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Abstract

With the growth of video-sharing platforms and social
media applications, video retrieval plays an import role in
many aspects, such as copyright infringement detection,

event classification, personalized recommendation, and etc.

The content-based video retrieval presents the following
two main challenges: (i) Distribution inconsistency for
feature representation from the source domain to the target
domain. (ii) Difficulty of video aggregation by sufficiently
incorporating frame-based information. In this paper, we
propose an unsupervised teacher-student model (UTS Net)
to improve the performance of the content-based video
retrieval tasks: (i) A teacher-student model maintaining the
global consistency for feature representation from different
domains and retaining the local inconsistency within the
intra-batch data; (ii) A simple but effective video retrieval
pipeline integrating the frame-level binarized feature. Our
proposed framework experimentally outperforms the state-
of-the-art approach on the DSVR, CSVR, and ISVR tasks in
the FIVR datasets, and achieves a mean average precision
of 76%, 72%, and 61%, respectively.

1. Introduction

With the explosive growth of online video sharing and
consumption, content-based video retrieval technique is
desired in a wide range of internet applications areas, such
as incident classification, copyright infringement detection,
personalized recommendation etc. Video retrieval concern
the fact of indexing similar video scenes to a given video
query, and most studies focus on design of the image
feature representation and the video feature aggregation.

In the recent works on content-based image retrieval, the
feature extracted from the activations of pre-trained CNN
network is used as off-the-shelf image representation [1-5]
and surpasses the conventional hand-crafted features such
as SIFT [6]. Maximum activation of convolution (MAC) or
region maximum activation of convolution (R-MAC) [1]
are well-exhibited unsupervised image representation from
the activations of intermediate convolution layers via global
or regional pooling layer. To generate more discriminative
image representations, a supervised framework of deep
metric learning (DML) [7] is conducted via the pairwise or
the triplet-wise constraints, aiming at maximizing similarity
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between the relevant contents and minimizing the similarity
between the irrelevant contents. Nevertheless, few methods
attempt to minimize the distribution inconsistency between
the feature representations obtained from the source domain
(pre-trained dataset) and target domain (unlabeled dataset).

On the other hand, video aggregation integrating frame-
level feature plays an import role in the content-based video
retrieval. A commonly used aggregation technique is to
generate a global video descriptor by averaging the frame-
level features while ignoring the frame-level differences [8].
To compact more visual information of video shots into the
final aggregated feature, the bag of words (BoW) technique
incorporating the #-idf weighting is employed in [9-11].
The drawback is that feature representation of visual words
is prone to be influenced by vocabulary size and may not
preserve some relevant contents [12].

These methods mentioned above present two main
challenges: (i) Distribution inconsistency: the distribution
gap for feature representation exists between the source
domain (e.g., pre-trained dataset) and the target domain (e.g.
unlabeled dataset). How to map feature representation into
a shared domain space retraining the local inconsistency?
(i1) Video feature aggregation: how to design an effective
video retrieval pipeline sufficiently incorporating the
frame-level information? The two inter-related challenges
mentioned above are addressed by the following proposed
contributions:

(1) Teacher-student model

An unsupervised teacher-student model is proposed to
tackle the problem of distribution inconsistency for feature
representation from the different domains. Specifically, the
global consistency is maintained by minimizing the
distance between feature spaces in respect to the teacher
model and the student model; the local inconsistency within
the intra-batch data is retained by maximizing the distance
between the dissimilar pair in the same batch.

(2) Retrieval pipeline

A frame-level retrieval pipeline on the basis of the hash
binarized feature is developed to perform video retrieval,
which effectively preserves the critical contents of the key-
frames without increasing extra burden of computation.

The evaluation of our proposed method achieves the best
performance on duplicate scene video retrieval (DSVR),
complementary scene video retrieval (CSVR), and incident



scene video retrieval (ISVR) tasks in respect to the FIVR
dataset [9]. The rest of paper is organized as follows.
Section 2 describes the proposed methodology in detail.
Section 3 shows the implementation detail, the experiment
results as well as a brief discussion. Section 4 draws a
conclusion on our proposed retrieval framework.

