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Abstract

In contrast to the widely studied problem of recogniz-

ing an action given a complete sequence, action anticipa-

tion aims to identify the action from only partially available

videos. As such, it is therefore key to the success of com-

puter vision applications requiring to react as early as pos-

sible, such as autonomous navigation. In this paper, we pro-

pose a new action anticipation method that achieves high

prediction accuracy even in the presence of a very small

percentage of a video sequence. To this end, we develop a

multi-stage LSTM architecture that leverages context-aware

and action-aware features, and introduce a novel loss func-

tion that encourages the model to predict the correct class

as early as possible. Our experiments on standard bench-

mark datasets evidence the benefits of our approach; We

outperform the state-of-the-art action anticipation methods

for early prediction by a relative increase in accuracy of

22.0% on JHMDB-21, 14.0% on UT-Interaction and 49.9%

on UCF-101.

1. Introduction

Understanding actions from videos is key to the success

of many real-world applications, such as autonomous nav-

igation and sports analysis. While great progress has been

made to recognize actions from complete sequences [16, 38,

7, 9, 30, 41, 31, 10, 2] in the past decade, action anticipa-

tion [25, 26, 24, 45, 32, 33, 21], which aims to predict the

observed action as early as possible, has become a popu-

lar research problem only recently. Anticipation is crucial

in scenarios where one needs to react before the action is

finalized, such as to avoid hitting pedestrians with an au-

tonomous car, or to forecast dangerous situations in surveil-

lance scenarios.

The key difference between recognition and anticipation

lies in the fact that the methods tackling the latter should

predict the correct class as early as possible, given only a

few frames from the beginning of the video sequence. To

address this, several approaches have introduced new train-

Figure 1. Overview of our approach. Given a small portion

of sequential data, our approach is able to predict the action cate-

gory with very high performance. For instance, in UCF-101, our

approach anticipates actions with more than 80% accuracy given

only the first 1% of the video. To achieve this, we design a a

model that leverages action- and context-aware features together

with a new loss function that encourages the model to make cor-

rect predictions as early as possible.

ing losses encouraging the score [32] or the rank [21] of the

correct action to increase with time, or penalizing increas-

ingly strongly the classification mistakes [11]. In practice,

however, the effectiveness of these losses remains limited

for very early prediction, such as from 1% of the sequence.

In this paper, we introduce a novel loss that encourages

making correct predictions very early. Specifically, our loss

models the intuition that some actions, such as running and

high jump, are highly ambiguous after seeing only the first

few frames, and false positives should therefore not be pe-

nalized too strongly in the early stages. By contrast, we

would like to predict a high probability for the correct class

as early as possible, and thus penalize false negatives from

the beginning of the sequence. Our experiments demon-

strate that, for a given model, our new loss yields signif-

icantly higher accuracy than existing ones on the task of

early prediction.

In particular, in this paper, we also contribute a novel

multi-stage Long Short Term Memory (LSTM) architec-

ture for action anticipation. This model effectively extracts

and jointly exploits context- and action-aware features (see
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Fig. 1). This is in contrast to existing methods that typi-

cally extract either global representations for the entire im-

age [6, 41, 42, 7] or video sequence [35, 14], thus not fo-

cusing on the action itself, or localize the feature extraction

process to the action itself via dense trajectories [39, 38, 9],

optical flow [8, 41, 18] or actionness [40, 3, 12, 44, 36, 22],

thus failing to exploit contextual information. To the best

of our knowledge, only two-stream networks [28, 8, 4, 20]

have attempted to jointly leverage both information types

by making use of RGB frames in conjunction with optical

flow to localize the action. Exploiting optical flow, how-

ever, does not allow these methods to explicitly leverage

appearance in the localization process. Furthermore, com-

puting optical flow is typically expensive, thus significantly

increasing the runtime of these methods. By not relying on

optical flow, our method is significantly more efficient: On

a single GPU, our model analyzes a short video (e.g., 50

frames) 14 times faster than [28] and [8].

