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Figure 1. A histology image (a) is typically broken into small image patches (b) for cancer grading. We propose to utilise the cell graph (d)

that is built from individual nuclei after segmentation (c) to model the entire tissue micro-environment for cancer grading.

Abstract

Colorectal cancer (CRC) grading is typically carried out

by assessing the degree of gland formation within histology

images. To do this, it is important to consider the over-

all tissue micro-environment by assessing the cell-level in-

formation along with the morphology of the gland. How-

ever, current automated methods for CRC grading typically

utilise small image patches and therefore fail to incorpo-

rate the entire tissue micro-architecture for grading pur-

poses. To overcome the challenges of CRC grading, we

present a novel cell-graph convolutional neural network

(CGC-Net) that converts each large histology image into a

graph, where each node is represented by a nucleus within

the original image and cellular interactions are denoted

as edges between these nodes according to node similar-

ity. The CGC-Net utilises nuclear appearance features in

addition to the spatial location of nodes to further boost

the performance of the algorithm. To enable nodes to fuse

multi-scale information, we introduce Adaptive GraphSage,

∗This work was conducted while the first author was visiting the Tissue

Image Analytics (TIA) Lab at the University of Warwick.

which is a graph convolution technique that combines multi-

level features in a data-driven way. Furthermore, to deal

with redundancy in the graph, we propose a sampling tech-

nique that removes nodes in areas of dense nuclear activity.

We show that modeling the image as a graph enables us

to effectively consider a much larger image (around 16×
larger) than traditional patch-based approaches and model

the complex structure of the tissue micro-environment. We

construct cell graphs with an average of over 3,000 nodes

on a large CRC histology image dataset and report state-of-

the-art results as compared to recent patch-based as well as

contextual patch-based techniques, demonstrating the effec-

tiveness of our method.

1. Introduction

Colorectal cancer (CRC) is one of the most common

cancers worldwide. According to the Global Cancer Statis-

tics 2018, CRC is the third most commonly occurring can-

cer among men and women and is the second most com-

mon cause of cancer related mortality [5]. Among CRC

cases, more than 90% of them are colorectal adenocarci-



Figure 2. Typical cell graphs from (a) normal, (b) low-grade and (c) high grade images. The blue lines represent the edges and the green

dots represent the nuclei (graph nodes).

nomas (CRA). Based on the degree of glandular forma-

tion, CRA can be divided into low-grade and high-grade

cancer, whereby low-grade CRA contains well/moderately

differentiated adenocarcinomas and high-grade CRA con-

tains poorly differentiated/undifferentiated adenocarcino-

mas [24]. Grading CRA is a crucial task due to its funda-

mental role in deciding on an appropriate follow-up treat-

ment and is also indicative of overall patient outcome [9].

There has been a recent surge in interest for digital

pathology, where tissue samples are digitised with a scanner

to create whole slide images (WSIs), enabling efficient stor-

age and management of the specimens. WSIs are stored in a

multi-resolution format, where at the highest resolution they

can be up to 150,000×100,000 pixels in size and contain

hundreds of thousands of cells. The rise of digital pathology

has led to the development of computational techniques for

automatic quantification and assessment of the tissue, help-

ing reduce the inter-observer variability between patholo-

gists. Furthermore, digital signatures within the tissue can

be used to assist with cancer diagnosis and to enable pre-

diction of cancer prognosis and clinical outcome, providing

motivation for the use of computational pathology within

routine clinical practice. Recently, several automatic meth-

ods have been proposed to grade or classify different can-

cers including breast, colon and lung cancer [1, 10, 22]. To

cope with the very large size of WSIs, the general frame-

work of these methods consists of two steps: patch-based

image classification followed by aggregation of patch based

classification at the slide level. First, the WSI is divided

into small image patches, where each patch is processed in-

dependently. Then, all predictions are combined to obtain

the final decision.

There are two main drawbacks faced by patch based ap-

proaches: First, there is an inherent trade-off between the

resolution of each image patch and the context provided.

The favourable size for each image patch is data-dependent.

For example, in CRA, the grade of cancer is determined by

assessing the degree of glandular formation in the tumour.