2. Methods

In this section, the motivation perspective within the
proposed unsupervised teacher-student model is firstly
discussed. Then the framework is illustrated with two key
steps, namely the teacher-student model training and the
retrieval pipeline.

2.1. Motivation

Though the off-the-shelf features proposed in [1-5]
exceeds the performance of the conventional geometric
feature on the retrieval, the further promotion of feature
representation is inhibited by the distribution gap existing
between the target domain and the source domain. For a
video-retrieval task with large scale gallery, we can
explicitly make the following hypotheses that the number
of hit videos meeting the condition of content similarity for
a specific query is small. The proposed hypotheses assert
that frames in a batch present high probability of contents
irrelevance. Under the above assumption, the distance
between the irrelevant pair within frames in a batch should
be maximized for a trained model (called the student
model). The optimization of the student model is easily
trapped into a local optimum without a teaching model
maintaining the global consistency. Thus, a teacher-student
model training strategery is proposed to maintain global
consistency for data from different domains and retain
intra-inconsistency within the same batch.

2.2. Teacher-Student Model

Fig. 1 presents the block diagram of the teacher-student
model. The student model should be designed highly
efficient to fulfil the requirement of real-time feature
extraction, whereas the teacher model is not limited to the
same backbone as the student model. Notably, the teacher
model needs no training to avoid global consistency
changing between the inter-batch data. Considering the ease
of measuring correlation between the student model and the
teacher model, a fully-connected (fc) layer realized PCA-
module is added to the backbone of the teacher model for
the feature dimension consistency. On the other hand, given
that the PCA-module in the teacher model achieves a zero-
mean output, the last block of VGG [13] (student model) is
replaced by a Conv-BN-ReLUx2 + Conv-BN [14] module
to scale the outputs to zero mean.

A fc layer is adopted to implement the PCA in the teacher
model. Mathematically, the f and f* are used to denote the
global feature vector of the official Resnet50 [15] and
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Fig. 1. The architecture of proposed unsupervised teacher-
student model.

the designed teacher-model, respectively. The parameters
in respect to the fc layer are computed as follows:
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where m and f indicate the number of frames and the
average vector of frame feature representations. The
eigenvectors U € RP*P and the eigenvalue V € RP are
computed via the function (2), respectively, where D and
D represent the dimension in respect to f and f*.

2.3. Training Strategy

The concept of the inter-batch can be understood as a
batch input of a pseudo-siamese network with two
subnetworks: the student network and the teacher network
which are mentioned above. To maintain the global
consistency between the feature representations acquired
from the teacher-model and the student-model, the
optimized function is formulated as follows:
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d(x;,y;) = norm(x;) * norm(y;) (5)
where n is batch size, and {x;},{y;} denotes the feature
representations of the teacher model and the student model,
respectively. The distance between x; and y; is measured
by cosine similarity as shown in equation (5), and norm

denotes [2_norm.
On the other hand, the intra-batch inconsistency is
retained via minimizing the similarity within the batch



frames irrelevant to each other. The optimized function is
described as follows:
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where L({x;}) represent the average similarities between
the i-th image and some other images in the intra-batch, a
and f are two hyper-parameters indicating the fraction of
similar images used to calculate L({x;}) in a batch. L] is a
sorted list of cosine similarity measured on pairwise images
sampled from the same intra-batch, as is defined as follows.

Li = sorted({d(x;, x)|Vj € {1,2...,n}})  (7)

Finally, joint optimization for the global consistency and
local inconsistency is performed via minimizing the loss
function given in (8). The former attempts to maintain the
inter-batch consistency by maximizing similarity between
the outputs of the student model and the teacher model; the
latter minimize correlation between irrelevant frame
contents among the batch with and without augmentation.

L=20—-L({s}{t:)) + A4 Q- L({s 3 {t:)) +
A L({s:}) + A3 L({s{ D) (8)

where s; and s; are the feature representation of the student
model obtained from data with and without augmentation;
and t; represents the output of teacher model from data
without augmentation.

