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Abstract

Face Detection has become important in various real-

life applications such as face recognition, kinship verifica-

tion, video surveillance, sentiment analysis using videos,

etc. There has been significant progress in this field in re-

cent years, thanks to the evolution of deep convolutional

neural networks (CNNs). Images taken in real-world sce-

narios vary a lot in various aspects such as lighting, scale,

pose, etc. WIDER FACE dataset contains such images, and

is hence, quite challenging. In this paper, we propose a so-

lution which takes the DSFD (Dual Shot Face Detector) as a

baseline network, and we apply some tweaks to the network

to improve performance with lesser memory usage and in-

ference time. Specifically, we use a Densenet backbone, use

focal loss function for classification, a function of IoU (In-

tersection over Union) metric as a regression loss function,

and lastly, use the max-out operation before predicting class

probabilities. Consequently, the proposed solution achieves

state-of-the-art performance on the WIDER FACE Dataset,

with added advantages of being more scalable and taking

lesser time to infer than its original DSFD baseline. Also,

it gives better face detection performance than many other

state-of-the-art face detection frameworks.

1. Introduction

Face Detection is a very popular application of computer

vision. It serves as a prerequisite for other important com-

puter vision tasks such as face recognition, video surveil-

lance, sentiment analysis using videos, kinship verification

etc. Detecting faces comprises of two important parts - de-

termining whether there is/are face(s) present in the image,

and secondly, if there is atleast a face, determining the po-

sition and dimensions of the bounding box for each face.

Technically, face detection comprises of two tasks - classi-

fication (whether a region within the image contains a face

or not) and regression (to find the coordinates of the bound-

ing box surrounding each face, if any). The hurdles faced

in the field of face detection include various distortions in

the image such as varying scale of faces (as in Fig. 2),

varying pose, occlusion, blurry quality, facial makeup, spa-

tially varying illumination, varying modality and reflection

of faces.

Figure 1: Different types of annotation in WIDER FACE

Dataset [25]

Figure 2: Variation in the scale of faces in the images of

WIDER FACE Dataset [25]

In this paper, we lay our focus on a very challenging

dataset that has various modes of distortions in the images

as discussed above - the WIDER FACE Dataset [25]. Fig-

ure 1 shows the various types of annotation, and the vari-

ation in pose and occlusion in the images of the WIDER

FACE Dataset. There has been a lot of work in increasing

the performance metrics such as Average Precision (AP),

Intersection over Union (IoU) etc. over the years. We pro-



pose a method, which uses the architecture of Dual Shot

Face Detector proposed in [7] as the baseline, and modify

this baseline in order to achieve better results. The mod-

ifications which we apply are: (1) Using Densenet [5] as

the backbone. (2) applying focal loss function in order to

estimate the probability of the presence of a face in a partic-

ular bounding box. (3) Using IoU (Intersection over Union)

as a regression loss function instead of L1 loss. (4) Using

the max-out operation for an improved classification perfor-

mance

2. Prior Art

Face detection dates back to the early 1990s, which has

since, served purpose in many fruitful applications such

as identity verification and recognition, face alignment etc.

The work of Viola-Jones [20] was one of the first works in

this direction, which involved the training of multiple cas-

caded face detectors using Adaboost algorithm over Haar-

like features, which worked quite well in simple situations.

In [1], a cascaded network is used to perform both the tasks

of face detection and alignment, giving quite promising re-

sults.

This was followed by the emergence of part-based mod-

els, Deformable Part Models (DPM) [13] being one of the

most famous of all. DPM model the face as a collection of

deformable parts, and the relationship between these parts

can be established through the means of a latent SVM (Sup-

port Vector Machine) [2]. They worked better for occluded

images as compared to the cascaded networks. However,

these methods are not robust to most distortions in image

quality and variations, since, these depend on hand-crafted

features.

Aggregated Channel Feature solutions gave better results

than the ones mentioned earlier, as can be seen in [24],

which proved to be robust even when the images were taken

from multiple views. This solution used features such as

gradient histogram, integral histogram, and color channels

in order to learn a boosting classifier with cascade structure.

With the advent of deep learning and greater processing

power, it now became possible to handle more and more

variations in the images, since, the data that could be used

for training could now be huge. Inspired from cascade net-

works, [6] uses cascade-CNN technique, in which a series

of multiple CNNs are trained in order to perform face de-

tection, leading to both improved accuracy and efficiency at

the same time. MTCNN [28] and PCN [17] train the net-

work for multiple tasks such as detecting face angles and

landmarks in addition to the primary task of face detection,

in a coarse-to-fine manner.

