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Abstract

Suspicious individuals often attempt to hide their identity

to avoid detection by safety and security systems. Wear-

ing clothes of the opposite gender is one of the several

techniques used by these individuals. Several promising

attempts have been made to recognize gender using gait

recognition. However, these systems only focused on rec-

ognizing gender for individuals who wore tightly fitting at-

tire which made it easier to detect the body joints further

making it possible to differentiate both genders. In this

work, we attempt to solve a challenging real-world problem

faced by security agencies in which the individuals mask

their identity by wearing loosely fitted clothes (LFC) of the

opposite gender. LFC makes it difficult to locate the body

joints in effect making the gender classification, in this sit-

uation, a complicated problem. We propose a Bayesian

Gait-based Gender Identification (BGGI) technique that is

used for gender recognition in LFC conditions, in dense

real-world videos. This research releases the loosely fit-

ted clothes individuals (LFCI) dataset used for training the

deep network. This may encourage researchers interested in

using deep learning for this task. The pose estimation and

gender recognition achieve great performance with state-

of-the-art techniques.

1. Introduction

Video surveillance has become an essential safety tool in

today’s society. In the last decade, the number of installed

video surveillance cameras has reached the point where the

vast majority can no longer be manually monitored by se-

curity personnel. This results in an increasing demand for

automatic and intelligent video content analysis systems.

Such systems can enable more efficient monitoring by only

presenting footage of interest to the security personnel. This

is achieved by characterizing individuals by their attributes

such as motion, age and clothing.

From the safety and security perspective, gender identifi-

cation through gait is an attractive modality because it may

be performed at a distance surreptitiously, without the need

of the face which may not be visible for subjects far away

from the camera. Gender than can be applied for efficient

search and retrieval of persons from video footage.

Researchers have attempted to model human motion us-

ing gait which is further used for gender classification. A

popular technique used for gait is the Gait Energy Image

(GEI) [5], a binary image produced by averaging the mo-

tion in one gait cycle of a subject. Numerous attempts have

been made to improve the GEI method by optimizing the

joint intensity and the space metric to improve the robust-

ness and reduce the hindering effects of objects carried by

the subject on the gender recognition performance [9], [10].

Deep networks have been recently used for more accu-

rate gender classification. Chéron et al. [3] sampled patches

of for RGB images of certain human joints to model human

motion which was further used to perform promising gen-

der classification. In another approach, Zhang et al. [21] ex-

tracted features from a sequence of individual images where

were aggregated at the fully connected layers to learn com-

plex high-level features used to perform the task of gender

classification.

However, these systems perform identification only

when the subjects are recorded from a close proximity. This

limits the applicability of these systems in real-world sce-

narios as the image in the database needs to be matched

to a video or video frames which may contain numerous

faces that can appear at different positions, orientations, and

scales. These videos can also be affected by noise and illu-

mination variations which further complicates this problem.



Figure 1. The illustration shows the frames of males and females at different variations from the proposed Loosely Fitted Clothing (LFC)

dataset.

The data for the above mentioned works has mainly been

acquired in a Western environment with subjects wearing

Western clothing. In some cases, non-Western clothing can

obscure the subject’s joints and its movements suppressing

visual features pertaining to the gender of the individual.

This makes gait recognition and gender classification even

more challenging. The face of the person may be covered

hiding any facial features adding to the complexity of the

challenge.

This paper introduces the Bayesian Gait-based Gen-

der Identification (BGGI) Network on individuals wearing

Loosely Fitted Clothing. The video recorded by the CCTV

cameras is first decomposed into frames. The network then

extracts the humans and estimates their poses using the

ScatterNet Hybrid Part Affinity Fields (SH-PAF) Network

constructed by replacing the first convolutional, relu and

pooling layers of the Part Affinity Fields (PAFs) network [1]

with the hand-crafted ScatterNet [15] as shown in Fig. 3.

The poses are then used to identify suspicious (Fig. 1) indi-

viduals using the 3D ResNext [6] with Bayesian uncertainty

estimates. The features obtained from the deeper layer of

the BGGI network are also used to perform one-to-one per-

son re-identification.

