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Abstract

To compress large datasets of high-dimensional descrip-

tors, modern quantization schemes learn multiple code-

books and then represent individual descriptors as com-

binations of codewords. Once the codebooks are learned,

these schemes encode descriptors independently. In con-

trast to that, we present a new coding scheme that arranges

dataset descriptors into a set of arborescence graphs, and

then encodes non-root descriptors by quantizing their dis-

placements with respect to their parent nodes. By optimiz-

ing the structure of arborescences, our coding scheme can

decrease the quantization error considerably, while incur-

ring only minimal overhead on the memory footprint and

the speed of nearest neighbor search in the compressed

dataset compared to the independent quantization. The ad-

vantage of the proposed scheme is demonstrated in a series

of experiments with datasets of SIFT and deep descriptors.

1. Introduction

Visual search and other computer vision applications are

routinely dealing with million or billion-scale datasets of

visual descriptors corresponding to images and/or image

parts. Lossy compression of such descriptor datasets that

reduce their memory footprint and increase the search speed

have therefore become an active area of research. Currently,

approaches based on (non-binary) quantizations [14, 12, 18,

3, 22, 5] achieve the best compression error-compression

ratio trade-off, while also permitting efficient computation

of scalar products and squared distances between uncom-

pressed queries and compressed descriptor sets using look-

up tables. For million-scale datasets, the look-up tables al-

low fast exhaustive search that scans through entire datasets

in a matter of milliseconds.

Existing quantization approaches represent dataset de-

scriptors as combinations of codeword vectors that come

from different codebooks. The codebooks are invariably

adapted to the dataset (or its hold-out part) through the op-

timization process, so that statistical regularities of the de-

scriptor distribution can be exploited for better coding ac-

curacy. Importantly, once the codebooks have been learned,

existing quantization schemes apply independent coding to

each of the dataset descriptors.

In this work, we propose the approach that brings fur-

ther improvement in terms of coding accuracy on top of

the existing descriptor coding techniques, while incurring

small memory and search time overheads. The improve-

ment comes as we consider joint coding of descriptors in

the dataset that goes beyond codebook learning. Our ap-

proach (arborescence coding) avoids direct coding of the

majority of the dataset vectors, and instead focuses on cod-

ing relative displacements between nearby vectors. A sim-

ilar idea underlies predictive coding [11], however arbores-

cences coding goes beyond predictive coding by selecting

sets of parent-children pairs that are most suitable for pre-

dictive quantization.

The main idea of our approach is simple (Figure 1).

During coding, the optimization process splits the dataset

into a set of arborescence graphs (i.e. directed trees), with

individual descriptors being the vertices of those arbores-

cences. For each arborescence, the topology (structure), the

absolute position of the root, and the relative displacements

along the arcs are encoded and stored using quantization

techniques. When computing the scalar product with the

query vector, the scalar product between the query and the

root vector is computed first, and the scalar products with

other vectors are computed in a breadth-first manner. Such

breadth-first scan process can then benefit from the stan-

dard look-up table tricks used by quantization methods [14]

thanks to the additivity of the scalar product. Arborescence

coding therefore does not incur significant reductions in

search speed compared to the base quantization algorithm.

Crucially, arborescence coding makes the topology (in-

cluding the number) of the arborescences part of the op-

timization process during the encoding of the dataset. In

the process of optimization, individual descriptors are free
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Figure 1: Independent (traditional) coding vs. Arborescence coding. Left – a set of descriptors (black dots) are encoded

using the codebook of eight codewords (red). Each descriptor gets assigned to the closest codeword. This is a standard,

independent (given the codebook) coding approach resulting in large coding errors (thin solid lines). Middle – arborescence

coding splits the dataset into a set of arborescence graphs (the roots of arborescences are highlighted in red). Right – following

the structure of these arborescences, the coding uses one four-word codebook to encode root descriptors (red circles), and

another four-word codebook to encode displacements along arcs in the arborescences (the codewords are shown as green,

magenta, orange, blue vectors). By coordinating the choice of arborescence topology and the codebooks, arborescence coding

creates reconstructions (circles) that result in much lower coding errors (thin lines) than independent coding, while still using

one codeword per descriptor and eight different codewords for the dataset. The cost of storing arborescence topology is small

and independent of space dimensionality. Note: in this 2D toy example, single codebook quantizations are used. In high

dimensions, both plain coding and arborescence coding can benefit from multi-codebook quantization methods (e.g. product

quantization [14]) .