As the datasets grew more diverse, especially in terms

of the size of the face(s), it became more important to de-

tect the face with smaller size, since the previous methods

failed in such situations. Using multi-scale features for face

detection was a plausible solution for detecting tiny faces.

Inspired from [3, 11, 12], that use the fusion of features

from multiple layers of the network for semantic segmen-

tation and FPN [8], which uses a hierarchical architecture

in order to fuse high level semantic features at all scales,

Face Attention network [21] and PyramidBox [19] use such

multi-layer fusion networks in order to detect faces. How-

ever, some models such as SSD [10] and RetinaNet [9]

use a one-stage face detection network and give compa-

rable performance. SSD has been used as the base net-

work for many other better performing networks such as

DSFD [7], S3FD [29] etc., which have added modifications

to DSFD, such as changing training strategy, applying rea-

soning based on context, using information from multiple

layers etc.

3. Exposition to the solution

We use the DSFD (Dual Shot Face Detector) [7] as a

baseline, and apply strategies mentioned in Section 1 in or-

der to achieve state-of-the-art performance on the WIDER

FACE [25] Dataset.

3.1. DSFD baseline

DSFD (Dual Shot Face Detector) is one of the state-

of-the-art methods for performing face detection on the

WIDER FACE dataset. Many methods involving multi-

scale features fail to extract information from the cur-

rent layer and ignore the context relationship between an-

chors [7]. DSFD solves these issues by using a feature

enhance module that involves performs the operation of

convoluted dilation at multiple layers in order to enhance

the semantic of the features, as, it increases the receptive

field of the network as a whole. DSFD uses backbone

of VGG16 [18] or one of the versions of Resnet [4] or

ResNeXt [22] at a time, removing the classification layers

and incorporating some additional structures. (The archi-

tecture of DSFD is displayed in Fig. 3).

Figure 4: Feature Enhance Module architecture [7]

DSFD applies the feature enhance model on each of the

feature maps (as shown in Fig. 4), generating the same num-

ber of ’enhanced’ feature maps having the same size of the



Figure 3: DSFD architecture [7] - Feature Enhance Module is applied over the VGG/resnet backbone in order to generate the

enhanced feature shot pipeline. It also shows two loss layers, First Shot PAL (Progressive Anchor Loss) for the first pipeline

and Second Shot PAL for the second pipeline

original feature maps. Initially, 1x1 convolutional filters are

applied in order to the input feature maps. The resulting

feature maps are split into three parts. Each part is followed

by a sub-network consisting of dilated convolutional lay-

ers [26]. The number of convolutional layers for each part

is different. These enhanced feature maps are fed into a

SSD-style head in order to make the second shot detection

layers.

The primary and the secondary shots have different loss

functions, namely, First Shot progressive anchor Loss (FSL)

and Second Shot progressive anchor Loss (SSL). The Pro-

gressive Anchor Loss (PAL) is not the same as the regu-

lar detection loss. As mentioned in [14], simpler features

from the lower level of the network are more apt for smaller

faces, the anchor sizes used in the first shot detection layers

are small, and those used for the second shot detection are

larger.

Mathematically, the loss function corresponding to the

second shot is as follows -

LSSL(pi, p
∗

i , ti, gi, ai) =
1

Nconf

∑

i

Lconf (pi, p
∗

i )

+
β

Nloc

∑

i

p∗iLloc(ti, gi, ai), (1)

where Nconf and Nloc are the number of positive and

negative anchors respectively, Lconf is the loss function

corresponding to classification between two classes - face

and background, and Lloc is the localization loss or bound-

ing box regression loss, calculated between the predicted

bounding box ti and ground truth bounding box gi corre-

sponding to the anchor ai. Localization loss is applicable

for positive anchor, i.e., when p∗i = 1. β is a weighting fac-

tor, which gives a weight to the localization loss (Lloc) term

relative to the classification loss term corresponding to the

confidence score (Lconf ).