The novelties of the proposed BGGI network are detailed

below:

• Rapid learning with ScatterNet and Structural Pri-

ors: The proposed SH-PAF network is constructed

by with the hand-crafted ScatterNet (front-end) that

extracts translation, rotation, and scale invariant low-

level edge features from the input images (similar to

the replaced layer). These features can be used by the

PAF (back-end) network to learn more complex fea-

tures from the start of learning as the edges are already

present, resulting in accelerated training. The Scatter-

Net invariant features are particularly useful for this

application as the human can appear at different loca-

tions, orientations, and scales. The training of the PAF

network is further accelerated by initializing the filter

weights with structural priors learned (unsupervised)

using the PCANet [2] framework (Fig. 3). The initial-

ization with priors also reduces the need for sizeable

labeled training datasets for effective training which is

especially advantageous for this task or other applica-

tions [14, 7] as it can be expensive and time-consuming

to generate keypoint annotations.

• Bayesian Uncertainty: The proposed network uses

dropout at test time to make several predictions. The

mean and standard deviation of these predictions is cal-

culated which can aid the user in deciding if a certain

prediction can be trusted.

• Loosely Fitted Clothing (LFC) Dataset: The paper

presents the Loosely Fitted Clothing dataset of 2400

videos of 25 individuals wearing loosely fitted clothes

that cover their body joints. The LTC dataset contains

humans recorded at different variations of scale, posi-

tion, illumination, blurriness etc. This dataset may en-



Figure 2. The illustration presents the proposed Bayesian Gait-based Gender Identification (BCGI) network for loosely fitted clothes. The

input image is first fed to the scatternet that extracts the low-level translation invariant features which are then used by the pruned part

affinity fields network to estimate pose of the humans. The estimate pose is binarized and fed into a 3D ResNext network which uses 16

frames to estimate the gender of the humans.

courage researchers interested in using deep learning

for aerial surveillance applications.

The pose estimation, individuals identification, and re-

identification performance of the system is compared with

the state-of-the-art techniques.

The paper is divided into the following sections. Section

2 presents the introduced LFC dataset while Section 3 in-

troduces the proposed BGGI system. Section 4 details the

experimental results and concludes this research.

2. Loosely Fitted Clothing Dataset

This research proposes an annotated Loosely Fitted

Clothing dataset which is used for pose estimation and gen-

der classification. The dataset consists of 2160 videos of

humans in loosely fitted clothes walking along a straight

line. The subjects in the dataset wear attire with the fol-

lowing attributes (i) scarf with loose dress (ii) hoodie with

skirt (iii) scarf with skirt (iv) hoodie with loose pants

(v) scarf with loose pants. The subjects in the dataset

include 8 females and 10 males. Each subject in the

dataset is recorded under the following observation angles:

0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦. These activities

are performed by the 18 subjects between the ages of 18-22

years. These videos are recorded from an height of 2.5-

3 meters. Each video is 920x540 pixels and around 120

frames.

The gender classification task from these videos is an ex-

tremely challenging problem as these videos can be affected

not only by the elementary issues of illumination changes,

shadows, poor resolution, and blurring, but also, more im-

portantly, by the nature of the clothing. The joints and limbs

of the individuals are hidden from sight making it difficult

to observe the movement of the body. In addition to these

variations, the humans can appear at different locations, ori-

entations, and scales. The proposed dataset includes videos

with the above-detailed variations as these can significantly

alter the appearance of the humans and affect the perfor-

mance of the surveillance systems. The 3D Convolutional

Neural Network, when trained on the Loosely Fitted Cloth-

ing Dataset with these variations, can learn to recognize hu-

man gender despite these variations.

3. Bayesian Gait-based Gender Identification

(BGGI) Network

This section introduces the Bayesian Gait-based Gen-

der Identification (BGGI) Network which first uses the pro-

posed ScatterNet Hybrid Part Affinity Fields (SH-PAF) Net-

work to estimate pose for the humans, whose output is fur-

ther fed to the 3D ResNext, which captures the motion of

an individual to predict the gender. The system uses cloud

computation to achieve the identification of the gender of

the person of interest in real-time. Each part of proposed

network is explained in the following sub-sections.