Our model is depicted in Fig. 2. In a first stage, it focuses

on the global, context-aware information by extracting fea-

tures from the entire RGB image. The second stage then

combines these context-aware features with action-aware

ones obtained by exploiting class-specific activations, typi-

cally corresponding to regions where the action occurs. In

short, our model first extracts the contextual information,

and then merges it with the localized one.

As evidenced by our experiments, our approach signif-

icantly outperforms the state-of-the-art action anticipation

methods on all the standard benchmark datasets that we

evaluated on, including UCF-101 [34], UT-Interaction [24],

and JHMDB21 [13]. In the supplementary material, we fur-

ther show that our combination of context- and action-aware

features is also beneficial for the more traditional task of ac-

tion recognition. Moreover, we evaluate the effect of optical

flow features for both action recognition and anticipation.

2. Related Work

The focus of this paper is twofold: Action anticipation,

with a new loss that encourages correct prediction as early

as possible, and action modeling, with a model that com-

bines context- and action-aware information using multi-

stage LSTMs. Below, we discuss the most relevant ap-

proaches for these two aspects.

2.1. Action Anticipation

The idea of action anticipation was introduced by [26],

which models causal relationships to predict human activi-

ties. This was followed by several attempts to model the dy-

namics of the observed actions, such as by introducing inte-

gral and dynamic bag-of-words [25], using spatial-temporal

implicit shape models [45], extracting human body move-

ments via skeleton information [47], and accounting for the

complete and partial history of observed features [15].

More recently, [33] proposed to make use of binary

SVMs to classify video snippets into sub-action categories

and obtain the final class label in an online manner using

dynamic programming. To overcome the need to train one

classifier per sub-action, [32] extended this approach to us-

ing a structural SVM. Importantly, this work further intro-

duced a new objective function to encourage the score of

the correct action to increase as time progresses.

While the above-mentioned work made use of hand-

crafted features, recent advances have naturally led to the

development of deep learning approaches to action antici-

pation. In this context, [21] proposed to combine a Con-

volutional Neural Network (CNN) with an LSTM to model

both spatial and temporal information. The authors further

introduced new ranking losses whose goal is to enforce ei-

ther the score of the correct class or the margin between the

score of the correct class and that of the best score to be

non-decreasing over time. Similarly, in [11], a new loss that

penalizes classification mistakes increasingly strongly over

time was introduced in an LSTM-based framework that

used multiple modalities. While the two above-mentioned

methods indeed aim at improving classification accuracy

over time, they do not explicitly encourage making correct

predictions as early as possible. By contrast, while account-

ing for ambiguities in early stages, our new loss still aims to

prevent false negatives from the beginning of the sequence.

Instead of predicting the future class label, in [37], the

authors proposed to predict the future visual representation.

However, the main motivation for this was to work with

unlabeled videos, and the learned representation is therefore

not always related to the action itself.

2.2. Action Modeling

Most recent action approaches extract global representa-

tions for the entire image [6, 42, 7] or video sequence [35,

14]. As such, these methods do not truly focus on the ac-

tions of interest, but rather compute a context-aware rep-

resentation. Unfortunately, context does not always bring

reliable information about the action. For example, one

can play guitar in a bedroom, a concert hall or a yard. To

overcome this, some methods localize the feature extrac-

tion process by exploiting dense trajectories [39, 38, 9] or

optical flow [18]. Inspired by objectness, the notion of ac-

tionness [40, 3, 12, 44, 36, 22] has recently also been pro-

posed to localize the regions where a generic action occurs.

The resulting methods can then be thought of as extracting

action-aware representations. In other words, these meth-

ods go to the other extreme and completely discard the no-

tion of context which can be useful for some actions, such

as playing football on a grass field.

There is nevertheless a third class of methods that aim to

leverage these two types of information [28, 8, 4, 20, 41].