Similarly, for the first shot detection layers, the corre-

sponding feature maps have simpler information, but with

a higher resolution, as compared to the feature maps in the

second shot detection (due to smaller receptive field for the

first shot detection layers). Thus, the first shot detection

pipeline would be able to detect smaller faces. Mathemati-

cally, the loss function for the first shot detection is as fol-

lows -

LFSL(pi, p
∗

i , ti, gi, sai) =
1

Nconf

∑

i

Lconf (pi, p
∗

i )

+
β

Nloc

∑

i

p∗iLloc(ti, gi, sai), (2)

where sa refers to the smaller-sized anchors in the first

shot detection layers. (The other terms in equation 2 have

the same meaning as those in equation 1).

The losses corresponding to the two shots can be

summed in a weighted manner in order to give a com-

bined loss function, known as the Progressive Anchor Loss



(LPAL), given mathematically as -

LPAL = LFSL(sa) + λLSSL(a) (3)

where λ is the weight factor given to the second shot

detection loss relative to the first shot detection loss. (The

other terms in equation 3 have the same meaning as those

in equations 1 and 2).

In general, the number of positive anchors would be

very much less than the number of negative anchors,

since, the faces occupy a relatively smaller area as com-

pared to the background. In order to tackle this prob-

lem, DSFD uses a probabilistic augmentation scheme.

2 out of 5 times, it augments by randomly picking a

face in an image, crop sub-image containing that face,

and set the spatial ratio between the sub-image and

the face to be 640/rand(16, 32, 64, 128, 256, 512), where

16, 32, 64, 128, 256, 512 refer to some anchor sizes used.

Rest of the times, the data augmentation procedure is simi-

lar to that of SSD [10].

3.2. Using Densenet as the network backbone

DSFD uses FGG-16, Resnet and ResNeXt architectures

as backbones. However, these architectures have a lot of

parameters, thus increasing memory usage as well as time

taken for training and inference. In order to tackle this

problem, we use Densenet-121 and Densenet-169 [5] as the

backbones instead. In the Densenet Architecture, a convolu-

tional block not only receives the feature maps immediately

preceding layer it as inputs, but also, it receives all other

feature maps from all the layers before this layer. This is

similar to Resnet in a way that it also has gradient flow paths

across non-adjacent layers, but the difference in Densenet is

that, the feature maps form the previous layers are concate-

nated, instead of being added as in Resnet.

The feature maps used in the detection framework com-

prise the feature map after the first convolutional layer,

and the feature maps obtained after the application of each

Dense Block of Densenet. Table 1 depicts the architecture

of Densenet, where, the feature maps highlighted in blue are

the ones used in our detection framework.

3.3. Focal Loss for classification

The DSFD framework uses the softmax loss for classifi-

cation. As already discussed in Section 3.1, if we consider

the face as a class and background as the second class, there

is a lot of imbalance among the two classes. Also, in or-

der to have commendable performance, the well-classified

examples need to have lower weights as compared to the

highly mis-classified ones. The softmax loss does not ad-

dress these issues. However, using the α-based variant of

the focal loss function [9] as the classification loss solves

both these problems. Mathematically, Lconf can be written

as a function of pt in the following manner -

Lconf (pt) = −αt(1− pt)
γ log(pt), (4)

where

pt =

{

p, if y = 1

1− p, otherwise
(5)

p ∈ {0, 1} is the predicted probability corresponding to

the positive class (here it is the presence of face), y ∈ [±1]
is the ground-truth class, αt is the weight corresponding to

the class for pt and γ ≥ 0 is a tunable parameter, that is re-

sponsible for the training to focus more on the mis-classified

examples, rather than the easier examples. If pt is closer to

1, i.e., if the model predicts correctly, 1 − pt is closer to

0, and so, the term (1 − pt)
γ lowers the contribution of pt

towards the total loss, as desired. The focal loss function

gives better results as compared to the softmax loss on the

WIDER FACE dataset, as expected.

3.4. IoU regression Loss

IoU (Intersection over Union) is one of the most popu-

lar metrics used for the evaluation of face detection. The

higher the IoU metric, the better is the quality of face detec-

tion. The DSFD framework used smooth L1 loss function

for regression. However, according to [15], optimizing the

smooth L1 loss function for bounding box regression is not

sufficient for the IoU metric value to be maximized. In-

spired from [27], in order to maximize the IoU value, we

consider the negative logarithm of the IoU value as the re-

gression loss function and minimize it. Mathematically, the

regression/localisation loss function Lloc corresponding to

the ith ground truth bounding box can be written as follows

-

Lloc = −log
Intersection(ti, gi)

Union(ti, gi)
(6)

where ti and gi are the ith predicted bounding box

and ith ground truth bounding box respectively, and

Intersection() and Union() give the intersection area and

the union area respectively between ti and gi.