3.1. ScatterNet Hybrid Part Affinity Fields

This section details the proposed ScatterNet Hybrid Part

Affinity Fields (SH-PAF) Network, inspired from Singh et

al.’s work in [16, 17, 14, 18], composed by combining the

hand-crafted (front-end) two-layer parametric log Scatter-

Net [15] with the pruned Parts Affinity Fields (PAFs) [1]

network (back-end) as shown in Fig. 3. The ScatterNet ac-

celerates the learning of the SH-PAF network by extracting

invariant edge-based features which allow the network to

learn complex features from the start of the learning [16].

The regression network also uses structural priors to expe-

dite the training as well as reduce the dependence on the

annotated datasets. The ScatterNet (front-end) and pruned



Figure 3. The illustration shows the pose estimated on two male and female examples for the proposed LFC dataset. The estimated is

binarized pose and given as input to the 3D ResNext network for gender classification.

Parts Affinity Fields (PAF) are presented below.

ScatterNet (front-end): The parametric log based Scat-

terNet [15] is a two-layer hand-crafted network which ex-

tracts translation, rotation, and scale invariant feature rep-

resentations from multi-resolution images obtained at 1.5

times and twice the size of the input image. Below we

present the formulation of the parametric ScatterNet for a

single input image which may then be applied to each of

the multi-resolution images.

The invariant features are obtained at the first layer by

filtering the input image or signal x with dual-tree com-

plex wavelets (better than cosine transforms [8]) ψj,r at dif-

ferent scales (j) and six pre-defined orientations (r) fixed

to 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦. To build a more

translation invariant representation, a point-wise L2 non-

linearity (complex modulus) is applied to the real and imag-

inary part of the filtered signal:

U [λm=1] = |x ⋆ ψλ1
| =

√

|x ⋆ ψa
λ1
|2 + |x ⋆ ψb

λ1
|2 (1)

The parametric log transformation layer is then applied to

all the oriented representations extracted at the first scale

j = 1 with a parameter kj=1, to reduce the effect of outliers

by introducing relative symmetry of pdf [15], as shown be-

low:

U1[j] = log(U [j] + kj), U [j] = |x ⋆ ψj |, (2)

Next, a local average is computed on the envelope

|U1[λm=1]| that aggregates the coefficients to build the de-

sired translation-invariant representation:

S1[λm=1] = |U1[λm=1]| ⋆ φ2J (3)



The high frequency components lost due to smoothing are

retrieved by cascaded wavelet filtering performed at the sec-

ond layer. Translation invarinace is introduced in these fea-

tures by applying the L2 non-linearity with averaing as ex-

plained above for the first layer [15].

The scattering coefficients at L0, L1, and L2 are:

S =
(

x ⋆ φ2J , S1[λm=1], S2[λm=1, λm=2] ⋆ φ2J

)

(4)

The rotation and scale invariance are next obtained by

filtering jointly across the position (u), rotation (θ) and

scale(j) variables as detailed in [13].

The features extracted from each multi-resolution at L0,

L1, and L2 are concatenated and given as input to the

pruned Part Affinity Fields (PAFs) network, to learn high-

level features for human pose estimation. The ScatterNet

features help the proposed SH-PAF network to converge

faster as the convolutional layers of the PAF network can

learn more complex patterns from the start of learning as it

is not necessary to wait for the first layer to learn invariant

edges as the ScatterNet already extracts them.

Pose Estimation with Structural Priors (back-end): The

invariant ScatterNet features are used by the pruned Parts

Affinity Fields (PAFs) network [1] (initial layers replaced

with ScatterNet) to learn pose estimation using the intro-

duced AVI dataset. The AVI dataset contains aerial images

with 18 annotated key-points with 36 coordinates (section

2) on the human body which are used by the network to

learn the human poses.

The pruned PAF network is composed of a feedforward

network which is divided into two branches which simul-

taneously predicts a set of confidence maps S of body part

locations and a set of vector fields L of part affinities for

each limb which preserves both the position and orienta-

tion information of the limb. The predictions of each of the

branch are iteratively refined over successive stages follow-

ing Wei et al [19]. Finally, the confidence maps and part

affinity fields are parsed by greedy inference to output the

body keypoints for all people in the image.