2.4. The frame-level retrieval pipeline

The commonly used video aggregation scheme is to
generate a global vector (GV) by averaging the frame-level
features. Though the video aggregation is efficient and
achieve a reasonable result, the frame-level features are not
considered fully to promote the retrieval performance. The
frame-level retrieval based on real-value feature (i.e. the
output of student model) often suffers from heavy
computation and high memory storage. Hence, hash-based
methods are encouraged to generate binary codes for video
frames with less burden of computation. In this paper, the
locality-sensitive hashing (LSH) algorithm [16] is
employed to binarize the frame-level feature. As to a
specific video query task, keyframes are extracted and
frame-level retrieval is performed to construct video-level
similarity. The complete frame-level retrieval pipeline is
built via Algorithm 1.

3. Experiments

3.1. Experimental setup

Dataset: FIVR [10] is a large-scale dataset collected for
the fine-grained incident video retrieval problem, which
consists 225,960 videos and 100 queries. According to the
level of content association, three types of similar videos

Algorithm 1 Aggregation of the video similarity

Input: binary frame-level feature for a query video

Definition: qf id, query frame id; gf i, gallery frame id;

gvid®, vid for the i-th frame in gallery

1. Global Initialize: all-zero dict S to store the scores of

the gallery videos.

2. For qf id =0; qf id <qf num; qf id++ do

3. Find a sorted list of topN (N = 1000) similar
frames in the gallery: gf = {gf 1,gf 2,...,gf N}

4 Local Initialize: all-zero dict X

5. For gf iin {gf 1,gf 2,....ef N} do

6. Find gvid®,

7

8

9.

If X[gvid®] == 0 do
S[gvidV] += frame-level similarity
. X[gvid¥] =1
10. End if

1. End for
12. End for

13. The scores in S are divided by qf num.
Output: the normalized score array S.

are classified, namely the duplicate scene video (DSV), the
complementary scene video (CSV), and the incident scene
video (ISV). The duplicate scene video retrieval (DSVR)
focus on DSV sharing at least one scene from a unique
camera source; the complementary scene video retrieval
(CSVR) processes CSV pair of two videos containing an
overlapping segment on the same incident as well as DSV;
the incident scene videos (ISV) in respect to the same
incident and ignoring the time overlapping is processed by
incident scene video Retrieval (ISVR). Thus, we can
conclude the relationship between these three tasks as
follows: DSVR € CSVR € ISVR.

Implementation details: the teacher-student model is
trained on 8 Tesla-V100 32GB GPUs (batch size: 320) with
adam optimizer [17] (learning rate: 0.0001). Online aug-
mentation (such as rotation, random cropping, distorted
color operation, and etc.) are utilized during the model
training. Keyframes of all videos are extracted via FFMPE-
G command. Hyper-parameters: a = 0.1, § = 0.6, 1;, 4,,
A, and A5 are 2.0, 2.0, 1.0, 1.0, respectively. Faiss [18] in
combination with the LSH technique are employed to train
the hash mapping function and each of the frame feature is
binarized to 512 bits.

3.2. Ablation study

For better understanding of the significance of the
teacher-student model and the proposed pipeline, a series
of ablations are conducted, and the results are summarized
in Table 1. The UTS V2 model employs the ResNet50 and
VGGI16 as the backbone of the teacher model and the
student model, respectively. The results indicate a fact that
the teacher-student model achieves a better ability of
feature representation compared with the official VGGI6.



Table 1 Ablation results, mAP(%).

