed domains, but does not enforce anatomy-

consistent representations, which results in lower perfor-

mance compared to our DALACE model.

4.4. Joint Learning

For joint learning, instead of transferring knowledge

from CT to MR, knowledge from CT and MR are jointly

learned to get a better model on both CT and MR. Specifi-

cally, not only do CT images have ground truth masks, but

also MR images have ground truth masks for training.

Settings CT and pre-contrast phase MR are used in this

experiment. For each cross-validation split, four folds of CT

with segmentation masks and four folds of MR with seg-

mentation masks are used to train the DALACE model, and

the other one fold of CT and MR is used to test the model.

U-Net trained on four folds of CT with segmentation masks

and tested on the other one fold of CT and U-Net trained

on four folds of MR with segmentation masks and tested on

the other one fold of MR were used for comparison.



Method CT tested DSC MR tested DSC

CT trained U-Net 0.901 (0.020) 0.260 (0.072)

MR trained U-Net 0.134 (0.091) 0.869 (0.044)

CT&MR trained U-Net 0.835 (0.035) 0.590 (0.098)

Joint CT&MR CycleGAN 0.870 (0.023) 0.846 (0.048)

Joint CT&MR TD-GAN 0.880 (0.018) 0.863 (0.029)

Joint CT&MR DADR 0.912 (0.012) 0.891 (0.040)

Joint CT&MR DALACE 0.911 (0.013) 0.907 (0.049)

Table 3. Joint learning results. Results of joint learning models and

comparison with fully-supervised U-Net models on each modality.

Results As shown in Table 3, the DALACE model

for joint learning simultaneously outperforms the fully-

supervised U-Net models separately trained and tested on

each modality, with DSC of 0.911 tested on CT and 0.907

tested on MR compared to 0.901 on CT and 0.869 on MR

using fully-supervised U-Net. Of note, 0.869 (0.044) is the

estimated upperbound for DA tasks from Table 1. Overall,

our DALACE model outperformed other methods for the

joint learning task, especially in terms of MR tested DSC,

which is of most interest. Only two methods DADR and

DALACE in joint learning exceeded the upperbound for DA

and showed synergy from effectively intergrating informa-

tion from both CT and MR. Since our DALACE model for

joint learning uses the domain-agnostic images of CT and

MR as the inputs for the segmentation module, it shows that

the DALACE model successfully disentangles the anatomy

information from modality information. To achieve the task

of liver segmentation, it does not necessarily require infor-

mation from modality codes, but only anatomical informa-

tion is relevant to the segmentation task.

5. Analysis

5.1. Results Analysis

We tested our DALACE model on unpaired CT and MR

data in three experiments and showed that DALACE is su-

perior to the current state-of-the-art models in the literature

such as CycleGAN, TD-GAN and DADR. The DALACE

model, which works on both domain-transfer and task-

transfer to learn a disentangled representation, not only

aims to be invariant to different modalities but also pre-

serves anatomical structures. In the DAL experiment, the

main challenge is that target data come from multiple target

domains, which violates the assumptions made by Cycle-

GAN and TD-GAN. Features in CycleGAN and TD-GAN

are highly entangled so that it is hard to learn a domain-

invariant representation given multiple domains. However,

the DALACE model generalizes easily to the DAL exper-

imental settings and demonstrates superior performance in

terms of DSC score due to disentanglement learning. Com-

pared to DADR, the DALACE model achieved improved

performance for the downstream tasks through explicitly

enforcing semantic consistency. In the Joint-Learning ex-

Figure 7. Two sets of examples of domain-agnostic images. In

each set, the first row from right to left is CT, pre-contrast MR,

20s post-contrast MR, and 70s post-contrast MR, and the second

row is its corresponding domain-agnostic images.

Figure 8. CT images are transferred to multi-phasic MR images in

three phases. From left to right, each column is the multi-phasic

MR images (from top to bottom: 70s post-contrast phase MR, 20s

post-contrast phase MR, pre-contrast phase MR), the CT images,

the modality-transferred images with anatomy structure from the

CT images in the second column and modality rendering from the

multi-phasic MR images in the first column.

periment, we show the potential of our DALACE model to

integrate different modalities, which shows the meaningful

disentangled representations from each domain are domain-

agnostic and aligned to preserve the anatomy structures.

5.2. Visualization of Disentanglement

Through the above experiments, we have shown that our

DALACE model outperforms the current state-of-the-art

models on both DA and DAL tasks. In this section, we will

show that anatomy information and modality information

are disentangled by the DALACE model through visual-

ization of domain-agnostic images and modality-transferred

images.