At a stage t, the loss functions for each of the branches

is given by:

f t
s =

J
∑

j=1

∑

p

W (p).||St
j(p)− S∗

j (p)||
2

2
(5)

f t
L =

C
∑

c=1

∑

p

W (p).||Lt
c(p)− L∗

c(p)||
2

2
(6)

where St
j is the set of confidence maps and Lt

c is the set

of part affinity fields at stage t. S∗

j is the confidence map

ground truth, L∗

c is the part affinity field ground truth, J is

the number of body parts and C is the number of vector

fields (one per limb). W is a binary mask with W (p) = 0
when an annotation is missing at a location p which is an

issue in some datasets that do not completely label all the

people.

The overall objective to be minimized is given by:

f =

T
∑

t=1

(f t
S + f t

L) (7)

The detected body parts are then associated with a person

using the part affinity fields of each limb.

Structural Priors: In order to accelerate the training,

each convolutional layer of the joints identification network

of the SHDL network is initialized with structural priors.

The structural priors are obtained for each layer using the

PCANet [2] framework. By minimizing the following re-

construction error, it learns a family of orthonormal filters:

min
V ǫ Rz1z2×K

∥

∥X − V V TX
∥

∥

2

F
, s.t. V V T = IK (8)

Where X are patches sampled from N training features,

IK is an identity matrix of size K × K. The solution of

Eq. 8in its simplified form represents K leading principal

eigenvectors of XXT obtained using Eigen decomposition.

The structural priors for the first layer of joins identifi-

cation network are learned on the ScatterNet features, the

following layers structural priors are learned on the previ-

ous layers outputs and so on. This is applied to both of the

branches present in the network. The structural priors for

the joints identification networks layers learn filters that re-

spond to a hierarchy of features which is similar to the fea-

tures learned by CNNs. These learned structural priors are

used to initialize each of the convolutional layer resulting in

accelerated training. Since the determination of structural

prioris is fast, the training process is much faster than that

of CNNs with random weight initializations. However, the

PCA framework may learn undesired checkerboard filters.

In order to detect the checkerboard filters from the learned

filter sets, we use the method defined in [4] and are then

avoided as filter priors.

3.2. Gender Classification using the Bayesian 3D-
ResNext

A 3D ResNext [20] is trained on 16 subsequent frames to

perform gender classification. In the proposed system, we

use Monte Carlo dropout at prediction time to measure the

3D ResNext models uncertainty. We make 50 predictions

at test time with dropout enabled. The variance of these

predictions can be used to measure how certain the model

is about the prediction.

4. Results

This section presents the training details and the per-

formance of the Bayesian Gait-based Gender Identification

(BGGI) Network for gender classification on the proposed



Figure 4. Illustration shows the pose estimation performance via the detection of key-points for the (a) arms region, which constitutes the

wrist, shoulder and elbow, (b) legs region, which includes ankle, knee, and hip, and, (c) facial regions with the head and neck.

Loosely Fitted Clothing (LFC) dataset. The BGGI network

first uses the SH-PAF network for human pose estimation,

next the estimated poses are binarized and given (16 frames)

as input to the temporal 3D ResNext network for gender

classification. The next sections detail the training details

of the SH-PAF network along with the performance of each

part of the BGGI network. The classification performance

is also compared with the state-of-the-art techniques.

4.1. SH-PAF Parameters and Training

The SH-PAF network is constructed by combining the

scatternet with the pruned PAF network.

ScatterNet: The scatternet extracts invariant low-level

features using DTCWT filters at 2 scales, and 6 fixed

orientations at layers L0, L1, and L2.

PAF Network with Structural Priors: The back end of

SH-PAFnetwork is a pruned PAF. The pruned PAF is trained

on the scatternet features that are extracted from the 2570

humans. Out of 2570 humans, 60% are used for the train-

ing set and 20% for validation and 20% for the testing. The

splitting of the dataset of extracted features is completely

random. The network parameters are as follows: The base

learning rate is 10−4, which we decrease to 10−5 after 15

iterations, the dropout is 0.5, the batch size is 32, and the

total number of iterations (epochs) is 70. To accelerate the

training, the convolutional layers are initialized with struc-

tural priors.

4.2. Key Points Prediction Performance

The pose estimation performance of the SH-PAF net-

work is evaluated within a set distance of d pixels from the

ground truth key-point, as shown in Fig. 4 via the accuracy

vs.distance graphs, for different regions of the body.