However, the variation in glandular morphology and size

leads to a difficulty in defining an appropriate image patch

size. Within Figure 2, (a) shows a normal case where the

glands have a clear tubular structure. On the other hand,

(b) and (c) show cancerous cases where typical glandular

appearance is less evident. Given a set resolution, the max-

imum image size that can be used is limited by the memory

of the GPU. An alternate strategy is to use a lower reso-

lution, which enables the same size patch to provide more

context, but at the same time will lose cell-level information

that may be diagnostically important. Second, due to the bi-

ases present within the features learned by a convolutional

neural network (CNN), features extracted from each image

patch may lack an interpretable correspondence to the tissue

morphology and glandular structure.

A way to address the above drawbacks is to model nu-

clear features along with their cellular interactions in the

form of a graph, which accounts for both cell-level informa-

tion and the overal tissue micro-architecture. A graph con-

structed from cells within a WSI contains many millions of

nodes and edges and therefore contains diagnostically im-

portant information relating to the tissue micro-architecture

that may not be visible by manual inspection. Recently, cell

graphs using graph theory have been studied , in order to

capture the functional organisation of cells [49]. Previous

work computed predefined graph-based features for cancer

diagnosis [13, 4, 3, 43, 28]. However, it remains unclear

how to select and combine graph-level features to best rep-

resent the complex organisation of cells in different tissue

components.

In this paper, we propose a novel and general framework

called Cell Graph Convolutional Network (CGC-Net) for



histology image classification, based on the recent develop-

ment of graph convolutional neural networks, and demon-

strate its effectiveness for grading of colorectal cancer his-

tology images. A cell graph is directly constructed from

an image, where the nuclei are regarded as the nodes and

the potential cellular interactions as edges of the graph. To

acquire accurate node features, we apply a nuclear segmen-

tation network and extract appearance features based on the

segmented foreground instances. Instead of computing pre-

defined graph-level features from the cell graph, the pro-

posed CGC-Net takes the entire graph as input to obtain

a compact representation of the tissue micro-environment

for cancer grading in an end-to-end manner. Within our

proposed model, we introduce the Adaptive GraphSage as

a new graph convolution module to enforce the fusion of

multi-level node features in a data-driven manner, followed

by the graph clustering module to coarsen the graph. We

then employ the learned hierarchical features for graph-

based classification. We would like to emphasize that it is

non-trivial to construct a cell graph suitable for the graph

convolutional network due to the large number of cells in

a histology image. Therefore, a representative nuclei sam-

pling strategy is proposed to reduce the number of nodes

and edges according to the relative inter-node distance.

Overall, our main contributions can be summarized as

follows:

• The CGC-Net is the first network of its kind for cancer

grading that bridges the gap between the deep learning

framework and the conventional cell graph.

• A general cell graph construction pipeline with a repre-

sentative nuclei sampling strategy that utilizes nuclear

appearance and spatial information.

• The CGC-Net utilizes the nuclei rather than small

patches as descriptors, where cluster visualization

leads to better biological insight and interpretability.

• A comprehensive study on a large colorectal cancer

dataset. Results show the proposed CGC-Net outper-

forms other state-of-the-art methods.

2. Related Work

Cancer grading in histology images: In the literature, ear-

lier methods relied on different hand-crafted feature extrac-

tion techniques, including nuclear appearance features (e.g.

colour, texture and shape) [14, 15] and morphological fea-

tures [51, 35] to distinguish between different grades of can-

cer. Recently, deep learning methods have been widely used

in various cancer grading tasks for a variety of tissues, in-

cluding: lung; breast and colorectal cancer [10, 44, 2]. Typi-

cally, the grading framework utilises a CNN for patch-level

classification and then individual image patch predictions

are combined to yield the overall result. Different strate-

gies have been proposed to utilise contextual information

to obtain a better prediction. for example, [19, 33] com-

bined multi-resolution information in either image space or

feature space, whereas [11] used an adaptive patch selec-

tion approach. In [42], the authors conducted a comprehen-

sive study on multi-scale information fusion methods and

proved that utilizing LSTM units to embed features with

larger context results in a superior performance.

In the case of colorectal adnocarcinoma, Awan et al. [2]

proposed a novel Best Alignment Metric (BAM) to measure

glandular morphology for classification, highlighting the

importance of the glands within colorectal cancer grading.

