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Abstract

In this paper, we propose a temporal feature augment-

ed network for video instance segmentation. Video instance

segmentation task can be split into two subtasks: instance

segmentation and tracking. Similar to the previous work,

a track head is added to an instance segmentation network

to track object instances across frames. Then the network

can performing detection, segmentation and tracking tasks

simultaneously. We choose the Cascade-RCNN as the basic

instance segmentation network. Besides, in order to make

better use of the rich information contained in the video,

a temporal feature augmented module is introduced to the

network. When performing instance segmentation task on

a single frame, information from other frames in the same

video will be included and the performance of instance seg-

mentation task can be effectively improved. Moreover, ex-

periments show that the temporal feature augmented mod-

ule can effectively alleviate the problem of motion blur and

pose variation.

1. Introduction

Detection, segmentation and tracking are three funda-

mental computer vision tasks, which attracted more and

more attention in recent years. In the domain of video anal-

ysis, these tasks have wide range of applications such as

autonomous driving and video editing. In [1], authors pro-

posed a new task named as video instance segmentation.

The task of video instance segmentation aims at performing

detection, segmentation and tracking tasks simultaneous-

ly in videos. Video instance segmentation integrates three

tasks into one framework, and the three tasks can share all

the video level information.

The task of video instance segmentation can be split into

two subtasks: instance segmentation and tracking. In [1], a

tracking head is added to Mask-RCNN [2] to perform the

task of instance segmentation and tracking simultaneous-

ly. Performance of video instance segmentation is limited

by the accuracy of the two subtasks. Instance segmenta-

tion performs per-pixel labeling of objects at instance lev-

el, which usually implemented in two stages [2]. Besides

that, Cascade R-CNN [3] proposed a multi-stage detection

architecture to handle the problem of training hypotheses

with low quality. The performance of detection task can

be improved by a large margin with the cascade architec-

ture. Moreover, Hybrid Task Cascade [4] introduced mask

information flow branch and semantic segmentation branch

to further improves the performance of instance segmenta-

tion, especially the mask head. For the task of video object

tracking, there are two scenarios. One is detection-based

tracking [5] and the other is detection-free tracking [6]. The

detection-based tracking task is closer to the video instance

segmentation.

Similar to the previous video instance segmentation

work, we first choose the Cascade R-CNN as basic instance

segmentation model. Then a tracking head is added to track-

ing object instances across frames. However, the traditional

instance segmentation architecture is designed for still im-

ages and there are some gaps between the image instance

segmentation and video instance segmentation. Firstly, di-

rectly applying the existing image instance segmentation

model to video instance segmentation task is difficult due

to the motion blur, pose variation and object occlusions.

Moreover, video sequences contain more features than still

images. These features are not used in existing instance seg-

mentation model and can be used to further improve the per-

formance of instance segmentation. To handle these prob-

lems, we introduced a temporal feature augmented module

into the existing instance segmentation model for integrat-

ing temporal feature. In our model, before the ROI feature

feeding into the second stage branch, similarity matching

and feature fusion are first performed with ROI feature from



Figure 1. The overall architecture of temporal feature augmented network.

other frames. Then the final inference results (detection,

segmentation and tracking) are based on the information

from multi-frame, which is more accurate than the results

obtained from single-frame. Besides, compared to the orig-

inal tracking head in [1], we added a deformation factor to

further improve the tracking performance.

2. Methods

2.1. Overall architecture

The overall architecture of our model is illustrated in

Figures 1. Because the performance of video instance seg-

mentation task is largely dependent on the accuracy of im-

age instance segmentation, we choose the Cascade R-CNN

as our basic still image instance segmentation model and

ResNext-101 [7] as the backbone. Same to [1], in parallel

to the original three branches (classification, bounding box

regression, mask segmentation), a tracking head is added to

assign object id to each candidate box. Before the ROI fea-

tures feeding into the four branches, this ROI features are

first enhanced by the temporal feature augmented module.

Then the detection and segmentation results are obtained in

the same way as in Cascade R-CNN, the tracking results are

obtained in the same way as in [1].

2.2. Temporal feature augmentation module

The temporal feature augmented module is proposed to

mine potential features in video sequence and alleviate the

problem of motion blur, pose variation and object occlu-

sions. The structure of temporal feature augmented module

is illustrated in Figures 2. During training stage, we first

randomly sample N frames {x1, x2...xn} from the video se-

quence. Then one of the N frames is randomly selected as

the training sample (suppose as xk), and the other frames

are used to provide temporal features. All sampled frames

are first pass through the RPN to get proposals. Suppose

{rk
1
, rk

2
...rkm} is the m proposals generated from xk, and

{rs
1
, rs

2
...rsp} is the p proposals generated from all sampled

frames, where p = N ∗ m, superscript k indicates pro-

posals from the training sample and superscript s indicates

proposals from all sampled frames. Then top t proposals

{rs
1
, rs

2
...rst } are selected from the p proposals for temporal

feature augmenting according to the score.

Each proposal rki from {rk
1
, rk

2
...rkm} is first computed

similarity with each proposal rsj in {rs
1
, rs

2
...rst }. For each

pair {r
k

i , r
s
j}, a siamese network fe which is a fully con-

nected layer embed them into a new feature space {e
k

i , e
s
j}.