Method DSVR | CSVR ISVR
Global Vector VGG 16 28.80 2731 22.35
(GV) ResNet 50 32.65 31.64 26.88
UTS VI 28.51 27.74 23.26
UTS V2 41.45 40.78 35.36
RMAC + GV VGG 16 44.48 42.50 35.47
ResNet 50 51.82 50.74 43.80
UTS VI 48.74 4731 40.24
UTS V2 50.94 49.83 43.18
RMAC + Frame- | VGG 16 68.32 63.43 52.09
level retrieval ResNet 50 76.83 72.47 61.27
pipeline (FRP) UTS V1 74.98 70.34 58.63
UTS V2 76.86 72.39 61.07

Furthermore, both of the student model and the teacher
model in UTS V1 use VGG16 as the backbone, and the
results indicates the student model surpass the teacher
model via minimizing the intra-batch similarity. Besides,
the frame-level retrieval pipeline (FRP) proposed in this
work brings significant promotion of the retrieval
performance, as shown in the last cell in Table 1.

3.3. Comparison with the state-of-the-art.

Our proposed method is compared with the state-of-the-
art methods, and the results are given in Table 2. For
commonly used global average aggregation scheme, the
performance of our proposed model is superior to those of
other methods. Besides, the proposed frame-level video
retrieval pipeline achieves the state-of-the-art on the DSVR,
CSVR, and ISVR tasks.

3.4. Discussion

Computation cost: The computation cost of methods
mentioned above are investigated and the results is shown
in Table 3. Both the GV-based and FRP-based methods cost
approximately 2KB memory to store the video
representation. The same brute-force search engine is
utilized to compare the index time of GV, LBoW, and our
proposed FRP. With the FPR approach, the retrieval time is
controlled in about 210ms which is one-third index time of
the LBoW method. Thus, the proposed FRP is time and
memory efficient to meet large scale video retrieval tasks.

Difficulty and challenge: The challenge and difficulty in
our video retrieval task can be summarized as the local
patch retrieval problem. Although RMAC provides a
compact image representation incorporating with multiple
region-level information, regional importance is not
considered and the impact of local patch with crucial
information is attenuated. For instance, the query
(vid=wrC_Uqk3juY"') failed to hit its candidates (vid:
wmFQfvglOYA; vid: uimXpGbHYPQ) in the gallery with
a relative low-ranking index of 112 and 3331. Local

!'You can visit the video by:
https://www.youtube.com/watch?v=vid

Table 2 mAP (%) of the different feature extractors and
feature aggregation schemes for three tasks.

Method GV LBoW™ FRP
HSV* 16.5 N/A -
VLCD* 294 N/A -
VGG* 36.6 71.0 -
RES* 35.0 59.6 -
C3D_fo* 244 N/A -
13D_fo* 32.1 N/A -
R-VGG 4448 - 6832
R-ResNet 51.82 - 76.83
R-UTS-V1 48.74 - 74.98
R-UTS-V2 | 50.94 - 76.86
Method GV LBoW™ FRP
HSV* 153 N/A -
VLCD* 275 N/A -
VGG* 34.7 67.5 -
RES* 333 572 -
C3D_fo* 23.1 N/A -
I3D_fo* 31.2 N/A -
R-VGG 4250 - 63.43
R-ResNet 50.74 - 72.47
R-UTS-V1 4731 - 70.34
R-UTS-V2 | 49.83 - 72.39
Method GV LBoW™ FRP
HSV* 11.8 N/A -
VLCD* 214 N/A -
VGG* 28.1 572 -
RES* 274 48.8 -
C3D_fo* 17.6 N/A -
13D_fo* 253 N/A -
R-VGG 3547 - 52.09
R-ResNet 43.80 - 61.27
R-UTS-V1 40.24 - 58.63
R-UTS-V2 | 43.18 - 61.07

Notes: * represents the results reported in [9]

Table 3 Storage and computation per video

Method GV LBoW!" FRP
Storage (B) 2048 3050 2075
Index time (ms) 301.8 774.9 210.3

descriptor and attention mechanism [19-22] may provide an
opportunity to alleviate the patch retrieval problem.

4. Conclusion

In this paper, we proposed an unsupervised teacher-
student model and a frame-level retrieval pipeline for large-
scale video retrieval. The aim was to find an approach to
acquire discriminative feature representation and afford a
pipeline to unleash the potential of the frame-level feature
in the video retrieval task. We establish experimentally that
our proposed method achieves the state-of-the-art perform-
ance in large scale video retrieval task.
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