As a prerequisite, the BAM metric relies on a good quality

gland segmentation, which has been successfully explored

in recent work [21]. Recently, Shaban et al. [41] proposed

a context-aware network which uses an attention mecha-

nism to aggregate information from larger contextual re-

gions and outperforms other context-based methods as well

as domain-oriented methods. However, despite some of the

aforementioned methods incorporating additional context,

they are still limited by a pre-defined patch size and do not

necessarily incorporate the entire tissue micro-environment.

Cell graph: Cell graphs aim to model the relationship be-

tween different cells and the tissue micro-environment uti-

lizing graph features [40, 47, 13]. Within a cell graph, the

nuclei or cell clusters are regarded as vertices and the poten-

tial signal between them are regarded as the edges. Based

on the assumption that adjacent cells are more likely to in-

teract, the graph can be constructed via Delaunay triangu-

lation [30] or the K-nearest-neighbour method [4]. After

cell graph construction, the distribution of cell level features

are converted into global features and combined with other

predefined graph features to train a machine learning algo-

rithm, e.g. SVM, Bayesian, and KNN [37]. Bilgin et al. [3],

proposed the ECM-aware cell graph for bone tissue model-

ing and classification by incorporating colour information

and assigning a colour label for each node. Aside from

the task of cancer diagnosis, Sirinukunwattana et al. [43]

leveraged of the cell-cell interaction between different cell

types as tissue phenotypic signatures and used an unsuper-

vised learning approach to group the different tissue types

for distant metastasis estimation. All the above mentioned

methods need to define and extract graph-level features for

further classification or clustering.

Graph neural network: Earlier Graph neural network

methods [20, 34, 39] utilise recurrent neural networks for

neighbor information propagation. To reduce the expen-

sive computation, recent work utilised the concept of con-

volution and proposed various Graph Convolutional Net-

works (GCNs), which can be divided into spectral-based

GCN [6, 12, 31] and spatial-based GCN [36, 25]. Kipf and

Welling [31] proposed a localised first-order approximation



of spectral graph convolutions for scalable semi-supervised

learning. GraphSage was proposed in [25], which in-

troduces aggregation functions for message parsing and a

batch-training strategy to improve the scalability of large

graphs. To learn hierarchical features for better graph-level

classification and to reduce the computational complexity,

different graph pooling methods have been proposed to re-

duce the graph size [52, 18, 50]. Ying et al. [50] proposed

the differential graph pooling method which utilises another

graph convolution layer to generate the assignment matrix

for each node. Xu et al. [48] proposed to leverage different

neighborhood ranges adaptively for better feature represen-

tation. Recently, [29] attempted to model the relation-aware

representation for cervical cell classification. However, no

work has been done to utilise GCNs to model the tissue

micro-environment.

3. Method

3.1. Graph Convolutional Network

Different from the conventional convolution which op-

erates on the regular grid in the Euclidean space, the graph

convolution extends the information aggregation to the non-

Euclidean space to allow incorporation of irregular data

structure.

A graph is defined as G = (V,E), which consists of a

node set V with d-dimensional node features xi ∈ R
d for

i ∈ V and edge set E, where ei,j = (i, j) ∈ E denotes

an edge. An adjacency matrix A ∈ R
n×n has non-zero en-

try Aij > 0 if eij ∈ E. Let h
(l)
i ∈ R

d denote the hidden

features in the l-th layer for node i, then its analogous neigh-

borhood is Ñ(i) = {i} ∪ {j ∈ V |eij > 0}. Here, we use

h
(0)
i = xi for the input layer. A typical graph convolution

operation can be written as:

h
(l)
i = σ

(
W (l) ·Agg

{
h
(l−1)
j , ∀j ∈ Ñ(i)

})
, (1)

where Agg {·} is a pre-defined aggregation function, W (l)

is the learnable weight in the l-th layer shared by all the

nodes and σ is the non-linear function, where specifically

we use ReLU in our experiments.

3.2. Cell Graph Construction

Constructing a meaningful graph which reflects the po-

tential interactions between cells is a vital part of our analy-

sis. Each image is converted to a cell graph, where nodes are

nuclear descriptors and edges are the potential interactions

between cells. In order to construct the graph, we com-

plete the following steps: i) nuclear instance segmentation

to extract node features; ii) representative node sampling to

remove redundancy in the graph and iii) graph edge config-

uration to define potential cellular interactions.

