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Abstract

In this paper, we investigate the principles of consis-

tent training, between given reference and predicted se-

quence, for better embedding learning of semi-supervised

video object segmentation. To accurately segment the tar-

get objects given the mask at the first frame, we realize

that the expected feature embeddings of any consecutive

frames should satisfy the following properties: 1) global

consistency in terms of both foreground object(s) and back-

ground; 2) robust local consistency under a various object

moving rate; 3) environment consistency between the train-

ing and inference process; 4) receptive consistency between

the receptive fields of network and the variable scales of

objects; 5) sampling consistency between foreground and

background pixels to avoid training bias. With the princi-

ples in mind, we carefully design a simple pipeline to lift

both accuracy and efficiency for video object segmentation

effectively. With the ResNet-101 as the backbone, our single

model achieves a J&F score of 81.0% on the validation set

of Youtube-VOS benchmark without any bells and whistles.

By applying multi-scale & flip augmentation at the testing

stage, the accuracy can be further boosted to 82.4%. Code

will be made available.

1. Introduction

Semi-supervised Video Object Segmentation (VOS) tar-

gets on segmenting a particular object instance across the

entire video sequence based on the object mask given at the

first frame. The VOS is a fundamental task in computer

vision with many potential applications, including interac-

tive video editing, augmented reality, and self-driving cars.

A recent work, FEELVOS [10], uses a semantic pixel-wise

embedding together with a global (between reference and

current frames) and a local (between previous and current

frames) matching mechanism to transfer information from

the first frame and form the previous frame of the video to

the current frame. In contrast to some previous works (e.g.

PReMVOS [7]), which are complicated and heavily rely on

fine-tuning on the first frame, FEELVOS enables the net-

work can be learned in an end-to-end manner for the multi-

ple object segmentation task. Although the matching mech-

anism proposed in [7] looks simple, it is actually beneficial.

Even though significant progress has been made in the

research fields of VOS, the current state-of-the-art works are

still with some significant problems or defects. First, pre-

vious works always focus on keeping consistency on only

foreground objects. However, an excellent segmented back-

ground is equally important as the foreground. Second, the

local matching between previous and current frames is usu-

ally limited in a fixed extent of neighboring pixels in the

previous works. However, the offset of objects between two

adjacent frames in real videos is often variable in terms of

different moving rate or frame rate. For instance, the frame

rate of the Youtube-VOS is 6 fps, which is much slower than

of DAVIS benchmark (i.e. 24 fps) [8], leading to a larger

variance of appearance for the objects across two adjacent

frames. Third, in the training process of previous works,

the mask of previous frames is always from ground truth

data, which is not consistent with the situation at the infer-

ence stage, i.e. the mask of previous frames is generated by

network itself. Moreover, the receptive fields of guidance

information are usually not robust to different scales of ob-

jects for most previous works. For example, the matching

mechanism in FEELVOS works on pixel-level (with a stride

of 4), which is not sufficient and robust to match those ob-

jects with large scale. Finally, there is an apparent imbal-

ance between foreground pixels and background pixels dur-

ing the training process. The region of foreground objects

is always much smaller than the background, which makes

the networks easier to over-fit on background attributes.

To relief or overcome the above-mentioned issues, we

propose an Embedding Learning with Consistency Percep-

tion (ELCP) approach for fast and robust semi-supervised

VOS. First, apart from only matching on foreground ob-

jects, we make consistency in terms of both foreground

objects and background by additionally leveraging back-

ground pixels to match background globally and locally.

Second, we apply a multi-scale mechanism for local match-

ing and let the network to learn how to choose the best local

scale adaptively. In addition, we concatenate the embedding
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Figure 1. An overview of the structure of ELCP. “F&B” means “Foreground and Background”.

features from the previous frame to the current one. Such an

operation has been proven to be useful in learning the offset

of content between adjacent frames in [3]. Third, we design

a sequential training method for VOS to compel the network

to keep the integrity of instances (or objects) during sequen-

tial prediction, which is closer to the environment at the in-

ference stage. Moreover, we redesign a deep segmentation

module for making larger receptive fields, which is helpful

to relief the local ambiguities [9]. Beyond the pixel-level

matching, we design an instance-level light-weight atten-

tion mechanism to guide the segmentation further. Finally,

we design a balanced random-crop augmentation method,

which crops a sequence of frames together with the same

window and restricts the crop region to contain enough fore-

ground information. All these proposed strategies can sig-

nificantly improve the quality of the learned embeddings for

conducting VOS while keeping the network simple yet ef-

fective simultaneously.

