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Abstract

The challenge of Ad-Hoc Video Search (AVS) originates

from free-form (i.e., no pre-defined vocabulary) and free-

style (i.e., natural language) query description. Bridging

the semantic gap between AVS queries and videos becomes

highly difficult as evidenced from the low retrieval accuracy

of AVS benchmarking in TRECVID.

In this paper, we study a new method to fuse multimodal

embeddings which have been derived based on completely

disjoint datasets. This method is tested on two datasets for

two distinct tasks: on MSR-VTT for unique video retrieval

and on V3C1 for multiple videos retrieval.

1. Introduction

Ad-Hoc Video Search (AVS) is a challenging task con-

sisting in using natural language queries to retrieve relevant

video segments from large datasets (see Figure 1). Ad-Hoc

implies that the query follows no pattern, and the terms are

drawn from an open vocabulary that is not restricted to any

particular domain. Due to this nature, a query can be very

specific (e.g., ”find shots of a surfer standing on a surfboard,

not in the water”) or open ended (e.g., ”find shots inside a

moving car”). Therefore, a ”good” model for AVS should

be able to extract relevant high-level features from videos,

parse text queries, and find a common representation of both

modalities for relevance judgement. TRECVID, an evalua-

tion campaign, is organized yearly by the NIST to evaluate

state-of-the-art models for different video processing tasks,

including the AVS task [3]. In this paper, the focus of study

is automatic AVS using external training data.

Most recent works in image and video processing and in

text processing rely on Deep Learning techniques. For im-

age processing, commonly used feature extractors or con-

cepts detectors are deep Convolutional Neural Networks

(CNNs) which have been pretrained on ImageNet 1000 cat-

egories [8]. For video processing, I3D trained on the Kinet-

ics dataset has shown excellent results in activity detection

[5]. Regarding text processing, recent works have shown

that RNNs such as LSTMs [11] or GRUs [7] could be used

Figure 1. Principle of AVS. Video Features are derived from videos

and processed by a Video Model to obtain a vector representation.

At the same time, a text query is processed by a Text Model that

also derives a vector representation. These two vector representa-

tions are then compared to list all relevant videos with respect to

the text query.

to build efficient language models.

In this paper, we propose using a fusion of three mul-

timodal modules trained on different datasets to tackle the

AVS task. Our contributions are two-fold:

- joint exploitation of object counting, activity detection

and semantic concept annotation for query interpreta-

tion;

- a new fusion method that combines three modules

trained on different datasets and shows competitive

performance.

The remaining sections are organized as follows. Section

3 introduces the related works in AVS. Section 4 introduces

the cross-modal learning employed for training three differ-

ent modules, while Section 4 describes the proposed fusion

method. Section 5 provides empirical insights and Section

6 concludes this paper.



2. Related Works

From AVS 2018 [2], the general approaches from the

participants can be summarized as follows: linguistic analy-

sis for query understanding combining different techniques

for concept selection and fusion; or learning joint embed-

ding space of textual queries and images; or the integra-

tion of two mentioned approaches. From the results of ten

participants, we conclude that the approach of learning the

embedding space is the key of success for AVS task. Fol-

lowing up this direction, we propose to learn three embed-

ding spaces including objects counting, activities and se-

mantic concepts separately, and a fusion method to incor-

porate these models.

3. Cross-Modal Learning

In this section we will describe the multimodal models

we employed. More precisely we will first define their ar-

chitecture and then how we trained them. Please note that

in this section, we will consider images and videos, even

though our models will be used for Ad-Hoc Video Search.

The reason is that some of our models will be trained on

images and applied at frame-level on videos. More infor-

mations will be given at Section 5.2.

3.1. Feature Representation

Let Q be a textual query and V an image or a video. We

want to build a model so that Q and V can be compared.

More precisely, we want to be able to assign a score to any

(Q, V ) to describe the relevance of V with respect to Q. For

that purpose, we use a similar model to [9].

For processing textual queries, we represent any query

Q of length L as a sequence (w1, ..., wL) of one-hot vectors

of dimension N , where N is the size of our vocabulary.

These one-hot vectors are then embedded in a vector space

of dimension D. More formally, we obtain a sequence of

word embeddings (x1, ..., xL) where xk = wkWe for each

k in {1, ..., L}. The weights of the embedding matrix We ∈
R

D×N are trainable.

The obtained sequence of word embeddings is then pro-

cessed by a GRU, whose last hidden state is kept and input

to a Fully-Connected layer to get a sentence embedding.

Formally, a GRU is defined by the following equations:

ut = σ(htWuh + xt+1Wux + bu) (1)

rt = σ(htWrh + xt+1Wrx + br) (2)

h̄t = tanh((ht ◦ rt)Whh + xt+1Whx + bu) (3)

ht+1 = (1− ut) ◦ ht + ut ◦ h̄t (4)

where Wuh, Wux, Wrh, Wrx, Whh, Whx, bu, br and bu are

trainable parameters. If the length of the input sequence is

L, then the final sequence embedding vs is defined as:

vs = hLWs + bs (5)

where Ws and bs are trainable parameters.

