
Retinal Image Classification via Vasculature-guided Sequential Attention

Mengliu Zhao and Ghassan Hamarneh

Medical Image Analysis Lab

School of Computing Science

Simon Fraser University, Canada

{mengliuz, hamarneh}@sfu.ca

Abstract

Age-related macular degeneration and diabetic

retinopathy are diseases of increasing prevalence globally

in recent years. Traditionally, diagnosing these diseases

relied on manual visual inspection by experts, which was

costly, time-consuming and laborious as it required closely

examining high-resolution color fundus images. More

recently, deep learning networks have shown great poten-

tial in predicting diseases from retinal images. However,

being purely data-driven, these networks are susceptible to

overfitting and their training requires large annotated data.

In this paper, we propose to enrich deep learning-based

fundus image classifiers with prior knowledge on special

structures in the retina implicated with the disease. In

particular, we leverage vessel priors to guide the attention

mechanism of deep learning architectures. In addition, we

leverage a bi-directional dual-layer LSTM module to learn

the inter-dependencies between a sequence of prior-guided

attention maps deployed across the depth of the disease

classification network. Results on the clinical datasets

show the proposed method could bring performance

improvement by as much as 8%.

1. Introduction

1.1. Motivation

The prevalence of eye diseases has been on the rise dur-

ing the past years, both globally and regionally. Accord-

ing to a recent Lancet publication [3], more than 216 mil-

lion people suffer from moderate to severe visual impair-

ment. The fact sheet from the US National Eye Institute

shows around 1.3 million of Americans are blind and the

figure is expected to rise to 2.2 million by 2030 [14]. Two

of the leading causes of blindness are age-related macular

degeneration (AMD) and diabetic retinopathy (DR) [14].

Early diagnosis and treatment of these diseases are cru-

cial in vision preservation, which makes automatic and

accurate classification of retinal images extremely impor-

tant [18, 19].

1.2. Machine (and deep) learning for retinal image
classification

Limited attempts to build automatic classification sys-

tems have been made using traditional machine learning

methods that relied on hand-crafted features. In the work

of Roychowdhury et al. [17], AdaBoost was used for fea-

ture reduction in a two-step hierarchical binary DR classifi-

cation (with DR or without) approach albeit with low speci-

ficity (53%) according to their reported results. Wang et

al. [22] proposed to combine multi-scale features and fea-

ture selection algorithms for AMD classification, but their

work focused on optical coherence tomography images, and

use a fairly small dataset with only 45 patients, while mul-

tiple images come from the patient at different scans.

The recent success of deep learning-based visual recog-

nition for numerous applications has sparked renewed in-

terest in addressing the task of retinal disease classification

and grading from fundus images. In the work of Gulshan et

al. [8], the Inception network was used for retinopathy grad-

ing (5 levels). Pratt et al. [16] used a 13-layer convolutional

neural network (CNN) for retinopathy grading (5 levels). In

the work of Gargeya et al. [7], a deep network with 5 resid-

ual blocks was constructed for feature generation, then the

output feature is input into a decision tree with other meta-

data information for binary retinopathy classification.

Previous fundus imaging-based deep learning methods

for AMD and DB classification and grading relied on

a purely data-driven tuning of network architectures yet

lacked any disease-specific customization to encode exist-

ing prior knowledge, such as anatomical structural changes

associated with the progression with of specific diseases.

One form of AMD, the wet AMD has been known to be

associated with abnormal growth of blood vessels in the

eyes [5]. By examining retinal photography images, Mc-

Gowan et al. [12] discovered correlations between AMD

and, not only blood vessels around the macular area but



also the blood vessel caliber across the whole fundus image.

Also, a recent study by Jackson et al. [9] discovered a high

prevalence of vascular abnormalities in conjunction with

AMD. However, to the best of our knowledge, automatic

deep learning AMD classification methods completely ig-

nored any vascular priors. On the other hand, DR is caused

by retinal blood vessel changes due to diabetes and, to a

certain extent, could also be linked to vessel overgrowth on

the retina [6, 10]. This literature shows how the develop-

ment of AMD and DB is highly correlated with changes in

retinal blood vessel structures and suggests that automatic

methods, deep learning or otherwise, could leverage such

prior information.

1.3. Attention mechanisms in deep learning

Several deep learning methods with attention mechanism

have been proposed in the past few years. Wang et al. [21]

proposed to add intermediate deconvolution layers to ex-

tract attention maps, combining them with the last layer

for prediction. In the works of Mnih et al. [13] and Xu et

al. [23], attention features were extracted from different lo-

cations within an image and stacked into a sequence that is

fed into an LSTM framework. Similarly, to handle cancer

classification from large histopathology images, BenTaieb

and Hamarneh proposed an attention mechanism that adap-

tively selects only a limited sequence of image locations

for further processing [2]. But none of these work lever-

aged any disease-specific prior information. For diagnosing

melanoma, Yan et al. used skin lesion masks to guide at-

tention maps across different layers of the VGG architec-

ture [24], but their work relied on expert-delineated (not

automatically-generated) prior masks, nor did they learn the

patterns of a sequence of attention maps.