3.5. Max-out operation

The background region is much larger in area than the

region that contains faces in an image. Hence, it becomes

necessary to reduce the number of false positives to improve

performance. As mentioned in [29], the max out operation

is used in order to solve this issue. In this paper, we ap-

ply the max-out operation while performing classification

not only reduce to the number of false positives, but also to

increase the number of true positives, thus increasing preci-

sion.

For datasets such as the WIDER FACE dataset, where

the images have not been taken in restricted conditions, the



Table 1: Architecture of Densenet - The feature maps highlighted in blue are the ones that are used in our proposed solution,

in order to create the first shot pipeline

Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264

Convolution 112 x 112 7 x 7 conv, stride 2

Pooling 56 x 56 3 x 3 max pool, stride 2

1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 convDense Block

(1)
56 x 56

3 x 3 conv
x 6

3 x 3 conv
x 6

3 x 3 conv
x 6

3 x 3 conv
x 6

56 x 56 1 x 1 convTransition Layer

(1) 28 x 28 2 x 2 average pool, stride 2

1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 convDense Block

(2)
28 x 28

3 x 3 conv
x 12

3 x 3 conv
x 12

3 x 3 conv
x 12

3 x 3 conv
x 12

28 x 28 1 x 1 convTransition Layer

(2) 14 x 14 2 x 2 average pool, stride 2

1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 convDense Block

(3)
14 x 14

3 x 3 conv
x 24

3 x 3 conv
x 32

3 x 3 conv
x 48

3 x 3 conv
x 64

14 x 14 1 x 1 convTransition Layer

(3) 7 x 7 2 x 2 average pool, stride 2

1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 convDense Block

(4)
7 x 7

3 x 3 conv
x 16

3 x 3 conv
x 32

3 x 3 conv
x 32

3 x 3 conv
x 48

1 x 1 7 x 7 global average poolClassification

Layer 1000D fully-connected, softmax

background region has a lot of spatial variations. Hence, it

is insufficient to assign only one class to the entire back-

ground. Rather, we assign Cn number of latent sub-classes

to the background. Similarly, we assign Cp number of la-

tent sub-classes to the face class. Then, maximum of the Cp

outputs and the maximum of the other Cn outputs are taken,

and softmax function is applied over these two values, in or-

der to calculate the probabilities of the anchor belonging to

the face class and the background class respectively. Pre-

dicting multiple outputs for each class increases the classi-

fication accuracy for both the classes.

4. Experiments and Results

4.1. Dataset Description

WIDER FACE dataset is one of the largest face detec-

tion datasets. The images in this dataset are taken from the

publicly available WIDER dataset [23]. The WIDER FACE

dataset consists of 32,303 images and 393,703 annotated

faces. As discussed in [7], the train:validation:test split for

the dataset is 40:10:50, in a random fashion for each of the

60 event classes. Again, each subset is again split into three

levels of difficulty - ’Easy’, ’Medium’ and ’Hard’, which is

based on the performance of a baseline detector.

As already discussed in Section 1, the images have been

taken in highly unconstrained conditions. There are large

variations in lighting, scale (as in Fig. 2), pose, occlusion,

background clutters etc. The images belong to 60 differ-

ent events. All these variations within the dataset make the

dataset challenging for performing face detection.

4.2. Implementation Details

The backbone used in our solution is a version of

Densenet. This is initialized by the pretrained weights ob-

tained by training the Densenet network on ImageNet [16]

Dataset. Parameters of the additional convolution layers are

initialized by the Xavier method, and the optimizer used in

order to fine-tune our model is SGD with 0.9 momentum

and 0.0005 weight decay, as used in the original DSFD pa-

per. The batch size is set to 16 and the learning rate is set

to 0.001 for the first 40k steps, and we decay it to 10−4 and

10−5 for two 10k steps, again as stated in the original DSFD

paper.

During inference, multi-scale testing [29] is applied in

order to improve performance. The input image is fed to the

trained model several number of times with varying sizes,

and then, these detection results are combined along with

the voting operation of bounding boxes. The outputs from

the first shot detection pipeline are ignored and the second

shot pipeline is used in order to predict top 5k detections

according to confidence, of which, 750 bounding boxes of

high confidence are obtained by performing Non-maximum

suppression with a Jaccard Overlap of 0.3.