to choose whether to become roots (and to be encoded di-

rectly) or to become non-root nodes (and to be coded rel-

ative to some parent descriptor). The choice of the parent

is driven by the (greedy) desire to minimize the coding er-

ror. Importantly, our approach can be used on top of almost

any existing quantization scheme [14, 10, 12, 18, 3, 22, 5]

or, in fact, any other vector compression schemes such as

generative binary hashing [20]. The optimization process

in arborescence coding can be initialized with the “trivial”

state where each desriptor forms a separate arborescence

and is therefore coded independently. As the subsequent

optimization is guaranteed not to increase the coding errors

of individual vectors, our approach is guaranteed to achieve

same or lower compression error compared to the base cod-

ing algorithm.

Alongside the full-fledged version of our approach (ar-

borescence coding), we also consider the simpler version

of the approach where all arborescences are restriced to be

star-shaped (star quantization). In a number of experiments

on datasets of various nature (SIFTs [17] and deep descrip-

tors), we show that both arborescence coding and star cod-

ing bring consistent improvements in terms of coding er-

ror (which directly translates into the accuracy of nearest

neighbor search) over the base quantization scheme, which

in our experiments is optimized product quantization (OPQ)

[12, 18].

Below, we cover the related work in Section 2. We then

introduce the general principles of arborescence coding in

Section 3. In Section 4, we discuss the specific instantiation

of arborescence coding on top of optimized product quan-

tization. We conclude with the experimental validation in

Section 5 and the discussion in Section 6.

2. Related Work

The plethora of recently proposed quantization methods

include product quantization [14], residual vector quantiza-

tion [10], optimized product quantization [12, 18], additive

quantization [3], composite quantization [22], tree quan-

tization [5]. All of these approaches can be used as base

methods for arborescence coding or star coding. In our ex-

periments, we use optimized product quantization [12, 18]

because of its appealing balance between the speed and the

accuracy of the encoding process.

Arborescence coding and in particular star coding are

in some ways reminiscent of the bi-layer coding approach

used in the IVFADC [14] and Multi-D-ADC systems [2].

Both systems are motivated by the indexing task for very

large scale datasets, as they split the descriptor space into

disjoint cells, and encode the displacements of individual

points w.r.t. cell centroids. The Multi-D-ADC system thus

uses two separate codebook sets, one to encode the cen-

troids and one to encode the displacements (while the IV-

FADC system stores the centroids directly). Arborescence

coding also maintains difference codebooks for root encod-

ing and descriptor encoding. However, unlike IVFADC and

Multi-D-ADC that pick centroids in a separate optimiza-
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tion process and automatically assign each descriptor to the

nearest centroid, arborescence coding makes the optimiza-

tion over possible arborescence topology part of the encod-

ing process. In the experiments, we compare arborescence

coding with the Multi-D-ADC system in a comparable set-

ting, and find such optimization advantageous. Star coding

is also related to the locally-optimized product quantization

system that also uses multiple OPQ codebooks [16].

Another method that perform non-independent compres-

sion of descriptor sets is [1] that is targeted towards very

strong compression of low to medium-dimensional data,

and is not competitive with quantization-based approaches

for the code lengths that we consider (e.g. eight bytes per

vector or more).

Compression of unordered sets is also studied in the data

compression community. Many of such studies are focused

on sets of simple objects such as integers [21, 19, 13, 8]

or real numbers [21], whereas we are interested in com-

pression of sets of high-dimensional descriptors. A popu-

lar idea for set coding is seeking optimal permutation of the

entries (re-ordering) that permits efficient predictive cod-

ing. Re-oredering has been applied to e.g. image pixels [7]

and binary strings [15]. Finding optimal order involves (ap-

proximate) solution to the travelling salesman problem. The

resulting Hamiltonian path can be regarded as a very large

arborescence spanning the entire dataset, and therefore ar-

borescence coding can be regarded as a generalization of

re-ordering.