We conduct extensive experiments on the validation set

of YouTube-VOS [11] 2019 to evaluate the effectiveness of

the proposed ELCP approach. Using ResNet-101 [5] &

Deeplab-V3+ [2] as backbone, our single model achieves

81.0% (w/o multi-scale & flip) and 82.4% (w/ multi-scale

& flip) J&F on the validation set. We hope our ELCP

will serve as a solid baseline to help ease future research in

video object segmentation. We will make our code publicly

available soon.

2. Approach

Compared to previous works, our proposed ELCP has

advantages in two aspects. First, on the aspect of model

architecture, we improve the robustness of local match-

ing under various object moving rates. Furthermore, we

augment the guidance information by matching on both

foreground object(s) and background with both pixel-level

matching and instance-level attention. Moreover, we make

larger receptive fields to perceive individual instance of var-

ious scales. Second, on the aspect of training method,

we design a balanced random-crop augmentation method to

generate more appropriate foreground/background ratio to

avoid training bias. Also, we design a novel training method

for VOS to compel the network to keep the integrity of fore-

ground instances (or objects) during sequence prediction.

We show an overview of our model architecture in Fig. 1.

2.1. Model Architecture

2.1.1 Foreground and Background Matching

Similar to FEELVOS, we use a global and local matching

mechanism to guide the segmentation in the current frame.

The difference from FEELVOS is that we additionally in-

corporate background information. Concretely, the fore-

ground matching is the same as the matching method pro-

posed in FEELVOS [10]. Let Pt denote the set of all pixels

(with a stride of 4) at time t and Pt,o ⊆ Pt is the set of

pixels at time t which belong to foreground object o. The

global foreground matching between pixels p and q is,

Gt,o(p) = min
q∈P1,o

d(p, q), (1)

where d(p, q) is the distance defined in FEELVOS [10].

And the local foreground matching is,

Ĝt,o(p) =

{

minq∈Pt−1,o
d(p, q) if Pt−1,o �= ∅

1 otherwise
. (2)

Similarly, let P
′

t,o = Pt\Pt,o denote the set of back-

ground pixels of object o at time t. The global background

matching is,

G
′

t,o(p) = min
q∈P

′

1,o

d(p, q). (3)

And the local background matching is,

Ĝ
′

t,o(p) =

{

min
q∈P

′

t−1,o

d(p, q) if P
′

t−1,o �= ∅

1 otherwise
. (4)

2.1.2 Foreground and Background Attention

In addition to the pixel-level matching, we design an

instance-level light-weight attention mechanism to guide



the segmentation further. Inspired by SE-Net [6], we first

separately embed the foreground and background pixels of

the reference and previous frames (i.e. P1,o, Pt−1,o, P
′

1,o,

and P
′

t−1,o) using average pooling. After generating the

embedding vector, we use fully connected layers with non-

linear activation to learn guidance information and adjust

the channel scale of feature maps in our segmentation out-

put module.

2.1.3 Multi-scale Local Matching

In the FEELVOS, the local matching is limited in a fixed

extent of neighboring pixels, but the offset of objects across

two adjacent frames in real videos is variable. In our ELCP,

we apply the local matching mechanism on different scales

and let the network to learn how to select the best local

scale, which makes our framework more robust to a vari-

ous object moving rates. Benefiting from the effective en-

gineering design, the increase of computational resource of

our multi-scale matching is negligible.

In addition to the multi-scale local matching, we con-

catenate the embedding feature from the previous frame to

the current frame. This simple concatenation method has

proven to be useful in learning the offset of content (optical

flow) between consecutive frames in [3].

2.1.4 Deep Segmentation Module

To relief the problem of local ambiguities, we design a deep

segmentation module for making larger receptive fields. In-

spired by ResNets [5] and Deeplabs [1, 2], which both have

shown significant representational power in image segmen-

tation tasks, our deep segmentation module contains three

stages of Res-Blocks. The number of Res-Blocks in Stage

1, 2, and 3 are separately 2, 2, 3. At the beginning of Stage

2 and stage 3, the feature maps will be downsampled by

a Res-Block with a stride of 2. After these three stages,

similar to Deeplabs [1, 2], we employ the Atrous Spatial

Pyramid Pooling (ASPP) module to increase the receptive

fields further and make the network more robust to differ-

ent scale of objects. Besides, we further use one decoder

module to refine the boundary of prediction by utilizing the

information from low-level layers of the backbone and our

deep segmentation module.

