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Abstract

In practice, there are huge demands to localize faces

in images and videos under unconstrained pose variation,

illumination change, severe occlusion and low resolution,

which pose a great challenge to existing face detectors. This

challenge report presents a single-stage joint face detec-

tion and alignment method. In detail, we employ feature

pyramid network, single-stage detection, context modelling,

multi-task learning and cascade regression to construct a

practical face detector. On the Wider Face Hard validation

subset, our single model achieves state-of-the-art perfor-

mance (92.0% AP) compared with both academic and com-

mercial face detectors for detecting unconstrained faces in

cluttered scenes. In the Wider Face AND PERSON CHAL-

LENGE 2019, our ensemble model achieves 56.66% aver-

age AP (runner-up) in the face detection track. To facilitate

further research on the topic, the training code and models

have been provided publicly available.

1. Introduction

Automatic face detection underpins facial image analysis

and includes, but is not limited to, face alignment [6, 11, 23,

7, 5], face tracking [22], facial attribute recognition, facial

expression recognition, and face recognition [3, 8] and veri-

fication. There has been considerable interest in face detec-

tion research over last the two decades, and a number of ac-

curate and efficient algorithms have been proposed to detect

faces in largely uncontrolled settings. However, face detec-

tion remains a challenge in uncontrolled situations (e.g. the

Wider Face dataset [24]) due to complex backgrounds, pose

variations, occlusions, extreme illuminations, out-of-focus

blurring, and low resolution.

In this technical report, we propose a single-stage joint

face detection and alignment method, a conceptually sim-

ple and effective approach based on valid existing tech-

niques (e.g. feature pyramid network [15], single-stage de-

tector [25], context modelling [18, 2], multi-task learn-

ing [12, 4] and cascade regression [14]). Extensive ex-

periments on the Wider Face dataset show that the pro-

posed method achieves state-of-the-art performance com-

pared with both academic and commercial face detectors

for detecting unconstrained faces in cluttered scenes. In the

WIDER FACE AND PERSON CHALLENGE 2019, our

ensemble model achieves 56.66% average AP (runner-up)

in the face detection track.

2. Our Method

Overview. In Fig. 1, we show the framework of the pro-

posed single-stage joint face detection and alignment ap-

proach. There are three main components: feature pyramid

network, context head module and cascade multi-task loss.

First, The feature pyramid network gets the input face im-

ages and outputs five scale feature maps. Then, the context

head module gets a feature map of a particular scale and

calculates the multi-task loss (e.g. classification loss, box re-

gression loss and five facial landmark regression loss). The

first context head module predicts the bounding box from

the regular anchor. Afterwards, the second context head

module predicts more accurate bounding box from the re-

gressed anchor, which is generated by the first context head

module. The proposed single-stage joint face detection and

alignment method employs fully convolutional neural net-

works, thus it can be easily trained in an end-to-end way.

Feature Pyramid. Our method employs feature pyra-

mid levels from P2 to P6, where P2 to P5 are computed

from the output of the corresponding ResNet residual stage

(C2 through C5) using top-down and lateral connections as

in [15, 16]. P6 is calculated through a 3×3 convolution with

stride=2 on C5. C1 to C5 is a pre-trained ResNet-152 [13]

classification network on the ImageNet-11k dataset while

P6 are randomly initialised with the “Xavier” method [10].

Context Module. Inspired by SSH [18] and Pyramid-

Box [20], we also apply independent context modules on

five feature pyramid levels to increase the receptive field

and enhance the rigid context modelling power. Drawing

lessons from the champion of the Wider Face Challenge

2018 [17], we also replace all 3 × 3 convolution layers

within the lateral connections and context modules by the

deformable convolution network (DCN) [2, 26], which fur-

ther strengthens the non-rigid context modelling capacity.



Figure 1. An overview of the proposed single-stage joint face detection and alignment approach. Our method is designed based on the

feature pyramid network with independent context head module for each scale. “C” in the context head module denotes concatenation

operation and the number around the blob indicates the channel number. Following the context module, we calculate a multi-task loss for

each anchor. Cascade regression is used to further improve the detection results. The first context head module predicts the bounding box

from the regular anchor, while the second context head module predicts more accurate bounding box from the regressed anchor, which is

generated by the first context head module.

In our cascade regression framework, the proposed context

head module with DCN can solve the mis-alignment prob-

lem in the single-stage face detector to some extend.

Anchor Settings. We employ scale-specific anchors on the

feature pyramid levels from P2 to P6 like [21]. Here, P2

is designed to capture tiny faces by tiling small anchors at

the cost of more computational time and at the risk of more

false positives. We set the scale step at 21/3 and the aspect

ratio at 1:1. With the input image size at 640 × 640, the

anchors can cover scales from 16× 16 to 406× 406 on the

feature pyramid levels. In total, there are 102,300 anchors,

and 75% of these anchors are from P2.

Multi-task Loss Head. For any training anchor i, we min-

imize the following multi-task loss:

L = Lcls(pi, p
∗

i ) + λ1p
∗

iLbox(ti, t
∗

i )

+ λ2p
∗

iLpts(li, l
∗

i ).
(1)

(1) Face classification loss Lcls(pi, p
∗

i ), (2) Face box regres-

sion loss Lbox(ti, t
∗

i ), and (3) Facial landmark regression

loss Lpts(li, l
∗

i ). The loss-balancing parameters λ1 and λ2

are set to 0.25 and 0.1, respectively.