The key-points detection analysis for the arms, legs, and

facial, region is presented below:

Arms: This region comprises of six points : wrist key-

points (P5 and P8), shoulder key-points (P3 and P6), and el-

bow key-points(P4 and P7). As the figure shows, the SHDL

network can detect the wrist region points with an accuracy

of 60% for pixel distance, d=5, while the accuracy for el-

bow and shoulder region is higher, at about 85% and 95%

each for the same value of d.

Legs: This region consists of six points : hip key-points,

knee key-points and ankle key-points. As the figure shows,

the SHDL network can detect the hip key-points with 100%

accuracy for pixel distance of d=5. The accuracy for knee

key-points varies between 85% and 90%. But for the ankle

key-points the accuracy falls to around 85%.

Facial : This region consists of only two points head and

neck. The network detects neck key-point with an accuracy

of around 95% while the accuracy falls down to 77% for the

detection of head key-point for the same pixel distance d=5.

4.3. SH-PAF Performance and comparison

The human pose estimation performance of the SH-PAF

network on the LFC dataset is presented in Table 1. The

performance is compared with 3 networks namely Coordi-

nateNet (CN), CoordinateNet extended (CNE) and Spatial-

Net. The key-point detection accuracy results for the dataset

are is shown in the table. The SH-PAF network outperforms

the other networks by a significant margin and performs as

well as SpatialNet.

4.4. Gender Classification

The estimated body jointed are connected together to

form a human skeleton structure as shown in Fig. 3. A set of



Figure 5. The illustration presents the gender classifications results on the three images with multiple humans from the LFC dataset.

Table 1. Comparison of KeyPoint detection accuracies(of various

architectures namely Coordinate Net (CN) [11], Coordinate ex-

tended (CNE) [11], Spatial net [12] and SH-PAF network on LFC

dataset
Dataset other architecture

SHDL CN CNE Spatial Net

LFC 80.3 76.1 74.8 78.2

16 frames containing these skeleton structures are given as

input to the 3D ResNext which performs the binary (male

vs female) classification. The performance of the system

for different attributes of the LFC dataset and orientations

at which the human appears to the camera is shown in Table

2 below:

Table 2. Table shows the accuracy distribution (in %) of the

proposed model over different attributes and angles (in degrees)

Clothing 0 45 90 135 180 225 270

Scarf with

loose dress 100 98 100 97 98 97 96

Hoodie

with skirt 98 100 100 95 98 100 86

Scarf

with skirt 100 98 98 93 98 95 93

Hoodie with

loose pants 98 96 100 100 100 98 98

Scarf with

loose pants 100 100 100 98 98 98 96

The classification performance for the humans at differ-

ent distances from the camera is also shown in Table 3.

As the distance of the humans increases, the accuracy of

the proposed system decreases as often the pose estimated

for humans which are large distances is not accurate.

The classification performance of the system is also

shown for multiple humans in Table 4 as shown below.

The dataset also contains samples with more than 5 hu-

mans as well.

The classification performance is also compared with the

state-of-the-art technique which were developed to perform

Table 3. The table presents the classification accuracies(%) with

the increase in distance (m) for individuals in the LFC dataset.

Height (m)

5 10 15 20

BGGI 93.1 91.6 88.3 85.8

Table 4. The table presents the classification accuracies(%) with

the number of individuals in an image from the LFC dataset.

Humans (No.)

2 3 4 5

BGGI 96.9 90.3 87.9 81.1

gender classification using gait as shown in Table. 5. The

proposed BGGI was able to outperform the state-of-the-art

methods by more than 4% on the LFC dataset.

Table 5. Table shows the suspicious activity classification accuracy

(%) compared against the two state-of-the-art method.

Comparison

BGGI Chéron [3] Zhang [21]

Acc. 87.8 81.2 83.8

4.5. Runtime Performance

The BGGI framework consisted of two parts:: (i) human

pose estimation using the SH-PAF network, and (iii) clas-

sification of the estimated human pose as male or female

using the Bayesian 3D ResNext. Its runtime performance

is computed on the cloud. The framework was trained and

evaluated using the cuDNN framework and NVIDIA Tesla

GPUs. For an image frame, the system detected and deter-

mined genders of individuals at 5 fps per second to 16 fps

for upto ten people. The processing time varies in accor-

dance with the number of individuals in the image frame.