3. Arborescence coding

In this section, we introduce arborescence coding and its

variant, star coding, in their general form. The next section

then discusses the particular instantiation of arborescence

coding on top of optimized product quantization [12, 18].

The variants of arborescence coding on top of other quanti-

zation schemes can then be derived analogously.

Assume that a dataset X = {x1,x2, . . . ,xN} of D-

dimensional vectors is given. Arborescence coding is a

lossy compression scheme that for each vector xi in the

dataset encodes either its absolute position in the descrip-

tor space, or its relative displacement w.r.t. a certain other

descriptor. We denote the code stored for the i-th descriptor

ti and we denote with pi the index of its parent. Parent-child

relations are constrained to form a set of arborescences (i.e.

directed tree graphs). If the i-th descriptor is the root of its

arborescence, then we use the convention pi=0. Arbores-

cences that consist of single descriptors are allowed.

We also consider a particular variant of arborescence

coding (star coding), which corresponds to the case when

all arborescences have depth at most one, i.e. no non-root

descriptors are allowed to have children. Below, ‘arbores-

cence coding’ refers to all variants including star coding,

unless stated otherwise.

Arborescence coding requires that two decoding opera-

tions are defined that allow to recover the reconstruction yi

for every descriptor xi. The first decoder d0 with parame-

ters θ0 reconstructs the roots of the arborescences:

yi = d0(ti; θ
0), if pi = 0 . (1)

The coding process then picks the code ti and the parame-

ters of the encoder θ0 to ensure that yi ≈ xi for root de-

scriptors.

The second decoder d∆ with parameters θ∆ reconstructs

the displacements zi from the reconstructions of parents to

their children:

zi = yi − ypi
= d∆(ti; θ

∆), s.t. pi > 0 . (2)

The coding process then picks the code ti and the parame-

ters of the encoder θ∆ so that zi ≈ xi−ypi
.

Encoding process. The dataset can be encoded by min-

imizing the overall squared reconstruction error. This opti-

mization task has the following formulation:

minimize
θ0,θ∆,P,T,y

∑

i: pi=0

‖d0(ti; θ
0)− xi‖

2+

∑

i: pi>0

‖ypi
+ d∆(ti; θ

∆)− xi‖
2 (3)

subject to yi =

{

d0(ti; θ
0), if pi = 0

ypi
+ d∆(ti; θ

∆), if pi > 0
.

In (3) P denotes the set (vector) {p1, p2, . . . , pN}, which

defines the topology of arborescences, T denotes the set of

codes {t1, t2, . . . , tN}. Performing optimization (3) pro-

cess is usually hard, only an approximate (local) minimum

can be found, and a reasonable initialization procedure is

usually required. In Section 4.1, we discuss the optimiza-

tion for arborescence coding based on optimized product

quantization scheme.

Decoding process. The approximations to the original

dataset can be recovered by applying formulas (1) and (2).

To decode all descriptors from a certain arborescence, we

first decode the root descriptor using (1). We then proceed

along the arborescence. For the ith descriptor, we take the

reconstruction ypi
of its parent, recover the displacement

vector zi using (2), and get the descriptor reconstruction as

yi = ypi
+ zi.

Fast search. For the majority of quantization schemes,

search for descriptors with high scalar product or low

squared distance to a certain query descriptor q does not

require explicit decoding (1)-(2). Instead, the quantization

schemes usually provide the way to quickly estimate the

scalar product Π0
i (q, ti; θ

0) = 〈q, d0(ti; θ
0)〉 = 〈q,yi〉

using look-up tables precomputed once for the given q

and the parameters θ0 [14]. Likewise, the scalar product

Π∆
i (q, ti; θ

∆) = 〈q, d∆(ti; θ
∆)〉 = 〈q, zi〉 between the

query and the encoded displacement zi can be estimated
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without the explicit reconstruction of zi. The scalar prod-

uct between the query and the encoded vectors can then be

quickly evaluated by traversing an arborescence from the

root to the leaves:

〈q,yi〉 =

{

Π0
i (q, ti; θ

0), if pi = 0

〈q,ypi
〉+Π∆

i (q, ti; θ
∆), if pi > 0

. (4)