2.2. Training Method

2.2.1 Balanced Random Crop

There is an apparent imbalance between foreground pixels

and background ones on YouTube-VOS [11]. However, pre-

vious works for VOS did not focus on this problem, which

makes the models easier to over-fit on background attributes

and decrease the generalization ability. In order to relieve

this problem, we design a specific balanced random-crop

augmentation method, which crops a sequence of frames
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Figure 2. An illustration of the sequential training method. For

brevity’s sake, we omit the reference frame (i.e. Frame 1 and

Ground Truth 1) used for the global matching in all the steps.
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w/ Sequential Training + Deep Segmentation Module
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Figure 3. The proposed sequential training and deep segmentation

module effectively relief the problem of local ambiguities.

(i.e. reference frame, previous frame, and current frame) to-

gether with the same crop window and restricts the crop

region to contain enough foreground information. The re-

striction method is simple but effective. Specifically, our

balanced random-crop method will decide on whether the

randomly cropped frame contains enough pixels from fore-

ground objects or not. If not, the method will continually

take the cropping operation until one expected frame is ob-

tained.

Moreover, our method will adjust the sequential frames

to keep consistency with the reference frame. By doing this,

we can successfully avoid false foreground object labels.

2.2.2 Sequential Training

To relief the problem of local ambiguities and over-fitting

further, we design a sequential training method, which

trains the network using a sequence of consecutive frames

in each iteration. An illustration is shown in Fig. 2. Dur-

ing the sequential training process, we use the prediction

in the last step to guide the segmentation in the next step.

This method compels the network to learn how to keep the

consistency of objects during sequence prediction at the in-

ference stage, which is more similar to real video object

segmentation environment.



Approach score boost

FEELVOS (after adjusting hyper-parameters for YouTube-VOS) 75.1% -

+ Foreground and Background Matching 76.2% 1.1%

+ Foreground and Background Attention 77.1% 0.9%

+ Balanced Random Crop 78.4% 1.3%

+ Deep Segmentation Module 79.5% 1.1%

+ Multi-scale Local Matching 80.2% 0.7%

+ Sequential Training 81.0% 0.8%

+ Multi-scale & Flip in Testing 82.4% 1.4%
Table 1. The ablation study experiments on the validation set of YouTube-VOS 2019.

3. Experiments

We evaluate our method on the YouTube-VOS 2019

dataset, which contains 3471 videos in the training set, 507

videos in the validation set (26 unseen categories in train-

ing), and 541 videos in the test set (29 unseen categories).

The evaluation metric is the J score, calculated as the aver-

age IoU between the prediction and the ground truth mask,

and the F score, calculated as an average boundary simi-

larity measure between the boundary of the prediction and

the ground truth, and their average value over the seen and

unseen categories.

3.1. Experimental Results

On the validation set, our ELCP (single model) achieves

a J&F mean score over both the seen and unseen cate-

gories of 81.0% without any bells and whistles. By ap-

plying multi-scale & flip augmentation during the evalu-

ation, the score can be further boosted to 82.4%. No-

tably, the ELCP trained with short training schedule

achieves 80.3 on the validation set and 80.4 on the test

set (w/o multi-scale & flip), which ranks 3rd in Track

1 (VOS) of the 2nd Large-scale Video Object Segmen-

tation Challenge. Moreover, our ELCP can be further

applied to conduct the challenging video instance seg-

mentation task [4].

Moreover, the speed (w/o multi-scale & flip) of the pro-

posed ELCP is about 3 fps in evaluation on YouTube-

VOS (720P videos) using single Tesla V100 GPU, which

is much faster than previous works with first-frame fine-

tuning (e.g. [7]).

3.2. Ablation Study

We also study the contribution of all the components

and methods in our framework. As shown in Table 1, all

the components, and methods we proposed show significant

improvement in performance. Fig. 3 gives a result compari-

son to demonstrate the effectiveness of Sequential Training

and Deep Segmentation Module further. By applying all the

proposed methods together, we extremely boost the perfor-

mance of baseline from 75.1% to 82.4% on the validation

set of Youtube-VOS 2019.

4. Conclusion

In this paper, we proposed a novel framework for semi-

supervised video object segmentation by going deeper into

embedding learning. The proposed approach, including

both architectures and training methods for more robust em-

bedding learning, significantly improves the quality of VOS

but keeps the network simple and fast.
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