5. Conclusion

This paper proposes a Bayesian Gait-based Gender Iden-

tification framework that can determine the gender of an

individual from videos using their walking pattern or gait.



The framework first uses the proposed SH-PAF network

consisting of Joints Identification network using Part Affin-

ity Fields to detect humans and estimate their pose. The

estimated poses are used by the 3D ResNext to follow the

gait and predict the gender of individual. The proposed SH-

PAF network uses ScatterNet features with structural priors

initialization to achieve accelerated training using relatively

fewer labelled examples. The use of fewer labelled exam-

ples is beneficial for this application since it is expensive

to collect annotated examples. The paper also introduced

the Loosely Fitted Clothing (LFC) Dataset which can ben-

efit other researchers aiming to use deep learning methods

for gender classification on videos and images where the

faces and body shapes of the individuals is difficult to per-

ceive. The proposed framework outperforms the state-of-art

techniques on the LFC dataset. We believe the framework

would be instrumental in detecting disguised individuals in

public areas or large gatherings.
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[4] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster. Automatic

camera and range sensor calibration using a single shot. In

Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pages 3936–3943, 2012.

[5] J. Han and B. Bhanu. Individual recognition using gait en-

ergy image. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28(2):316–322, Feb 2006.

[6] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d

cnns retrace the history of 2d cnns and imagenet? CoRR,

abs/1711.09577, 2017.

[7] S. Jain, S. Gupta, and A. Singh. A novel method to improve

model fitting for stock market prediction. International Jour-

nal of Research in Business and Technology, 3(1):78–83.

[8] V. Jeengar, S. Omkar, A. Singh, M. K. Yadav, and S. Keshri.

A review comparison of wavelet and cosine image trans-

forms. International Journal of Image, Graphics and Signal

Processing, 4(11):16, 2012.

[9] Y. Liu, J. Zhang, C. Wang, and L. Wang. Multiple hog tem-

plates for gait recognition. In Proceedings of the 21st In-

ternational Conference on Pattern Recognition (ICPR2012),

pages 2930–2933, Nov 2012.

[10] Y. Makihara, A. Suzuki, D. Muramatsu, X. Li, and Y. Yagi.

Joint intensity and spatial metric learning for robust gait

recognition. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 6786–6796, July

2017.

[11] T. Pfister. Advancing human pose and gesture recognition.

In University of Oxford, 2015.

[12] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets

for human pose estimation in videos. In IEEE International

Conference on Computer Vision, 2015.

[13] L. Sifre and S. Mallat. Rotation, scaling and deformation

invariant scattering for texture discrimination. In Computer

Vision and Pattern Recognition (CVPR), 2013 IEEE Confer-

ence on, pages 1233–1240, 2013.

[14] A. Singh, D. Hazarika, and A. Bhattacharya. Texture and

structure incorporated scatternet hybrid deep learning net-

work (ts-shdl) for brain matter segmentation. International

Conference on Computer Vision Workshop, 2017.

[15] A. Singh and N. Kingsbury. Dual-tree wavelet scattering net-

work with parametric log transformation for object classifi-

cation. In International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2017.

[16] A. Singh and N. Kingsbury. Efficient convolutional network

learning using parametric log based dual-tree wavelet scat-

ternet. IEEE International Conference on Computer Vision

Workshop, 2017.

[17] A. Singh and N. Kingsbury. Scatternet hybrid deep learning

(shdl) network for object classification. International Work-

shop on Machine Learning for Signal Processing, 2017.

[18] A. Singh and N. Kingsbury. Generative scatternet hybrid

deep learning (g-shdl) network with structural priors for se-

mantic image segmentation. IEEE International Conference

on Acoustics, Speech and Signal Processing, 2018.

[19] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4724–4732, 2016.

[20] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural networks.

CoRR, abs/1611.05431, 2016.

[21] Y. Zhang, Y. Huang, L. Wang, and S. Yu. A comprehensive

study on gait biometrics using a joint cnn-based method. Pat-

tern Recognition, 93:228 – 236, 2019.