Then the similarity between the two proposals are measured

by cosine similarity between the two embedding:

sij = cos ine(fe(r
k
i ), fe(r

s
j )) (1)

The sij is normalized across the t proposals by softmax

function. Then the proposal rki is recomputed according

to the similarity:

∧

rki =

t∑

j=1

sijr
s
j (2)

The recomputed proposal
∧

rki feature is aggregated by pro-

posal features from all sampled frames and therefore con-

tains more temporal features. The recomputed proposal fea-

ture can be more discriminative when used for subsequent

branches. For example, it is difficult to distinguish a fox

facing away from the camera form a single frame. But if

the proposal integrates features from other frames, in which

the fox is facing the camera, it will be easier to distinguish

its category.



Figure 2. The temporal feature augmented module.

2.3. Tracking head

During training stage, tracking head in our model is same

as [1]. During inference stage, we add more additional cues

from mask head. Besides the assigning probability, detec-

tion score, IOU of bounding boxes and category label con-

sistency, IOU of instance mask is also added as the addi-

tional cues. The IOU of instance mask can be viewed as a

deformation factor and experiments show that it effectively

improves tracking accuracy.

3. Experiments

Implementation details. We choose Cascade-RCNN

as our basic image instance segmentation model due to its

good performance in our experiments. ResNext101-FPN

pretrained on MS-COCO dataset is adopted as the back-

bone. Overall architecture is implemented base on the pub-

lic implementation [8]. We further split the YouTube-VIS

training set into 1902 offline-training set and 336 offline-

validation set. Our model is trained on offline-training set

and evaluated on the offline-validation set. The results of

YouTube-VIS validation set and test set are evaluated by

submitting to the CodaLab site. The original frame sizes are

downsampled to 640× 360 for both training and evaluation

in our model and the model is trained on four Tesla-V100

with batchsize 4.

Results on YouTube-Video Instance Segmentation

Challenge. The proposed temporal feature augmented net-

work achieves competitive performance on YouTube-Video

Instancce Segmentation Challenge. Table 3 shows the rank-

ing results on YouTube-Video Instance Segmentation Chal-

lenge test set. Our model gets 0.444 mAp which ranks fifth

in the final leaderboard. Some qualitative results predict-

ed by our model are shown in Figures 3. As shown in the

qualitative results, the model can still get satisfactory results

when dealing with frames with motion blur, pose variation

and multi-objects.

4. Conclusion

In this paper, we proposed a temporal feature augmented

network for video instance segmentation. A tracking head

and a temporal feature augmented module is introduced to

image instance segmentation model to perform the task of

video instance segmentation. The temporal feature aug-

mented module aggregated features from multi-frames for

single frame inference, which can effectively alleviate the

problem such as motion blur and pose variation. In the fu-

ture, we will explore more architectures to utilize spatial-

temporal feature for video instance segmentation.

References

[1] L. Yang, Y. Fan, and N. Xu, “Video instance

segmentation,” CoRR, vol. abs/1905.04804, 2019.

[Online]. Available: https://arxiv.org/abs/1905.04804

[2] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask

r-cnn,” IEEE Transactions on Pattern Analysis Machine

Intelligence, vol. PP, no. 99, pp. 1–1, 2017.

[3] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving

into high quality object detection,” in Proceedings of

the IEEE conference on computer vision and pattern

recognition, 2018, pp. 6154–6162.

[4] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun,

W. Feng, Z. Liu, J. Shi, W. Ouyang et al., “Hybrid task

cascade for instance segmentation,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 4974–4983.

[5] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking

the untrackable: Learning to track multiple cues with



# Team mAp AP50 AP75 AR1 AR10

1 Jono 0.467 (1) 0.697 (1) 0.509 (1) 0.462 (1) 0.537 (2)

2 foolwood 0.457 (2) 0.674 (3) 0.490 (3) 0.435 (5) 0.507 (4)

3 bellejuillet 0.450 (3) 0.636 (5) 0.502 (2) 0.447 (3) 0.503 (5)

4 linhj 0.449 (4) 0.665 (4) 0.486 (5) 0.453 (2) 0.538 (1)

5 mingmingdiii(ours) 0.444 (5) 0.684 (2) 0.487 (4) 0.436 (4) 0.508 (3)

6 xiAaonice 0.400 (6) 0.578 (9) 0.449 (6) 0.396 (9) 0.452 (9)

7 guwop 0.400 (7) 0.608 (7) 0.439 (8) 0.412 (7) 0.491 (6)

8 exing 0.397 (8) 0.621 (6) 0.426 (9) 0.414 (6) 0.461 (8)

9 player1 0.393 (9) 0.606 (8) 0.444 (7) 0.409 (8) 0.472 (7)

10 TeamXu 0.339 (10) 0.549 (13) 0.384 (10) 0.364 (10) 0.404 (11)

Table 1. Ranking results on YouTube-Video Instance Segmentation Challenge test set.

Figure 3. Qualitative results on YouTube-VIS dataset.

long-term dependencies,” in Proceedings of the IEEE

International Conference on Computer Vision, 2017, p-

p. 300–311.

[6] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi,

and P. H. Torr, “Fully-convolutional siamese networks

for object tracking,” in European conference on com-

puter vision. Springer, 2016, pp. 850–865.

[7] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggre-

gated residual transformations for deep neural network-

s,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 1492–1500.

[8] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li,

S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng,

C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu,

J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and

D. Lin, “MMDetection: Open mmlab detection tool-

box and benchmark,” arXiv preprint arXiv:1906.07155,

2019.