1.4. Contributions

Our work is the first:

1. To leverage anatomical knowledge (in the form of vas-

cular priors) to guide the attention maps for retinal dis-

ease classification from fundus images;

2. To automatically extract the attention prior maps

(rather than requiring manually-segmented images);

3. To encode the inter-dependency among attention fea-

tures (deployed across the depth of the network),

which we accomplish via a novel bi-directional, dual-

layer LSTM.

We perform evaluation on two clinical datasets with cross-

validation and an ablation study. The experimental results

show that, by using the proposed vasculature priors and the

LSTM attention formulation, the results are improved by as

much as 8%.

2. Proposed Method

The proposed architecture is illustrated in Figure 1a. In

the following we describe the baseline architecture (Section

2.1), the proposed vasculature priors (Section 2.2), LSTM

module (Section 2.3) and the corresponding loss functions

(Section 2.4).

2.1. Baseline CNN with attention modules

We adopt the baseline CNN architecture proposed by

Yan et al. [24], which extends VGG-16 [20] with two ad-

ditional attention layers and one penultimate global feature

vector (obtained via global average pooling). The atten-

tion features and global feature vector are combined and

input into one dense layer for classification. We denote

the intermediate features generated from n different inter-

mediate convolutional layers as {F 1, F 2, ..., Fn}, where

F k = {fk
1
, fk

2
, ..., fk

n}, and fk
i is the feature of chan-

nel i. We further denote the global feature from the last

convolutional layer as G, the layer-wise attention maps

as {M1

attn,M
2

attn, ...,M
n
attn}, and the corresponding atten-

tion feature vectors as {A1, A2, ..., An}.

2.2. Vasculature priors on attention

A prior image Mprior is a binary image mask used to

guide the attention features. Mprior can be generated us-

ing an automatic method or manual delineation. In this

work, our goal is to use the vasculature structure to guide

the attention feature maps. As expert manual delineation is

time-consuming, we set Mprior to be the retinal vasculature

mask extracted from the input image using the automatic B-

Cosfire vessel filtering [1], which is based on calculating the

geometric mean of multiple difference of Gaussian filters.

Examples of the generated vessel masks could be found in

Figure 2.

To guide attention feature maps across different scales,

Mprior is processed with adaptive average pooling into dif-

ferent sizes as {M1

prior,M
2

prior, ...,M
n
prior} (see details in

Yan et al. [24]), corresponding to the sizes of the atten-

tion maps {M1

attn,M
2

attn, ...,M
n
attn}. M i

attn is guided by

M i
prior, for i = 1 · · ·n, by maximizing the similarity be-

tween the two via a minimizing Dice-based loss (defined in

Section 2.4).

The attention feature vector Ak is calculated as follows:

G = Upsample(Wg ⊗G) (1)

Fk = Wf ⊗ F k (2)

Mk
attn = σ(W ⊗ReLU(Fk + G)) (3)

aki = Mk
attn ⊙ fk

i (4)

Ak = GlobalAveragePool{ak
1
, ak

2
, ..., akn} (5)

where Wg,Wf ,W are convolutional filter weights, σ is

the sigmoid function, and ⊗ and ⊙ are the convolution
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Figure 1: (color figure) (a) Proposed architecture. Attention features (light gray boxes) and global features (green box) are

stacked into a sequence and input into a bidirectional dual-layer LSTM, and then input into a classification dense layer. (b)

Example of using prior image to guide attention map in layer 4.

and element-wise multiplication operators, respectively. In

Equation 1, global feature is convolved by a 256 channel

filter and upsampled to match the size of F k. In Equation

2, intermediate feature F k is convolved with a 256 channel

filter. In Equation 3, the attention map is generated using

G and Fk from the previous two steps. Then in Equation

4, the attention map is multiplied with intermediate feature

fk
i at channel i on an element-wise way, to preserve the

intermediate information. Then the attention vector Ak is

obtained by global average pooling of {ak
1
, ak

2
, ..., akn}.

2.3. Learning the sequence of prior-guided atten-
tion maps

In the work of Yan et al. [24], A1, A2, G were aligned

into a single vector before being input into a dense layer

for classification. In contrast, we wish to encode the inter-

dependency among all the n learnt attention feature vectors

across all layers, A, and the global feature vector G, using

a bi-directional dual-layer LSTM model.