By combining RGB frames and optical flow in two-stream
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Figure 2. Overview of our approach. We propose to extract context-aware features, encoding global information about the scene, and

combine them with action-aware ones, which focus on the action itself. To this end, we introduce a multi-stage LSTM architecture that

leverages the two types of features to predict the action or forecast it. Note that, for the sake of visualization, the color maps were obtained

from 3D tensors (512×W ×H) via an average pooling operation over the 512 channels.

architectures, these methods truly exploit context and mo-

tion, from which the action can be localized by learning

to distinguish relevant motion. This localization, however,

does not directly exploit appearance. Here, inspired by the

success of these methods, we develop a novel multi-stage

network that also leverages context- and action-aware in-

formation. However, we introduce a new action-aware rep-

resentation that exploits the RGB data to localize the ac-

tion. As such, our approach effectively leverages appear-

ance for action-aware modeling, and, by avoiding the ex-

pensive optical flow computation, is much more efficient

than the above-mentioned two-stream models. In particular,

our model is about 14 times faster than the state-of-the-art

two-stream network of [8] and has less parameters. The re-

duction in number of parameters is due to the fact that [8]

and [28] rely on two VGG-like networks (one for each

stream) with a few additional layers (including 3D convolu-

tions for [8]). By contrast, our model has, in essence, a sin-

gle VGG-like architecture, with some additional LSTM lay-

ers, which only have few parameters. Moreover, our work

constitutes the first attempt at explicitly leveraging context-

and action-aware information for action anticipation. Fi-

nally, we introduce a novel multi-stage LSTM fusion strat-

egy to integrate action and context aware features.

3. Our Approach

Our goal is to predict the class of an action as early as

possible, that is, after having seen only a very small por-

tion of the video sequence. To this end, we first introduce

a new loss function that encourages making correct pre-

dictions very early. We then develop a multi-stage LSTM

model that makes use of this loss function while leveraging

both context- and action-aware information.

3.1. A New Loss for Action Anticipation

As argued above, a loss for action anticipation should

encourage having a high score for the correct class as early

as possible. However, it should also account for the fact

that, early in the sequence, there can often be ambiguities

between several actions, such as running and high jump.

Below, we introduce a new anticipation loss that follows

these two intuitions.

Specifically, let yt(k) encode the true activity label at

time t, i.e., yt(k) = 1 if the sample belongs to class k and

0 otherwise, and ŷt(k) denote the corresponding label pre-

dicted by a given model. We define our new loss as

L(y, ŷ) = −
1

N

N
∑

k=1

T
∑

t=1

[

yt(k) log(ŷt(k))+

t(1− yt(k))

T
log(1− ŷt(k))

]

, (1)

where N is the number of action classes and T the length

(number of frames) of the input sequence.

This loss function consists of two terms. The first one pe-

nalizes false negatives with the same strength at any point

in time. By contrast, the second one focuses on false posi-

tives, and its strength increases linearly over time, to reach

the same weight as that on false negatives. Therefore, the

relative weight of the first term compared to the second one

is larger at the beginning of the sequence. Altogether, this

encourages predicting a high score for the correct class as

early as possible, i.e., preventing false negatives, while ac-

counting for the potential ambiguities at the beginning of

the sequence, which give rise to false positives. As we see

more frames, however, the ambiguities are removed, and

these false positives are encouraged to disappear.
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Figure 3. Our feature extraction network. Our CNN model for

feature extraction is based on the VGG-16 structure with some

modifications. Up to conv5-2, the network is the same as VGG-

16. The output of this layer is connected to two sub-models. The

first one extracts context-aware features by providing a global im-

age representation. The second one relies on another network to

extract action-aware features.

Our new loss matches the desirable properties of an ac-

tion anticipation loss. In the next section, we introduce a

novel multi-stage architecture that makes use of this loss.

3.2. Multi­stage LSTM Architecture

To tackle action anticipation, we develop the novel

multi-stage recurrent architecture based on LSTMs depicted

by Fig. 2. This architecture consists of a stage-wise combi-

nation of context- and action-aware information. Below, we

first discuss our approach to extracting these two types of

information, and then present our complete multi-stage re-

current network.