Regarding visual objects, the generic process we employ

is to extract a vector representation ϕ(V ) of a visual object

V where ϕ corresponds to any relevant concepts or features

extractor. Then, we input ϕ(V ) to a Fully-Connected layer

to obtain a visual embedding vv:

vv = ϕ(V )Wv + bv (6)

where Wv and bv are trainable parameters.

Our goal is to train these models to be able to compare

vs and vv . We will explain how these models are trained in

Section 3.2.

3.2. Model Training

The objective is to learn a mapping such that the rele-

vancy of a pair of a query and a video (Q, V ) can be evalu-

ated. As explained in Section 3.1, our model derives a query

representation vs from Q and a video representation vv from

V . Triplet loss is used as the loss function for model train-

ing. Mathematically, if we consider a query representation

vs, a positive video representation vv (corresponding to vs)

and a negative video representation v̄v (that does not corre-

spond to vs), the triplet loss L for (vs, vv, v̄v) to minimize

is defined as follows:

L(vs, vv, v̄v) = max(0, α−cos(vs, vv)+cos(vs, v̄v)) (7)

where α is a margin hyperparameter. We chose to employ

the hard-margin loss presented in [9], where v̄v is chosen to

be the representation of the negative video with the highest

similarity with the query representation vs among all videos

in the current training mini-batch.

4. Fusion Strategy

In this section we will describe the three multimodal

modules we used and how we fused them.

4.1. Multimodal Modules

Our model relies on three multimodal modules: a count-

ing module, an activity module and a concepts module (see

Figure 2). Each of them has the architecture we described

in Section 3.1 and has been trained according to the opti-

mization scheme we defined in Section 3.2.

The counting module is based on a Faster-RCNN [16]

trained on the OpenImagesv4 dataset [13]. It takes images

as inputs. For each input, it detects objects belonging to

the 600 classes of OpenImagesv4 and counts them to ob-

tain a vector of dimension 600, where the value at index

i corresponds to the number of detected objects of class i.

Embeddings are then derived from that vector.

The activity module relies on an I3D trained on Kinetics-

600 and takes video inputs. Each input is processed by the



Figure 2. Proposed model. We extract embeddings from three modules: a counting module, an activity module and a concepts module.

These embeddings are then concatenated and input to Fully-Connected layers to obtain new embeddings. That model is also trained using

a triplet loss.

I3D, which returns a vector of 600 logits corresponding to

the 600 activities of the Kinetics-600 dataset. That vector

is then processed as described in Section 3.1 to obtain an

embedding.

The concepts module takes as input concepts detections

coming from four different concept detectors. These con-

cept detectors are ResNet [10] models trained on Ima-

geNet1k, Places-365 [22], TRECVID SIN [21] and HAVIC

[18]. Following the same process as for other two modules,

we generate embeddings from the concatenation of the con-

cept detections coming from these four detectors.

4.2. Fusion Model

Instead of simply averaging similarity scores to compare

videos and queries, we chose to train a model to draw finer

similarities between them. For that purpose, we derived

embeddings from our modules for videos and queries, and

passed them through Fully-Connected layers to obtain new

embeddings. More formally, if v1v , v2v and v3v are video em-

beddings respectively generated by the counting module,

the activity module and the concepts module, we derived

the new video embedding vv as follows:

vv = concat(v1v , v
2
v , v

3
v)W

fuse
v + bfuse

v (8)

where W fuse
v and bfuse

v are trainable parameters. Similarly, if

v1s , v2s and v3s are query embeddings, we obtain a new query

embedding as follows:

vs = concat(v1s , v
2
s , v

3
s)W

fuse
s + bfuse

s (9)

where W fuse
s and bfuse

s are trainable parameters.

We trained our fusion models using the same triplet loss

as we did for multimodal modules, as decribed in Section

3.2.

5. Experiments

In this section, we describe how we implemented and

trained our models, and present our experimental results.

5.1. Datasets

We used the MSCOCO [15] dataset to train the count-

ing module (not the Faster-RCNN itself) and the concepts

module. MSCOCO is composed of about 120k images, and

five captions per image. We trained modules on the whole

dataset, using 1k images for validation: we did not employ

the usual train/validation/test split.

Regarding the activity module, it has been trained on the

TGIF [14] dataset (containing about 100k animated GIF im-

ages and 125k captions) and on the MSVD [6] dataset (con-

taining 1970 videos and about 70k captions).

Fusion models have been trained on the MSR-VTT [20]

dataset, containing 10k videos with 20 captions each. We

used the usual split: 6513 videos for training, 497 for vali-

dation and 2990 for testing.