In a LSTM module, given inputs xt, ht−1, cc−1 at

time step t, Wxi,Whi,Wxf ,Whf ,Wxo,Who,Wxc,Whc

the learnt weights, and bi, bf , bo, bc the corresponding bi-
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Figure 2: Examples of AMD and retinopathy images and

corresponding vessel masks: a) AMD image; b) AMD im-

age vessel mask; c) retinopathy image; d) retinopathy image

vessel mask.

ases, the following update scheme is used:

it = σ(Wxixt +Whiht−1 + bi) (6)

ft = σ(Wxfxt +Whfht−1 + bf ) (7)

ot = σ(Wxoxt +Whoht−1 + bo) (8)

gt = tanh(Wxcxt +Whcht−1 + bc) (9)

ct = ft ⊙ ct−1 + it ⊙ gt (10)

ht = ot ⊙ tanh(ct). (11)

To this end, x1, x2, ..., xt in Equation 6-9 are replaced

by A1, A2, ..., G. To deal with different sizes of Ak, we tile

Ak until they are of the same size as G. The output of the

LSTM is then fed into the classification layer (Figure 1a).

Illustration of inputs and output of LSTM could be found in

Figure 1a)

2.4. Loss functions

Similar to Yan et al. [24], we first use a modified cross

entropy loss, called focal loss [11] with γ = 2.0, to deal

with class imbalance:

LF = −(1− pi)
γ log(pi) (12)

where pi is the estimated probability for the class with la-

bel i. In a N -class classification problem, pi has to satisfy
N∑
i=1

pi = 1.

As described in Section 2.2, we wish to use vessel priors

to guide the learning of attention layers (Figure 1b). To this

end, we define the following prior loss, based on the Dice

similarity coefficient:

Li
DSC = 1− 2

|M i
attn ∩M i

prior|

|M i
attn|+ |M i

prior|
. (13)

where M i
attn is the intermediate feature at layer i and

M i
prior the corresponding prior mask.

The final loss is the sum of the focal loss and the

weighted prior loss, for the total of n attention maps:

L = LF +

n∑

i=1

wi · L
i
DSC . (14)

2.5. Implementation details

For the proposed architecture, we use Adam optimizer

with β = (0.9, 0.999) and set the initial learning rate to

10−4, weight decay ratio ǫ = 10−8, total epoch = 20, and

batch size = 20. The weight loss wi in (14) is set empiri-

cally to 0.1 for the AMD dataset and 0.001 for the retinopa-

thy dataset. Finally, the parameters for B-Cosfire filter are

summarized in Table 1.

3. Experiment

We test the proposed method on two public datasets

(iChallenge-AMD and IDRiD)) and evaluate the perfor-

mance of competing methods using Accuracy, Precision,

Recall and F1-score. We also perform ablation studies as-

sessing the value of the vessel priors and the LSTM formu-

lation.

3.1. Datasets:

3.1.1 iChallenge-AMD dataset

We obtained training data from iChallenge-AMD, a re-

cent AMD classification challenge, which contains 398 im-

ages: 87 AMD images and 311 non- AMD images, for the

purpose of binary classification. All images are color fun-

dus images of resolution 2124 ∗ 2056. We performed 3-fold

cross validation and augmented the training set 2 times by

random cropping, scaling and rotation.

3.1.2 IDRiD dataset

We obtained 516 images from this dataset: 413 training

and 103 testing data, for the purpose of retinopathy grad-

ing. International 5-level diabetic retiopathy (DR) grad-

ing is provided: (i) no apparent retinopathy, (ii) mild non-

proliferative DR, (iii) moderate non-proliferative DR, (iv)

severe non-proliferative DR and (v) proliferative DR. All

images are color fundus images of resolution 4288 ∗ 2848.



σ ρ σ0 α

sym asym sym asym sym asym sym asym

Retinopathy 5.0 5.0 25 24 1 1 0.1 0.1

AMD 5.0 5.0 20 22 1 2 0.1 0.1

Table 1: Parameters for B-Cosfire vessel filter. Sym: symmetric filter parameters; asym: asymmetric parameters. See

corresponding parameter meaning in the the original paper [1].

3.1.3 Dealing with the class imbalance problem

For the AMD dataset, since 311 non-AMD images and

87 AMD images were provided as the training set, we

oversample AMD image by 3 times to avoid class imbal-

ance. For retinopathy dataset, we oversample class (ii)

seven times, class (iv) two times and class (v) three times.

3.2. Results

3.2.1 Baseline experiments

We carry out baseline experiments using the architecture

in the work of Yan et al. [24] without prior information or

LSTM, and only with two layers (layer 3 and 4) of attention

features.

3.2.2 Assessing the advantage of using the vessel prior

To test the hypothesis that adding vessel prior would help

guiding the attention map, we compare the baseline archi-

tecture with and without vessel priors.

From Table 2 we see that adding vessel prior to the base-

line architecture improves the prediction results by as much

as 2%.