3.2.1 Context- and Action-aware Modeling

To model the context- and action-aware information, we in-

troduce the two-stream architecture shown in Fig. 3. The

first part of this network is shared by both streams and, up

to conv5-2, corresponds to the VGG-16 network [29], pre-

trained on ImageNet for object recognition. The output of

this layer is connected to two sub-models: One for context-

aware features and the other for action-aware ones. We

then train these two sub-models for the same task of action

recognition from a single image using a cross-entropy loss

function defined on the output of each stream. In practice,

we found that training the entire model in an end-to-end

manner did not yield a significant improvement over train-

ing only the two sub-models. In our experiments, we there-

fore opted for this latter strategy, which is less expensive

computationally and memory-wise. Below, we first discuss

the context-aware sub-network and then turn to the action-

aware one.

Context-Aware Feature Extraction. This sub-model is

similar to VGG-16 from conv5-3 up to the last fully-

connected layer, with the number of units in the last fully-

connected layer changed from 1000 (original 1000-way Im-

ageNet classification model) to the number of activities N .

In essence, this sub-model focuses on extracting a deep

representation of the whole scene for each activity and thus

incorporates context. We then take the output of its fc7 layer

as our context-aware features.

Action-Aware Feature Extraction. As mentioned be-

fore, the context of an action does not always correlate with

the action itself. Our second sub-model therefore aims at

extracting features that focus on the action itself. To this

end, we draw inspiration from the object classification work

of [48]. At the core of this work lies the idea of Class Acti-

vation Maps (CAMs). In our context, a CAM indicates the

regions in the input image that contribute most to predict-

ing each class label. In other words, it provides information

about the location of an action. Importantly, this is achieved

without requiring any additional annotations.

More specifically, CAMs are extracted from the activa-

tions in the last convolutional layer in the following man-

ner. Let fl(x, y) represent the activation of unit l in the

last convolutional layer at spatial location (x, y). A score

Sk for each class k can be obtained by performing global

average pooling [19] to obtain, for each unit l, a feature

F l =
∑

x,y fl(x, y), followed by a linear layer with weights

{wk
l }. That is, Sk =

∑

k w
k
l Fl. A CAM for class k at loca-

tion (x, y) can then be computed as

Mk(x, y) =
∑

l

wk
l fl(x, y) , (2)

which indicates the importance of the activations at location

(x, y) in the final score for class k.

Here, we propose to make use of the CAMs to extract

action-aware features. To this end, we use the CAMs in con-

junction with the output of the conv5-3 layer of the model.

The intuition behind this is that conv5-3 extracts high-level

features that provide a very rich representation of the im-

age [46] and typically correspond to the most discriminative

parts of the object [1, 27], or, in our case, the action. There-

fore, we incorporate a new layer to our sub-model, whose

output can be expressed as

Ak(x, y) = conv5−3(x, y)× ReLU(Mk(x, y)) , (3)

where ReLU(Mk(x, y)) = max(0,Mk(x, y)). As shown

in Fig. 4, this new layer is then followed by fully-connected

ones, and we take our action-aware features as the output of

the corresponding fc7 layer.

3.2.2 Sequence Learning for Action Anticipation

To effectively combine the information contained in the

context-aware and action-aware features described above,

we design the novel multi-stage LSTM model depicted by

Fig. 2. This model first focuses on the context-aware fea-

tures, which encode global information about the entire im-

age. It then combines the output of this first stage with our

action-aware features to provide a refined class prediction.

283



Figure 4. Action-aware feature extraction. Given the fine-tuned

feature extraction network, we introduce a new layer that alters

the output of conv5-3. This lets us filter out the conv5-3 features

that are irrelevant, to focus on the action itself. Our action-aware

features are taken as the output of the last fully-connected layer.

To train this model for action anticipation, we make use

of our new loss introduced in Section 3.1. Therefore, ulti-

mately, our network models long-range temporal informa-

tion and yields increasingly accurate predictions as it pro-

cesses more frames.