The squared Euclidean difference can then be estimated

using the formula

‖q− yi‖
2 = ‖q‖2 + ‖yi‖

2 − 2〈q,yi〉 . (5)

While the third term in (5) can be estimated using (4), the

scalar term ‖yi‖
2 is trickier to handle. In practice, we store

a coarse estimate of ‖yi‖
2 (one-byte quantization) along

with (inside) every descriptor code ti. Note that some of

the quantization schemas (such as additive quantization [3],

tree quantization [5]) have to store such estimate anyways

(if fast nearest neighbor search is desired), so that the re-

quirement to store the quantized squared norm does not in-

cur additional memory costs over these schemes.

Memory overhead. In general, the memory footprint of

arborescence coding consists of the parameters θ0 and θ∆,

the codes ti, and the topology information, which is needed

to infer the parents pi during decoding or fast search. The

memory spent on the topology information thus constitutes

overhead over the base quantization scheme. If stored di-

rectly, the indices pi take ⌈log2 n⌉ bits each, which is sig-

nificant for many interesting scenarios.

Fortunately, simple tricks can allow to store arbores-

cence topology at a much lower cost. For that, the descrip-

tors can be re-ordered, so that arborescences are stored se-

quentially (descriptors forming the same arborescence are

stored contiguously). Furthermore, within each arbores-

cence, the descriptors can be reordered following breadth-

first order. Then to recover the topology it is sufficient to

store the number of children with every descriptor. These

numbers follow a very low-entropy distribution (upto 2-3

bits in all our experiments), which is a very low overhead

compared to reasonable code sizes for most practical pur-

poses.

For star coding, the overhead can be made negligible as

follows. We store stars contiguously, further ordering stars

by the number of elements in them. Then, the only informa-

tion that needs to be stored in order to recover the topology

is the maximal star size and the number of stars of each

size, which is at most few hundred bytes per dataset for any

reasonable dataset.

4. Arborescence coding using OPQ

We now discuss a particular instantiation of arborescence

coding when the decoders (1) and (2) use optimized product

quantization (OPQ) [12, 18].

We first recap OPQ using the notation introduced above.

In the OPQ scheme, a vector is encoded as a rotated

concatenation of M codewords coming from M differ-

ent codebooks. The parameters for the decoders can thus

be written as: θ0 = {R0, C0
1 , C

0
2 , . . . , C

0
M} and θ∆ =

{R∆, C∆
1 , C∆

2 , . . . , C∆
M}, where R0 and R∆ are the D×D

orthogonal matrices, and each of the codebooks C0
j , C∆

j

contains K codeword D/M -dimensional vectors. We de-

note c
0
j,k the k-th codeword in the j-th codebook for the

first decoder. In our implementation, we keep the two rota-

tion matrices the same: R = R0 = R∆. Using two differ-

ent rotation matrices is possible, but leads to more complex

encoding process.

The code ti for each vector is then an M -tuple of code-

word indices t1i , t
2
i , . . . , t

M
i in the respective codebooks,

each of them being an integer between 1 and K. The de-

coding of root descriptors (1) then takes the form:

yi = R [c01,t1
i
, c02,t2

i
, . . . , c0

M,tM
i

], if pi = 0 , (6)

where square brackets denote concatenation. Likewise, the

decoding of displacements (2) then takes the form:

zi = R [c∆1,t1
i
, c∆2,t2

i
, . . . , c∆

M,tM
i

], if pi > 0 , (7)

The fast search procedure discussed above then uses the

look-up tables L0(j, k) = 〈RT
q, c0j,k〉 and L∆(j, k) =

〈RT
q, c∆j,k〉 that are precomputed for a given query (after

rotating it by RT=R−1). Using these tables, the scalar

product of the query q with yi (for root nodes) or zi (for

non-root nodes) can be evaluated by M look-ups in the ta-

bles and M − 1 scalar additions.

4.1. Optimizing the encoding

We now discuss the encoding process (3) in the case of

OPQ. The following groups of variables are part of the op-

timization: the arborescence topology P , the code tuples T ,

the codebooks C, and the rotation matrix R. As common in

the quantization schemes, optimization proceeds by alterna-

tions (group-coordinate descent). At each update stage, one

group of variables is updated, while others are kept fixed.