Nuclear instance segmentation: Precise nuclear instance

segmentation leads to more reliable node features in the

cell graph. Therefore, due to its high performance, we use

CIA-Net [53] to accurately delineate the boundaries of each

nucleus. CIA-net is a contour-aware network with two in-

teracting branches that aggregate both contour and nuclear

features for a superior result.

Cell nuclei feature extractor: The nuclear masks obtained

via CIA-Net are used to extract nuclear shape and appear-

ance features to strengthen the diagnostic capability of our

graph-based approach for colorectal cancer grading. In or-

der to select the most predictive nuclear descriptors, we

first implemented a random forest model to classify nu-

clei as either epithelial, inflammatory or spindle-shaped and

then utilised feature selection to choose the 16 most predic-

tive features. We chose to select features that were predic-

tive of the nuclear category because the features can subse-

quently help to indirectly encode the category of each nu-

cleus. Here, we chose to keep the raw descriptors rather

than the predicted categories because we assume that they

may be more informative for predicting the grade of can-

cer. In addition, we incorporate the centroid coordinates and

therefore in total use seventeen nuclear descriptors: mean

nuclei intensity; average fore-/background difference; stan-

dard deviation of nuclei intensity; skewness of nuclei inten-

sity; mean entropy of nuclei intensity; GLCM of dissimi-

larity; GLCM of homogeneity; GLCM of energy; GLCM

of ASM; eccentricity; area, maximum length of axis; mini-

mum length of axis; perimeter, solidity; orientation and cen-

troid coordinates.

Representative nuclei sampling strategy: Utilizing all nu-

clei in the image as nodes within a graph is undesirable

because of the following reasons: First, some regions are

dense with many cells containing similar features and there-

fore it is unnecessary to incorporate them all within the

graph. Second, some graphs contain a huge amount of nu-

clei and therefore utilizing them all within the graph is very

computationally expensive.

To resolve this problem, we propose to sample a-ratio

of the representative nuclei, instead of using all of them.

Specifically, we use the Farthest Point Sampling (FPS)

method [16] to choose a subset of nuclei, where each nu-

cleus has the farthest distance to the selected nuclei collec-

tion. Compared to random sampling, it effectively alleviates

the problem of removing nuclei within sparse areas. Fur-

thermore, to prevent over-fitting we sample b-ratio (b < a)
of nuclei randomly and add them to the selected subset. We

choose a = 0.35 and b = 0.15 in all experiments.

Graph edge configuration: In the cell graph, we define an

edge as the potential interaction between two nuclei. We

hypothesise that the cells with a smaller Euclidean distance

are more likely to interact. To this end, we assign an edge

between two nuclei if they are within a fixed distance from

each other. Moreover, the maximum degree of each node is



Figure 3. Overview of the CGC-Net.

Figure 4. Detailed structure of the Adaptive GraphSage module.

set to k corresponding to its k-nearest neighbors. Formally,

the adjacency matrix can be written as follow:

Aij

{
1 if j ∈ KNN(i) and D(i, j) < d,
0 otherwise.

(2)

D(·, ·) denotes Euclidean distance.

3.3. Cell Graph Network Architecture

After constructing the cell graph, the task of colorectal

cancer grading can be considered as a graph-level classifi-

cation problem. We proposed the CGC-Net equipped with a

stack of graph convolution and graph pooling modules. The

graph convolution aggregates features from the nodes’ local

neighbors, which in our case is the nuclei along with their

interactions. To enable the nodes to fuse multi-scale fea-

tures according to the contextual structure adaptively, we

proposed Adaptive GraphSage which combines multi-level

features in a data-driven way. After generating the node’s

hidden embedding, the graph clustering operation coarsens

the graph by assigning the nodes to different groups, which

can be considered as an extension of the standard pooling

operation.

Adaptive GraphSage: Given node features and edge infor-

mation, various types of graph convolution can be used to

learn the nodes’ hidden representation. In [25], it processes

the predefined aggregation functions Agg (·) in Eq. 1 in-

cluding mean, sum and max function. Then, it combines

the multi-level node representation by concatenation and

applies the operation k times to capture the k-hop neigh-

bors’ information.