Specifically, we write the overall loss of our model as

Lo =
1

V

V
∑

i=1

(Lc,i + La,i) , (4)

where V is the total number of training sequences. This

loss function combines losses corresponding to the context-

aware stage and to the action-aware stage, respectively. Be-

low, we discuss these two stages in more detail.

Learning Context. The first stage of our model takes as

input our context-aware features, and passes them through

a layer of LSTM cells followed by a fully-connected layer

that, via a softmax operation, outputs a probability for each

action class. Let ŷc,i be the vector of probabilities for all

classes and all time steps predicted by the first stage for

sample i. We then define the loss for a single sample as

Lc,i = L(yi, ŷc,i) , (5)

where L(·) is our new loss defined in Eq. 1, and yi is the

ground-truth class label for sample i.

Learning Context and Action. The second stage of our

model aims at combining context-aware and action-aware

information. Its structure is the same as that of the first

stage, i.e., a layer of LSTM cells followed by a fully-

connected layer to output class probabilities via a softmax

operation. However, its input merges the output of the first

stage with our action-aware features. This is achieved by

concatenating the hidden activations of the LSTM layer

with our action-aware features. We then make use of the

same loss function as before, but defined on the final pre-

diction. For sample i, this can be expressed as

La,i = L(yi, ŷa,i) , (6)

where ŷa is the vector of probabilities for all classes pre-

dicted by the second stage.

Inference. At inference, the input RGB frames are

forward-propagated through our model. We therefore ob-

tain a probability vector for each class at each frame. While

one could simply take the probabilities in the current frame

t to obtain the class label at time t, via argmax, we pro-

pose to increase robustness by leveraging the predictions of

all the frames up to time t. To this end, we make use of an

average pooling of these predictions over time.

4. Experiments

In this section, we first compare our method with state-

of-the-art techniques on the task of action anticipation, and

then analyze various aspects of our model, such as the influ-

ence of the loss function and of the different feature types.

In the supplementary material, we provide additional exper-

iments to analyze the effectiveness of different LSTM ar-

chitectures, and the influence of the number of hidden units

and of our temporal average pooling strategy. We also re-

port the performance of our method on the task of action

recognition from complete videos with and without optical

flow, and action anticipation with optical flow.

4.1. Datasets

For our experiments, we made use of the standard UCF-

101 [34], UT-Interaction [24], and JHMDB-21 [13] bench-

marks, which we briefly describe below.

The UCF-101 dataset consists of 13,320 videos (each

contains a single action) of 101 action classes including a

broad set of activities such as sports, playing musical instru-

ments and human-object interaction, with an average length

of 7.2 seconds. UCF-101 is one of the most challenging

datasets due to its large diversity in terms of actions and to

the presence of large variations in camera motion, cluttered

background and illumination conditions. There are three

standard training/test splits for this dataset. In our compar-

isons to the state-of-the-art for both action anticipation and

recognition, we report the average accuracy over the three

splits. For the detailed analysis of our model, however, we

rely on the first split only.

The JHMDB-21 dataset is another challenging dataset

of realistic videos from various sources, such as movies and

web videos, containing 928 videos and 21 action classes.

Similarly to UCF-101, in our comparison to the state-of-

the-art, we report the average accuracy over the three stan-

dard splits of data. Similar to UCF-101 dataset, each video

contains one action starting from the beginning of the video.

The UT-Interaction dataset contains videos of contin-

uous executions of 6 human-human interaction classes:

shake-hands, point, hug, push, kick and punch. The dataset

contains 20 video sequences whose length is about 1 minute

each. Each video contains at least one execution of each in-

teraction type, providing us with 8 executions of human ac-

tivities per video on average. Following the recommended
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experimental setup, we used 10-fold leave-one-out cross

validation for each of the standard two sets of 10 videos.

That is, within each set, we leave one sequence for testing

and use the remaining 9 for training. Following standard

practice, we also made use of the annotations provided with

the dataset to split each video into sequences containing in-

dividual actions.