Domain-Agnostic Images To generate domain-agnostic

images, CT and MR images are embedded by encoders into

anatomy codes and modality codes. Then only anatomy

codes are fed into style-based generators without modality

codes to get the outputs as domain-agnostic images. Please

see Fig. 7 for domain-agnostic anatomical images gener-

ated by anatomy codes from different domains including

CT and multi-phasic MR. As demonstrated in the figure, the

modality information is erased while the anatomical struc-

tures are preserved in the domain-agnostic images. In other

words, the anatomy information is extracted and preserved

in the domain-agnostic anatomical embeddings.

Modality-Transferred Images To perform modality

transfer, both input images and reference images are embed-



ded by encoders into anatomy codes and modality codes.

Then we maintain the anatomy codes from input images

and modality codes from reference images and feed them

into the style-based generators to get modality-transferred

images. The generated modality-transferred images will in-

herit the anatomy structure from input images and modal-

ity rendering from reference images. Please see Fig. 8 for

CT images transferred to multi-phasic MR images in three

phases. It shows the successful disentanglement of modal-

ity information into modality code.

5.3. Interpretation

According to the categories for deep learning model ex-

planation methods in [6], the DALACE model is designed

to be easier to interpret by explicitly learning meaningful

and interpretable representations. The successful disentan-

glement of anatomy and modality information, as shown

in Fig. 7 and Fig. 8, adds transparency to the black-box

model. Furthermore, in the previous experiments, it was

shown that the learned meaningful and interpretable repre-

sentation is able to generalize and is useful for reconstruc-

tion and downstream tasks.

6. Ablation Studies

Recent work on disentanglement learning [14] suggests

that, besides demonstrating the successful disentanglement,

two important directions of future research are: (1) to in-

vestigate the concrete benefits of enforcing disentanglement

learning for downstream tasks. (2) to explicitly discuss

the role of supervision on disentanglement. Ablation stud-

ies are performed on our model to analyze the role of the

components in our proposed model, in accordance with the

above two points.

6.1. Effectiveness of Disentanglement

To investigate the concrete benefits of enforcing disen-

tanglement of the learned representations, we took out the

disentanglement from our model by replacing the anatomy

encoders, modality encoders and style-based generators

with CycleGAN and the other parts of the model remain

the same, except that there will be no domain-agnostic im-

ages and direct modality-transfer is applied between CT and

MR, which is essentially the TD-GAN [25] model with the

segment module pretrained on CT. The ablation experiment

showed that, without the disentanglement component, the

performance decreased from 0.847 to 0.793 for the DA task

and from 0.794 to 0.719 for the DAL task, which indicates

that the disentanglement benefits the performance of down-

stream tasks.

6.2. Role of Supervision on Disentanglement

To be explicit about the role of supervision for disen-

tanglement, as well as to investigate the role of APM and

APM DAM DSC for DA DSC for DAL

� 0.806 (0.035) 0.742 (0.041)

� 0.776 (0.078) 0.702 (0.132)

� � 0.847 (0.041) 0.794 (0.044)

Table 4. Ablation studies on the Role of Supervision on Disen-

tanglement of Anatomy Preserving Module (APM) and Domain

Agnostic Module (DAM).

DAM in the DALACE model, we take out the APM and

DAM part respectively. Taking out APM will separate the

end-to-end DALACE model into a two-stage model without

enforcing semantic consistency, which is essentially DADR

[24]. Taking out DAM will result in weakening the model’s

ability to learn a domain agnostic representation, thus de-

grading the performance. Please see Table 4 for details. It

shows the important role of supervision on disentanglement

and performance.

7. Conclusions and Limitations

For medical image analysis, in practice, it is expensive

and time consuming to collect and annotate medical images.

DA can be an effective solution for generalization of deep

learning models for medical image analysis. However, tar-

get data itself can come from different scanners, medical

sites, protocols and modalities with domain shifts, demon-

strating the importance of the proposed DAL task. In ad-

dition, each modality plays a unique role in the diagnosis

and after-treatment follow-up. An accurate model for the

DAL task not only solves the problem of scarcity of labeled

training data for medical image analysis using deep learn-

ing, but also it will improve the current clinical workflow

and greatly help the integration of different modalities.

This work explicitly proposed the DAL task for medi-

cal image analysis and introduced DALACE, an end-to-end

trainable model which utilizes disentanglement to preserve

the anatomical information and promote domain adaptation

to the new DAL task. Through ablation studies, we explic-

itly investigated the effectiveness of disentanglement and

the role of supervision for disentangled representation that

is domain agnostic and anatomy preserving. By visualiza-

tion, we showed that the disentanglement promotes the in-

terpretability of the learned representation.

While DALACE is proposed to tackle the DA and DAL

tasks, it also has the potential to realize style transfer. Get-

ting one model that works on style transfer, DA and DAL

tasks is difficult but desirable and an interesting direction

for future work. Without paired CT and MR to serve as

ground truth, style transfer results are difficult to be quanti-

tatively evaluated. The joint learning experiment also points

to a potential direction for future studies, the integration of

modalities.
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