Although the node embedding after GraphSage contains

multi-level neighborhood information, it cannot adaptively

assign weights to the features according to the local topo-

logical structure around the target node. In other words,

it can only fuse the multi-level embedding features in the

same way for all nodes in that graph, which is not suit-

able for the cell graph because we want to capture the gland

structure at various scales.

Inspired by [48], we propose a learnable pattern to ag-

gregate multi-level embedding features for each node to ad-

dress this issue. In particular, the proposed Adaptive Graph-

Sage stacks k graph convolutions, which means that each

node can aggregate information from its k-hop neighbors.

We consider the intermediate outputs from graph convolu-

tions
{
h
(1)
v , h

(2)
v . . . h

(k)
v

}
as sequential inputs with depen-

dent information and feed them into a bi-directional LSTM

to acquire the forward and backward hidden embeddings

f
(l)
v and b

(l)
v for each feature. Then for each layer h

(l)
v ,

the concatenation of forward and backward hidden embed-

dings
[
f
(l)
v |b

(l)
v

]
are passed through a linear mapping func-

tion followed by a Softmax to get the importance score

s
(l)
v . Finally, the representation of each node is obtained

by performing a weighted sum of the multi-level features

mv =
∑

l s
(l)
v · h

(l)
v .

The proposed Adaptive GraphSage utilises an attention

mechanism to enable multi-scale feature fusion. This mech-

anism allows the network to generate an effective node rep-

resentation according to its local structure, adaptively.

Graph clustering module: After the input is passed

through the Adaptive GraphSage, the node features contain

the local contextual information. However, the flat struc-

ture remains a drawback because the the hierarchical struc-

ture is lost when using global mean/max pooling to get the

graph-level prediction. Therefore, the clustering operation

is necessary to extract more abstract features for hierarchi-

cal representation. We make use of the graph clustering

method used by Ying et al. [50] that utilises another graph

convolution for node assignment prediction in parallel with



feature extraction.

To be concise, let H(i) ∈ R
ni×di denote the features

for all nodes after i-th graph clustering and A(i) ∈ R
ni×ni

denotes the adjacency matrix (H(0) and A(0) are the input

features and adjacency matrix). One Adaptive GraphSage

is applied to generate the embedding matrix M (i). Mean-

while, the nodes are passed through another GraphSage fol-

lowed by a linear function to generate the assignment ma-

trix S(i) ∈ R
ni−1×ni . S(i) denotes the probability of each

node being assigned to each cluster, e.g. Spq denotes the

probability of assigning the p-th node to the q-th cluster.

After we get the M (i) and S(i), the clusters are consid-

ered as new nodes for the following layer, where the clus-

ters’ features and corresponding adjacency matrix are:

H(i) = S(i)TM (i), (3)

A(i) = S(i)TA(i−1)S(i) (4)

Over-smooth problem: The literature reports that there

exists the over-smooth problem for graph convolution net-

works [7, 32]. To alleviate this problem, we apply the re-

weighted scheme that was originally proposed by Chen et

al. [7]. Concretely, this scheme is defined as:

A
′

ij

{
p/

∑n

j=1,j �=i Aij if i �= j

1− p if i = j
, (5)

where p = 0.4 in our experiment.

Combining Hierarchical features for graph-level classi-

fication: We utilise a max operation for the node embed-

dings at each stage to get a fixed-size representation. Then

the concatenation of multi-level representations is fed into

the linear layer to get the prediction for 3-class classifica-

tion. The whole network is trained with cross-entropy loss.

3.4. Implementation

All the node features are normalised by subtracting the

mean and dividing by its standard deviation channel-wise.

To prevent over-fitting, Dropout [45] is used with p = 0.2
during training. The CGC-Net is implemented using Py-

Torch [38] with the geometric deep learning package [17].

We use Adam optimization with an initial learning rate of

1e−3. All models are trained for 30 epochs with a batch

size of 40. The learning rate is dropped to
{
1e−4, 1e−5

}

after 10 and 20 epochs respectively and the weight decay

is set to be 1e−4. The model has 1.44M parameters. The

training process takes 12 hours on a server with 4 NVIDIA

TITAN V GPUs. It takes 6 minutes to process 10500

patches(1792× 1792) on a single GPU.