4.2. Implementation Details

CNN and LSTM Configuration. The parameters of the

CNN were optimized using stochastic gradient descent with

a fixed learning rate of 0.001, a momentum of 0.9, a weight

decay of 0.0005, and mini-batches of size 32. To train our

LSTMs, we similarly used stochastic gradient descent with

a fixed learning rate of 0.001, a momentum of 0.9, and mini-

batch size of 32. For all LSTMs, we used 2048 hidden units.

To implement our method, we used Python and Keras [5].

We will make our code publicly available.

Training Procedure. To fine-tune the network on each

dataset, we augment the data, so as to reduce the effect of

over-fitting. The input images were randomly flipped hori-

zontally and rotated by a random amount in the range -8 to

8 degrees. We then extracted crops according to the follow-

ing procedure: (1) Compute the maximum cropping rectan-

gle with a given aspect ratio (320/240) that fits inside the

input image. (2) Scale the width and height of the cropping

rectangle by a factor randomly selected in the range 0.8-

1. (3) Select a random location for the cropping rectangle

within the original input image and extract the correspond-

ing subimage. (4) Scale the subimage to 224× 224.

After these geometric transformations, we further ap-

plied RGB channel shifting [43], followed by randomly ad-

justing image brightness, contrast and saturation with a fac-

tor α = 0.3. The operations are: for brightness, α×Image,

for contrast, Image×α+(1.0−α)×mean(grey(Image)),
and for saturation, Image×α+(1.0−α)×grey(Image).

4.3. Comparison to the State­of­the­Art

We compare our approach to the state-of-the-art action

anticipation results reported on each of the three datasets

discussed above. We further complement these state-of-the-

art results with additional baselines that make use of our

context-aware features with the loss of either [21] or [11].

Note that a detailed comparison of different losses within

our model is provided in Section 4.4.1.

Following standard practice, we report the so-called ear-

liest and latest prediction accuracies. Note, however, that

there is no real agreement on the proportion of frames that

the earliest setting corresponds to. For each dataset, we

make use of the proportion that has been employed by the

baselines (i.e., either 20% or 50%). Note also that our ap-

proach relies on at most T frames (with T = 50 in prac-

tice). Therefore, in the latest setting, where the baselines

Table 1. Comparison with state-of-the-art baselines on the task of

action anticipation on the JHMDB-21 dataset. Note that our ap-

proach outperforms all baselines significantly in both settings.

Method Earliest Latest

DP-SVM [32] 5% 46%

S-SVM [32] 5% 43%

Where/What [33] 10% 43%

Ranking Loss [21] 29% 43%

Context-Aware+Loss of [11] 28 % 43%

Context-Aware+Loss of [21] 33% 39%

Ours 55% 58%

Table 2. Comparison with state-of-the-art baselines on the task of

action anticipation on the UT-Interaction dataset.

Method Earliest Latest

D-BoW [25] 70.0% 85.0%

I-BoW [25] 65.0% 81.7%

CuboidSVM [24] 31.7% 85.0%

BP-SVM [17] 65.0% 83.3%

CuboidBayes [25] 25.0% 71.7%

DP-SVM [32] 13.0% 14.6%

S-SVM [32] 11.0% 13.4%

Context-Aware+Loss of [11] 45.0 % 65.0%

Context-Aware+Loss of [21] 48.0% 60.0%

Ours 84.0% 90.0%

Table 3. Action Anticipation on the UCF-101 dataset.

Method Earliest Latest

Context-Aware+Loss of [11] 30.6 % 71.1%

Context-Aware+Loss of [21] 22.6% 73.1%

Ours 80.5% 83.4%

rely on the complete sequences, we only exploit the first

T frames. We believe that the fact that our method signifi-

cantly outperforms the state-of-the-art in this setting despite

using less information further evidences the effectiveness of

our approach.

JHMDB-21. The results for the JHMDB-21 dataset are

provided in Table 1. In this case, following the baselines,

earliest prediction corresponds to observing the first 20%

of the sequence. Note that we clearly outperform all the

baselines by a significant margin in both the earliest and lat-

est settings. Remarkably, we also outperform the methods

that rely on additional information as input, such as optical

flow [32, 33, 21] and Fisher vector features based on Im-

proved Dense Trajectories [32]. This clearly demonstrates

the benefits of our approach for anticipation.