Comparing rows 1−2, 4−5, 7−8 and 10−11 in Table 3

shows that simply adding the vessel prior to the baseline ar-

chitecture improves the results of almost all evaluation met-

rics by as much as 6%. The improvement was observed re-

gardless of the number of layers equipped with an attention

module.

3.2.3 Assessing the advantage of using the LSTM

Here we set out to evaluate whether the proposed LSTM

module could leverage the inter-dependency of the attention

sequence.

From Table 2 we see that by adding the LSTM module

(proposed), the precision for predicting AMD is improved

by as much as 6%.

Comparing rows 2− 3, 5− 6, 8− 9 and 11− 12 in Table

3 shows that, when the length of the attention sequence is

no less than 2 (attention from more than 2 layers), by incor-

porating LSTM, the results improve by at least 3% for all

metrics and as much as 6%.

Furthermore, comparing rows 2− 3 from Table 3 shows

that, when the attention is limited to only one layer (layer 4),

LSTM is no longer effective since there is limited sequential

information in the training data.

3.2.4 Overall performance of the proposed method

By combining the vessel prior and the LSTM module

for learning inter-dependency from the attention sequence,

Table 2 and Table 3 (comparing rows 1−3, 4−6, 7−9 and

10− 12) both show the results are improved by as much as

8%.

3.2.5 Comparing with the state-of-the-art

Comparing the results of our proposed method to state-

of-the-art AMD classification methods [15, 4], and to the

DR grading accuracy results reported on the challenge, our

proposed method achieves comparable accuracy. However,

none of the state-of-the-art methods leverage any atten-

tion mechanism, so we expect that their performance will

improve with vessel-guided priors and attention sequence

modelling, similarly to how our baseline methods improved

with these extensions.

Furthermore, as shown by Yiqi et al. [24], including pri-

ors can help rendering the regions relevant for classification,

thus contributing to a more intuitive and interpretable deep

learning model.

4. Conclusion and future work

In this paper we propose a new architecture using ves-

sel prior to guide the attention sequence in deep learning

networks. To leverage the inter-dependency among the at-

tention sequence, a bi-directional dual-layer LSTM module

is used. Experiments using two clinical dataset, with binary

AMD classification and 5-level retinopathy grading tasks,

clearly demonstrate the advantages of the proposed archi-

tecture. Moreover, our ablation study with both datasets

show how the proposed architecture works with varying

lengths of the attention sequence, which could be easily

extended when there is an even deeper network involved.

Numerical results with multiple evaluation metrics are re-

ported and the performance improvement produced by the

proposed architecture reaches as much as 8%.



Future work will be applying the vessel prior guided

attention sequence mechanism to other applications, such

as multi-class AMD grading, as well as other CNN-based

architectures with more layers involved.
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Methods Vessel Prior LSTM Accuracy
Precision Recall F1-score

AMD NAMD AMD NAMD AMD NAMD

[24] ✗ ✗ 94± 2% 89± 6% 95± 2% 81± 7% 97± 2% 85± 4% 96± 1%

[24] + vessel prior ✓ ✗ 94± 2% 91± 4% 95± 2% 82± 5% 98± 1% 86± 5% 96± 2%

Proposed ✓ ✓ 95± 3% 97± 5% 95± 2% 82± 10% 99± 1% 89± 6% 97± 2%

Table 2: Testing result on AMD dataset with binary classification. AMD: images labeled as age-related macular degeneration;

NAMD: without disease. Attention comes from layer 3−4 of the architecture (see details of the baseline architecture in [24]).

Mean ± standard deviation are reported among the 3 groups for cross-validation.

Row Methods Attention Vessel Prior LSTM Accuracy Mean Precision Mean Recall Mean F1

1 [24]

layer 4

✗ ✗ 56% 54% 56% 55%

2 [24]+vessel ✓ ✗ 59% 59% 59% 57%

3 Proposed ✓ ✓ 59% 58% 59% 58%

4 [24]

layers 3-4

✗ ✗ 60% 57% 60% 58%

5 [24]+vessel ✓ ✗ 62% 60% 62% 60%

6 Proposed ✓ ✓ 68% 63% 68% 65%

7 [24]

layers 2-4

✗ ✗ 65% 65% 65% 63%

8 [24]+vessel ✓ ✗ 65% 63% 65% 63%

9 Proposed ✓ ✓ 68% 67% 68% 67%

10 [24]

layers 1-4

✗ ✗ 61% 59% 61% 60%

11 [24]+vessel ✓ ✗ 64% 61% 64% 61%

12 Proposed ✓ ✓ 67% 67% 67% 65%

Table 3: Testing result on retinopathy dataset with 5 level grading.

Information Processing in Medical Imaging, pages 793–804.

Springer, 2019. 2, 3, 4, 5, 7