We now go through the update stages.

Updating rotation. The updates for rotation can be per-

formed by finding optimal rotation δR of the dataset X that

minimizes the squared distance (3) and applying the update

R := δRTR to the current rotation. The update δR can be

found using Procrustes analysis as detailed in [12, 18]. In

the remaining updates,we can remove matrix R from con-

sideration by applying the rotation RT to the dataset X ,

effectively reducing our quantizers to unoptimized product

quantizers [14]. We apply this trick to simplify the deriva-

tions below.

Updating codebooks. When all other variables are

fixed, yi can be expressed as a linear function of the code-

word entries. Consider the f -th dimension in the recon-
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struction yi. Let us assume that it corresponds to the l-
th dimension in the m-th chunk of dimensions that OPQ-

splits the D dimensions into. In other words, let f =
l + (m− 1) D

M
. Then the f -th dimension of the reconstruc-

tion yi can be found as:

yi[f ] = c
0
m,tm

r(i)
[l] +

∑

j∈r(i)→i

c
∆
m,tm

j
[l] , (8)

where square brackets denote the dimension indexing, r(i)
denotes the root index of the arborescence that the i-th de-

scriptor belongs to, and r(i) → i denotes the set of indices

in the path from the root to the i-th descriptor (excluding

the root).

Plugging the unrolled expression (8) into the objective

(3) results in a least-squares problem over the entries of the

codebooks. The problem decomoses over different dimen-

sions, with each of the resulting D least-squares problems

having 2K variables (c0m,k[l] and c
∆
m,k[l] for k ∈ 1..K).

Solving these problems then gives the optimal codebook en-

tries (given the other variables fixed).

Updating topology and codes. Finally, we discuss the

updates to the topology (i.e. the variables pi and the codes

ti). We perform these updates sequentially, at each time

changing the variables pi and ti for a single i. In other

words, we iterate over descriptors one-by-one, and allow

each of them to improve its reconstruction error by simul-

taneously choosing a different parent and encoding the dis-

placement to this parent or becoming a root and encoding

its absolute position.

The change of pi and/or ti changes the reconstruction yi,

which also results in the change of reconstructions for all

descendants in the arborescence. Since we want to perform

updates efficiently and with the guarantee that the squared

reconstruction error does not increase, we skip all descrip-

tors with children during the updates.

To further speed-up the updates, for i-th descriptor xi

we only consider k = 20 descriptors with the closest re-

construction yj as potential parents. When performing star

quantization, we only consider descriptors that are currently

roots. For each potential parent j, we consider the vector

xi − yj , assess the error of its optimal product quantization

using codebooks C∆, assess the error of product quantiza-

tion of xi using the codebook C0, and pick the encoding

variant with the smallest error.

4.2. Initializating the encoding

The iterative updates discussed above are guaranteed to

not increase the reconstruction error, and given time will

converge to a certain configuration. This configuration,

however, is not guaranteed and most certainly will not be

a global minimum to the reconstruction error. Therefore,

the accuracy of the resulting encoding depends on the ini-

tialization.

We use the following initialization approach. We initial-

ize all parent variables pi to zero making them roots, and

initialize all other variables by effectively performing OPQ.

At this point, our reconstruction corresponds to OPQ. Since

the reconstruction error is guaranteed to not increase in the

further optimization steps and in subsequent optimization

updates, the squared error of arborescence coding (or star

coding) is guaranteed to be same or lower compared to

OPQ.

We then initialize the codebooks C∆ by running product

quantization on the random subset of displacements from yj

to xi, such that yj is one of the k = 20 nearest neighbors

of xi (among all reconstructions y).

Finally, we update the parameters pi and ti as discussed

in Section 4.1 with one additional heuristics. During the

first update only, we visit the descriptors in the order of in-

creasing OPQ reconstruction error. During this traversal,

we prohibit descriptor to choose parents among yet unvis-

ited descriptors, which have higher OPQ reconstruction er-

ror. As a result, every descriptor is childless by the mo-

ment it is visited, which gives it an opportunity to choose

a parent (among more “affluent” descriptors with lower re-

construction error) and to decrease its own reconstruction

error (recall, that in our optimization algorithm discussed in

Section 4.1 only childless descriptors are allowed to switch

parents).