UT-Interaction. We provide the results for the UT-

Interaction dataset in Table 2. Here, following standard

practice, 50% of the sequence was observed for earliest pre-

diction, and the entire sequence for latest prediction. Recall

that our approach uses at most T = 50 frames for predic-

tion in both settings, while the average length of a complete

sequence is around 120 frames. Therefore, as evidenced by

the results, our approach yields significantly higher accu-

racy despite using considerably less data as input.
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Figure 5. Comparison of different losses for action anticipation

on UCF-101. We evaluate the accuracy of our model trained with

different losses as a function of the number of frames observed.

This plot clearly shows the superiority of our loss function.

UCF-101. We finally compare our approach with our two

baselines on the UCF-101 dataset. While this is not a stan-

dard benchmark for action anticipation, this experiment is

motivated by the fact that this dataset is relatively large, has

many classes, with similarity across different classes, and

contains variations in video capture conditions. Altogether,

this makes it a challenging dataset to anticipate actions,

especially when only a small amount of data is available.

The results on this dataset are provided in Table 3. Here,

the earliest setting corresponds to using the first 2 frames

of the sequences, which corresponds to around 1% of the

data. Again, we clearly outperform the two baselines con-

sisting of exploiting context-aware features with the loss of

either [21] or [11]. We believe that this further evidences

the benefits of our approach, which leverages both context-

and action-aware features with our new anticipation loss. A

detailed evaluation of the influence of the different feature

types and losses is provided in the next section.

4.4. Analysis

In this section, we provide a more detailed analysis of the

influence of our loss function and of the different feature

types on anticipation accuracy. Finally, we also provide a

visualization of our different feature types, to illustrate their

respective contributions.

4.4.1 Influence of the Loss Function

Throughout the paper, we have argued that our novel loss,

introduced in Section 3.1, is better-suited to action anticipa-

tion than existing ones. To evaluate this, we trained several

versions of our model with different losses. In particular, as

already done in the comparison to the state-of-the-art above,

we replaced our loss with the ranking loss of [21] (ranking

loss on detection score) and the loss of [11], but this time

Figure 6. Influence of our average pooling strategy. Our sim-

ple yet effective average pooling leverages the predictions of all

the frames up to time t. As shown on the UCF-101 dataset, this

increases anticipation performance, especially at very early stages.

within our complete multi-stage model, with both context-

and action-aware features.

Furthermore, we made use of the standard cross-entropy

(CE) loss, which only accounts for one activity label for

each sequence (at time T ). This loss can be expressed as

LCE =

N
∑

k=1

[yT (k) log(ŷT (k))

+(1− yT (k)) log(1− ŷT (k))] . (7)

We then also modified the loss of [11], which consists of

an exponentially weighted softmax, with an exponentially

weighted cross-entropy loss (ECE), written as

LECE =
T
∑

t=1

−e−(T−t)
N
∑

k=1

[yt(k) log(ŷt(k))

+(1− yt(k)) log(1− ŷt(k))] . (8)

The main drawback of this loss comes from the fact that

it does not strongly encourage the model to make correct

predictions as early as possible. To address this issue, we

also introduce a linearly growing loss (LGL), defined as

LLGL =

T
∑

t=1

−
t

T

N
∑

k=1

[yt(k) log(yt(k))

+(1− yt(k)) log(1− ŷt(k))]. (9)

While our new loss, introduced in Section 3.1, also makes

use of a linearly-increasing term, it corresponds to the false

positives in our case, as opposed to the false negatives in

the LGL. Since some actions are ambiguous in the first few

frames, we find it more intuitive not to penalize false pos-

itives too strongly at the beginning of the sequence. This

intuition is supported by our results below, which show that

our loss yields better results than the LGL.
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Table 4. Importance of the different feature types.