4.3. Analysis on the tweaks applied to DSFD

In this subsection, the effectiveness of adding the tweaks

mentioned earlier in Section 3 is analyzed, by perform-

ing evaluation on the WIDER FACE Dataset based on



(a) Validation:Easy (b) Test:Easy

(c) Validation:Medium (d) Test:Medium

(e) Validation:Hard (f) Test:Hard

Figure 5: Precision-recall curves on WIDER FACE testing subset (The scores are the Average Precision values, and the score

mentioned for the DSFD baseline is achieved using the Resnet-50 backbone)

Precision-Recall Curves, performance metrics such as Av- erage Precision (AP) and Top-1 Accuracy, and the num-



Table 2: Comparison of various models based on Top-1 Accuracy and Average Precision

Network Top-1 Accuracy Easy Medium Hard

DSFD resnet152 80.19% 96.6% 95.7% 90.4%

DSFD resnext101 78.42% 95.7% 94.8% 88.9%

DSFD densenet121 80.54% 96.0% 95.0% 91.0%

DSFD densenet169 82.56% 96.8% 95.8% 92.3%

DSFD densenet169 focal 84.47% 96.9% 96.2% 92.5%

DSFD densenet169 focal iou 84.51% 97.2% 96.1% 92.7%

DSFD densenet169 focal iou maxout 85.22% 98.1% 97.2% 93.5%

ber of parameters involved in the network. The tweaks

are added one of top of another. The Table 2 de-

picts the results of the various models, where ’DSFD’

refers to the baseline network, ’resnet152’, ’resnext101’,

’densenet121’, ’densenet169’ refer to the backbones of

Resnet-152, ResNeXt-101, Densenet-121 and Densenet-

169 respectively, ’focal’, ’iou’ and ’maxout’ refer to the fo-

cal loss for classification, IoU regression loss and max-out

operation respectively.

Using Densenet as backbone Using Densenet-121 as

the backbone beats ResNeXt backbone, whereas, it per-

forms nearly as well as Resnet-152 backbone. However, us-

ing Densenet-169 improves the Top-1 Accuracy and the Av-

erage Precision in the Hard category considerably as com-

pared to when using the ResNeXt-101 backbone. Also, the

number of parameters required for each of the Densenet

backbones was far less than the same for Resnet-152 and

ResNeXt-101 (as can be seen in Table 3). Lesser number

of parameters in the Densenet backbones led to lesser usage

of memory and lesser inference time, as compared to the

Resnet and ResNeXt backbones.

Table 3: Number of parameters for various backbones used

Backbone used Params

Resnet-152 459M

ResNeXt-101 416M

Densenet-121 275M

Densenet-169 324M

Focal Loss for classification Using this loss function

instead of the classical categorical cross-entropy function

(stated otherwise as the softmax loss function) again im-

proves all performance metrics, as desired.

IoU Regression Loss Using the negative logarithm of

the IoU as the regression loss function created a marginal

change in the average precision as well as the Top-1 Accu-

racy.

Max-out operation Introducing latent sub-classes for

both the face and the background classes increases both

the average precision and the classification accuracy, as ex-

pected.

As can be seen in Table 2 and the Fig. 5, our final model

(’DSFD densenet169 focal iou maxout’) outperforms the

DSFD baselines by achieving a Top-1 Accuracy of 85.22%.

It also beats many state-of-the-art methods, by achieving

a 98.1% AP in the ’Easy’ category, 97.2% AP in the

’Medium’ category, and 93.5% AP in the ’Hard’ category

in the ’Test’ subset, and a 98.5% AP in the ’Easy’ category,

97.6% AP in the ’Medium’ category, and 94.0% AP in the

’Hard’ category in the ’Validation’ subset.

5. Conclusion

The paper introduces a robust face detection framework,

by bringing some changes to the DSFD(Dual Shot Face De-

tector), which are - (1) Using the Densenet Backbone (2)

Using the focal loss function for classification (3) Using

the IoU regression loss (4) Using the max-out operation.

With these changes introduced, our face detection frame-

work outperformed various state-of-the-art baselines, and

at the same time, required lesser parameters, thus reducing

memory usage and inference time. This suggests that our

framework is more scalable than many other state-of-the-

art face detectors.
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