4. Experiment

4.1. Dataset and Evaluation Metrics

Colorectal Cancer(CRC) dataset: The proposed method

is evaluated on the CRC dataset [2], which consists of

139 images taken from WSIs with an average size of

4548×7520 at 20× magnification. The images are divided

into normal, low grade and high grade based on the de-

gree of gland differentiation. To conduct a fair compari-

son, we split the dataset the same way as [41] into three

folds for cross-validation. We extract patches with a size

of 1792×1792 pixels for cell graph construction, which is

the same size that the context-aware learning method [41]

used. Similar to [41], majority voting is used to generate

the image-level prediction. To evaluate the performance, we

use the average accuracy at both image-level (4548×7520)

and patch-level (1792×1792).

Colorectal nuclear segmentation and phenotypes (CoN-

SeP) dataset: To train the nuclear segmentation network

for graph construction, we use the CoNSeP dataset [23].

CoNSeP consists of 41 H&E stained images with

1000×1000 pixels at 40× magnification extracted from 16

CRA WSIs. Image patches were chosen to be representative

of the tissue within CRA histology images and therefore we

expect a method trained no this dataset to generalise well to

the images used for graph construction.

4.2. Experimental Results

4.2.1 Comparison with State-of-the-Art

To prove the effectiveness of CGC-Net, we compared the

proposed method with recent state-of-the-art methods.

(1) Context-Aware-CNN (CA-CNN) [41]: the state-of-

the-art context-aware learning framework for CRC grading

which incorporates large contextual regions and aggregates

information via patch-based feature-cubes.

(2) BAM [2]: a two-step method for CRC grading which

first segments glands and then computes the Best Alignment

Metric (BAM) for classification. Here, we report the re-

sults of BAM-1 and BAM-2. BAM-1 computes the average

BAM and the BAM entropy, whereas BAM-2 additionally

computes the Regularity Index.

(3) Context-G [42]: A context-aware approach which

makes use of a shared CNN followed by a long-short term

memory (LSTM) to aggregate multi-scale information.

(4) Patch-based models: Several State-of-the-arts net-

works including ResNet50 [26], MobileNet [27], Incep-

tionV3 [46] and Xception [8] are trained small patches of

size 224×224. It must be noted that the 3 folds were split

in the same way as [41] and therefore we utilise the com-

parative results from the respective paper.

As can be seen in Table 2, our proposed CGC-Net out-

performs all competing methods by a large margin with

smaller standard deviation, highlighting that CGC-Net is

well suited to the task of colorectal cancer grading by in-

corporating both nuclear and graph-level features.



Node Features GC Sampling Patch Accuracy Image Accuracy

Appearance & Spatial GS Fuse 89.42 ± 1.68 96.28 ± 2.82

Appearance & Spatial AGS Random 88.11 ± 2.47 93.25 ± 1.94

Appearance & Spatial AGS Farthest 89.47 ± 2.71 96.28 ± 1.03

Spatial AGS Fuse 69.50 ± 3.56 86.63 ± 4.67

Appearance AGS Fuse 89.68 ± 2.28 97.00 ± 1.10

Appearance & Spatial AGS Fuse 91.60 ± 1.26 97.00 ± 1.10

Table 1. Average patch-level accuracy and image-level accuracy on CRC dataset. GC represents the graph convolution method, where GS

and AGS denote GraphSage and Adaptive GraphSage respectively. Sampling represents the nuclei sampling strategy.and AGS denote GraphSage and Adaptive GraphSage respectively. Sampling represents the nuclei sampling strategy.

Figure 5. Comparison of different node sampling strategies.

Method Image Accuracy

BAM-1 [2] 87.79 ± 2.32

BAM-2 [2] 90.66 ± 2.45

Context - G [42] 89.96 ± 3.54

ResNet50 [26] 92.08 ± 2.08

MobileNet [27] 92.78 ± 2.74

InceptionV3 [46] 91.37 ± 3.55

Xception [8] 92.09 ± 0.98

CA-CNN [41] 95.70 ± 3.04

Ours 97.00 ± 1.10

Table 2. Comparison with state-of-the-art on CRC dataset.

4.2.2 Ablation Studies

Adaptive GraphSage: Inspired by GraphSage [25] and

JK-Net [48], we proposed a new graph convolution method

for neighboring aggregation, named Adaptive GraphSage.