Feature Model Earliest K=1 Latest K=50

Context-Aware LSTM 62.80% 72.71%

Action-Aware LSTM 69.33% 77.86%

Context+Action MS-LSTM 80.5% 83.37%

In Fig. 5, we report the accuracy of the corresponding

models as a function of the number of observed frames on

the UCF-101 dataset. Note that our new loss yields much

higher accuracies than the other ones, particularly when

only a few frames of the sequence are observed; With only

2 frames observed, our loss yields an accuracy similar to the

other losses with 30–40 frames. With 30fps, this essentially

means that we can predict the action 1 second earlier than

other methods. The importance of this result is exemplified

by research showing that a large proportion of vehicle acci-

dents are due to mistakes/misinterpretations of the scene in

the immediate time leading up to the crash [11, 23].

Moreover, in Fig. 6, we report the performance of the

corresponding models as a function of the number of ob-

served frames when using our average pooling strategy.

Note that this strategy can generally be applied to any action

anticipation method and, as shown by comparing Figs. 5

and 6, increases accuracy, especially at very early stages,

which clearly demonstrates its effectiveness. Note that us-

ing it in conjunction with our loss still yields the best results

by a significant margin.

4.4.2 Influence of the Features

We then evaluate the importance of the different feature

types, context-aware and action-aware, on anticipation ac-

curacy. To this end, we compare models trained using each

feature type individually with our model that uses them

jointly. For the models using a single feature type, we made

use of a single LSTM to model temporal information. By

contrast, our approach relies on a multi-stage LSTM, which

we denote by MS-LSTM. Note that all models were trained

using our new anticipation loss. The results of this experi-

ment on the UCF-101 dataset are provided in Table 4. These

results clearly evidence the importance of using both feature

types, which consistently outperforms individual ones.

Since we extract action-aware features, and not motion-

aware ones, our approach will not be affected by irrelevant

motion. The CNN that extracts these features learns to focus

on the discriminative parts of the images, thus discarding

the irrelevant information. To confirm this, we conducted

an experiment on some classes of UCF-101 that contain

irrelevant motions/multiple actors, such as Baseball pitch,

Basketball, Cricket Shot and Ice dancing. The results of

our action-aware and context-aware frameworks for these

classes are: 66.1% vs. 58.2% for Baseball pitch, 83% vs.

76.4% for Basketball, 65.1% vs. 58% for Cricket Shot,

Apply Lipstick Band Marching Archery Blowing Candles

RGB Frame

Context-Aware Conv5

Action-Aware Conv5

Figure 7. Visualization of action-aware and context-aware features

on UCF-101. These samples are representative of the data.

and 92.3% vs. 91.7% for Ice dancing. This shows that our

action-aware features can effectively discard irrelevant mo-

tion/actors to focus on the relevant one(s).

4.4.3 Visualization

Finally, we provide a better intuition of the kind of informa-

tion each of our feature types encode (see Fig. 7). This vi-

sualization was computed by average pooling over the 512

channels of Conv5-3 (of both the context-aware and action-

aware sub-networks). As can be observed in the figure, our

context-aware features have high activations on regions cor-

responding to any relevant object in the scene (context).

By contrast, in our action-aware features, high activations

correctly correspond to the focus of the action. Therefore,

they can reasonably localize the parts of the frame that most

strongly participate in the action happening in the video and

reduce the noise coming from context.

5. Conclusion

In this paper, we have introduced a novel loss function to

address very early action anticipation. Our loss encourages

the model to make correct predictions as early as possible in

the input sequence, thus making it particularly well-suited

to action anticipation. Furthermore, we have introduced

a new multi-stage LSTM model that effectively combines

context-aware and action-aware features. Our experiments

have evidenced the benefits of our new loss function over

existing ones. Furthermore, they have shown the impor-

tance of exploiting both context- and action-aware informa-

tion. Altogether, our approach significantly outperforms the

state-of-the-art in action anticipation on all the datasets we

applied it to. In the future, we intend to study new ways to

incorporate additional sources of information, such as dense

trajectories and human skeletons in our framework.
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