Our models have also been evaluated in terms of mean

average precision based on 10,000 retrieved shots on V3C1

[4], containing 7475 videos split into 1,082,657 shots, using

the provided ground-truth results for six queries.

5.2. Implementation details

We implemented our models using the Tensorflow [1]

framework for Python. Each of them has been trained for

150k iterations with mini-batches of size 64. We used the

RMSProp [19] algorithm, with gradients capped to values

between -5 and 5 and a learning rate of 10−4. Hidden di-

mensions of GRUs are always 1024, and embeddings output

by multimodal modules and fusion models are of dimen-

sion 512. The size of vocabularies has been set to 20k. We

applied dropout [17] with rate 0.3 to all outputs of Fully-

Connected layers, and batch normalization [12] to the in-

puts of our models. In triplet losses, the α parameter has

been set to 0.2.

Modules trained on images (counting and concepts mod-

ules) are used for videos during testing in two different

ways. For tests on MSR-VTT, we extracted uniformly



one frame every fifteen frames, applied the extractor on

each frame (Faster-RCNN for the counting module or con-

cepts extractors for the concepts module) and averaged ob-

tained vectors. For tests on V3C1, we processed provided

keyframes instead of entire videos.

5.3. Performance of Modules

Model R@1 R@5 R@10 medR

M1 (Counting) 2.95% 7.16% 11.40% 264

M2 (Activity) 2.83% 8.80% 13.59% 167

M3 (Concepts) 3.88% 10.69% 15.44% 168

Table 1. Results on the MSR-VTT test dataset of three modules.

Model mAP

M1 (Counting) 2.15%

M2 (Activity) 0.00%

M3 (Concepts) 2.15%
Table 2. Results on the V3C1 dataset of three modules.

In this section, we report results of each module on the

unique video retrieval task (evaluated on MSR-VTT) and

the multiple videos retrieval task (evaluated on V3C1). Re-

sults are reported in Table 1 and Table 2.

One can notice that relative results of modules are com-

pletely different with respect to the task. On the unique

video retrieval task, the counting module has the worst re-

sults, and the concepts module has the best results. On the

multiple videos retrieval task, the counting module and the

concepts module perform similarly, and the activity module

has very bad results.

We think that these results are due to the fact that shots

in the V3C1 datasets are much shorter than the videos on

which the I3D activity extractor has been trained. For that

reason, we will not report results of fusions involving the

I3D on V3C1 in the following. Regarding the fact that the

counting module performs as well as the concepts module

on the multiple videos retrieval task, our hypothesis is that

the multiple videos retrieval task requires less precision than

the unique video retrieval task: the concepts module covers

a large range of visual concepts, which is useful when look-

ing for a specific video, but less useful when the goal is to

retrieve as many videos as possible.

In the next section, we will present results of fusions

5.4. Performance of Fusions

Results of fusion models are reported in Table 3 and Ta-

ble 4. Two types of fusions have been tested : Mi + Mj

means that we summed up similarity scores between mod-

ules Mi and Mj , and F(Mi,Mj) means that we applied the

fusion scheme we described in Section 4.

In each case, the best model involves a fusion according

to our fusion method. In the unique video retrieval task,

Model R@1 R@5 R@10 medR

M1 +M2 3.91% 11.31% 16.87% 133

M1 +M3 4.29% 11.56% 16.22% 149

M2 +M3 4.69% 13.31% 19.19% 105

M1 +M2 +M3 5.00% 13.70% 19.37% 104

F(M1,M2) 5.20% 15.78% 23.69% 59

F(M1,M3) 4.80% 14.70% 22.09% 70

F(M2,M3) 5.90% 18.00% 26.39% 49

F(M1,M2,M3) 6.48% 19.27% 27.99% 42

Sum of best 6.72% 17.80% 24.72% 67

Table 3. Results on the MSR-VTT test dataset of fusions of mod-

ules.

Model mAP

M1 +M3 4.54%

F(M1,M3) 4.01%

F(M1,M3) +M1 +M3 5.41%
Table 4. Results on the V3C1 dataset of fusions of modules.

the fusion alone performs better than other models whereas

in the multiple videos retrieval task, the sum of similar-

ity scores of modules and of their fusion has the best re-

sults. The reason may be that our fusion scheme makes finer

representations of videos, which is less useful for multiple

videos retrieval than for unique video retrieval.

6. Conclusion

In this paper, we proposed to tackle the AVS problem

using three modules: a counting module, an activity mod-

ule and a concepts module. Each of these modules ana-

lyzes videos and derives embeddings in a multimodal space.

We showed that jointly taking advantage of counting ob-

jects, detecting activities and detecting semantic concepts

in videos allowed to deal efficiently with the complexity of

the AVS task. Moreover, we proposed a method to fuse

modules trained on different datasets that appeared to lead

to significantly better results than simpler fusion methods.
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