Compared with GraphSage [25], the proposed method ag-

gregates information within a neighbourhood adaptively,

which is of significance for the cell graph of CRC with ir-

regular glandular structure. Comparative results are shown

in Table 1, where we observe that our proposed method

achieves the best performance on both patch-level and

image-level accuracy.

Node Features: In order to test the effect of nucleus ap-

pearance features and spatial features, we construct the cell

graph utilizing different features combination. Results can

be seen in Table 1. Cell graph with only spatial features

achieves 86.63% for image-level accuracy, which demon-

strates the tissue architecture is informative for CRC grad-

ing. Meanwhile, the results of cell graph with nucleus ap-

pearance features are only 1.92% below the cell graph with

combined features on patch-level accuracy, which shows

that the cellular heterogeneity in cancer region is a piv-

otal visual cue for cancer grading. Graph equipped with

combined features achieves the highest results, 91.60% for

patch accuracy and 97.00% for image accuracy. Though the

image-level results are the same, utilizing complementary

information from combined features has higher patch-level

accuracy, which demostrates the patch predictions within

one image are more consistent.

Nuclei sampling strategy: As introduced in Section 3.2,

to reduce the size of the cell graph and preserve the cell

architecture information in the graph, we propose a repre-

sentative nuclei sampling strategy. Experiments of utilizing

different sample strategy can be seen in Table 1, where Ran-

dom, Farthest and Fuse denote the random sampling, far-

thest sampling and our proposed sampling method. Com-

pared with results from random sampling in the second

row, using farthest sampling achieves improvement from

88.11% to 89.47% for the patch accuracy, as well as the im-

age accuracy from 93.25% to 96.28%. This is because the

farthest sampling can preserve the glandular structures bet-

ter. In addition, the patch accuracy is further improved from

89.47% to 91.60% using our proposed sampling methods,

which is because it either preserves the tissue structures or

reflects the cell density to some extent, which can be con-

sidered as a trade-off between them.

Visualisation of different cell graphs constructed by dif-

ferent sampling methods can be seen in Figure 5. Cells in

the original graph are extremely dense with a large num-



Figure 6. Visualisation of the node clustering results. Nodes with different colours represent that they are arranged to different clusters.

ber of edges, which is neither feasible nor necessary for

training. Random sampling leads to a large number of

disjoint sub-graphs in the sparse cell regions and there-

fore does no appropriately model the micro-environment

well. In addition, farthest sampling leads to a better tis-

sue structure representation, especially in regions with very

few cells, but does not reflect the cell density well, which

could also be informative when grading the cancer. Lastly,

our method effectively captures the structures and the cell

density to some extent, which can better model the tissue

micro-environment.

4.3. Cell Graph Visualisation

To fully understand our method, we visualise the cluster

assignment of each node in the first and second layers of

our proposed CGC-Net. Specifically, we assign each node

to a cluster ID according to the maximum probability in

the assignment matrix. For the second cluster assignment

output, we map the cluster ID back to the original nodes.

As can be seen in Figure 6, the first clustering operation

groups cells with similar appearance into many small clus-

ters, which shows the nodes have aggregated local contex-

tual information. After the second clustering operation, we

observe that fewer clusters are present within the graph and

cells belonging to similar tissue structures tend to gather to-

gether. Specifically, we observe that nuclei within potential

tumour regions are assigned to the red cluster and nuclei

in normal tissue regions are assigned to the green cluster.

Overall, it demonstrates the CGC-Net hierarchically aggre-

gates information and captures both the local and the global

features. Not only this, but the cluster visualisation gives

us confidence that the features that the graph convolutional

network are learning are biologically plausible.

5. Conclusion

In this paper, we propose a novel first-of-its-kind cell

graph convolutional network for grading of colorectal

cancer histology images, effectively aggregating informa-

tion about cell morphology and tissue micro-architecture

through a stack of graph convolution and clustering op-

erations. Furthermore, we propose a general cell-graph

construction pipeline with a representative nuclei sampling

strategy to reduce computational redundancy. The proposed

CGC-Net effectively models the tissue micro-environment

by considering the appearance features of the cell nuclei

along with their local interactions, outperforming current

state-of-the-art methods on a large-scale colorectal cancer

grading dataset.
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