Anchor Matching. For the first head module, anchors are

matched to a ground-truth box when IoU is larger than 0.7,

and to the background when IoU is less than 0.3. For the

second head module, anchors are matched to a ground-truth

box when IoU is larger than 0.5, and to the background

when IoU is less than 0.4. Unmatched anchors are ig-

nored during training. Since most of the anchors (> 99%)

are negative after the matching step, we employ standard

OHEM [19, 25] to alleviate significant imbalance between

the positive and negative training examples. More specifi-

cally, we sort negative anchors by the loss values and select

Figure 2. Cascade regression for single-stage face detector. “H1”

and “H2” denotes the context head modules in Fig. 1, respectively.

The first context head module predicts the bounding box from the

regular anchor, while the second context head module predicts

more accurate bounding box from the regressed box predicted by

the first context head module.

the top ones so that the ratio between the negative and pos-

itive samples is at least 3:1.

Cascade Regression. As shown in Fig. 2, the first con-

text head module predicts the bounding box from the regu-

lar anchor. Then, the second context head module predicts

more accurate bounding box from the regressed box, which

is generated by the first context head module.

3. Experiments

3.1. Dataset

The Wider Face dataset [24] consists of 32, 203 images

and 393, 703 face bounding boxes with a high degree of

variability in scale, pose, expression, occlusion and illumi-

nation. The Wider Face dataset is split into training (40%),

validation (10%) and testing (50%) subsets by randomly

sampling from 61 scene categories. Based on the detection



rate of EdgeBox [27], three levels of difficulty (i.e. Easy,

Medium and Hard) are defined by incrementally incorporat-

ing hard samples. In RetinaFace [4], five facial landmarks

(i.e. eye centres, nose tip and mouth corners) are annotated

on the Wider Face training and validation subsets. In to-

tal, 84.6k faces on the training set and 18.5k faces on the

validation set are annotated with five facial landmarks.

3.2. Implementation details

Data Augmentation. Since there are around 20% tiny faces

in the Wider Face training set, we follow [25, 20] and ran-

domly crop square patches from the original images and re-

size these patches into 640 × 640 to generate larger train-

ing faces. More specifically, square patches are cropped

from the original image with a random size between [0.3,

1] of the smaller dimension of the original image. For the

faces on the crop boundary, we keep the overlapped part

of the face box if its centre is within the crop patch. Be-

sides random crop, we also augment training data by ran-

dom horizontal flip with the probability of 0.5 and photo-

metric colour distortion [25].

Training Details. We train our method using SGD opti-

mizer (momentum at 0.9, weight decay at 0.0005, and batch

size of 8 × 4) on four NVIDIA Tesla P40 (24GB) GPUs.

The learning rate starts from 10−3, rising to 10−2 after 5

epochs, then divided by 10 at 55 and 68 epochs. The train-

ing process terminates at 80 epochs. Our implementation is

on MXNet [1].

Testing Details. For testing on Wider Face, we fol-

low the standard practices of [18, 25] and employ

flip as well as multi-scale (the minimum image size at

[500, 800, 1100, 1400, 1700]) strategies. Box voting [9] is

applied on the union set of predicted face boxes using an

IoU threshold at 0.4. For the challenge submission, we save

box locations by the format of float instead of int.

Model Ensemble. We train four face detection models and

get the multi-scale test results from each model. Then, we

get the final ensemble results by box voting.

3.3. Ablation Study

To achieve a better understanding of the proposed

method, we conduct extensive ablation experiments to ex-

amine how the five facial landmarks, the cascade regres-

sion, and the ensemble strategy quantitatively affect the per-

formance of face detection. Besides the standard evalua-

tion metric of average precision (AP) when IoU=0.5 on the

Easy, Medium and Hard subsets, we also make use of the

test server (Hard test subset) of the Wider Face Challenge

2019, which employs a more strict evaluation metric of av-

erage AP for IoU=0.5:0.05:0.95, rewarding more accurate

face detectors. Please note that the participant can only have

five submissions to the test server. Thus, we only report the

most important improvements in Tab. 1.

As illustrated in Tab. 1, we evaluate the performance of

several different settings on the Wider Face validation set

and report the average AP on the Hard test subset. By

applying the valid techniques (i.e. FPN, context module,

and deformable convolution), we set up a strong baseline

(54.76%). Adding the branch of five facial landmark regres-

sion significantly improves the average AP (0.48%) on the

Hard subset, suggesting that landmark localization is cru-

cial for improving the accuracy of face detection. By using

cascade regression, average AP on the Hard test subset fur-

ther improves to 56.05%. After model ensemble, our final

average AP approaches 56.66%, ranking 2nd on the chal-

lenge leader-board.

Method Easy Medium Hard average AP

Baseline 96.349 95.833 91.286 54.76

+Landmark 96.467 96.075 91.694 55.24

+Cascade 96.670 95.841 92.064 56.05

+Ensemble 96.895 96.315 92.101 56.66

Table 1. Ablation experiments of the proposed methods on the

Wider Face validation subset and the Wider Face Hard test sub-

set.

As shown in Fig. 3, we compare our best single

model (FPN+context module+DCN+landmark+cascade)

with other 25 state-of-the-art face detection algorithms.

Our method produces the impressive APs in all subsets

of the validation set, i.e., 96.7% (Easy), 95.8% (Medium)

and 92.0% (Hard). On the Easy and Medium subsets,

our method achieves comparable performance with Reti-

naFace [4], which has another dense regression branch. On

the Hard subset, our approach outperforms all these state-

of-the-art methods and set up a new record.

4. Conclusions

In this challenge report, we propose a single-stage joint

face detection and alignment method. By employing feature

pyramid network, single-stage detector, context modelling,

multi-task learning and cascade regression, our method

achieves state-of-the-art performance for detecting uncon-

strained faces in cluttered scenes. In the WIDER FACE

AND PERSON CHALLENGE 2019, our ensemble model

achieves 56.66% average AP (runner-up) in the face detec-

tion track.
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