5. Experiments

In this section, we present experimental evaluation of ar-

borescence coding and star coding. In the experiments, we

encode the datasets using the new coding schemes, as well

as several baselines. In the majority of the experiments and

unless noted otherwise, we simplify the experimental setup

and optimize parameters directly on the “test” dataset rather

than “learning” them on a hold-out dataset of similar na-

ture. While we do not evaluate generalization capabilities,

we still aim to compare methods with similar number of en-

coding parameters, making our comparisons valid. In the

final experiment, we demonstrate that the relative perfor-

mance of coding schemes remains approximately the same,

when coding parameters are learned on the hold-out dataset.

Datasets. We consider the following four datasets:

• SIFT1M [14] is a dataset of million SIFT vectors [17],

which are highly structured gradient-based descriptors,

extracted from natural image keypoints with the hold-

out set of 10.000 queries.

• DEEP1M and DEEP10M datasets contain deep de-

scriptors, which are computed from the activations of

deep neural networks. In general, deep descriptors are

emerging as the new state-of-the-art in retrieval. Here,

we use the first million and the first ten million vec-

tors from the dataset of 96-dimensional deep descrip-

tors introduced in [6].
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SIFT1M, ≈ 8 bytes SIFT1M, ≈ 16 bytes

DEEP1M, ≈ 8 bytes DEEP1M, ≈ 16 bytes

DEEP10M, ≈ 8 bytes DEEP10M, ≈ 16 bytes

San Francisco, ≈ 8 bytes San Francisco, ≈ 16 bytes
Figure 2: Mean squared compression errors on four datasets for different methods and memory budgets. Arborescence

coding (red) provides considerably smaller errors comparing to the baselines except for SIFT1M (16 bytes), where TwinOPQ

performs best. We also show the average compression errors for different classes of nodes within arborescence coding (leaves

with parents, intermediate nodes that have both a parent and children nodes, roots with children, singletons). Compression

errors for the leaves and the intermediate nodes are much smaller than for the singletones and the roots. The most of the

points in arborescence coding are the leaves or the intermediate nodes (see the distributions of classes in the pie charts),

which leads to arborescence coding having smaller compression error overall.

• SFLD (San Francisco Landmark dataset) [9] contains

a database of 1.7 million images of buildings in San

Francisco collected with a vehicle-mounted camera.

We compute 128-dimensional deep SPoC descriptor

[4] for all images.

Coding methods. We evaluate arborescence and star

codings introduced in this paper. We invariably use the size

of codebooks K = 256 as is done in most other quantiza-

tion works, since it lead to small look-up tables and conve-

nient one-byte code entries ti,k. We consider two different

codebook numbers M = 8, 16 (much bigger M is less in-

teresting, because the performance of all methods start to

saturate, and extremely small M such as M = 4 leads to

an impractically poor compression). The size of the codes

ti is thus either 8 or 16 bytes, plus a few bits (less than one

byte) needed to encode the number of children in the case of

general arborescence coding (but not star coding). On top

of that, an additional byte is needed if fast nearest neighbor

search using (5) is to be performed.

We also consider three baselines. Our first baseline is

“vanilla” optimized product quantization (OPQ) [12, 18]

with the same number of codebooks M and the same code-

book size K leading to same code length as star coding (al-

though fast NN search does not need length encoding in this

case). Our second baseline (TwinOPQ) is a variant of OPQ

that uses two sets of codebooks (sharing the same rotation

matrix), so that each descriptor is encoded by one of the two

sets. At each iteration, after the codebooks and the rotation

matrix are re-estimated, a descriptor can switch to the other

codebook set, if such switch results in a lower compression

error. TwinOPQ has the same number of learnable parame-

ters as our systems (apart from the arborescence structure).

Our third and strongest baseline is the Multi-D-ADC [2],

which has clear similarities with star coding (as well as

4890



≈ 8 bytes per vector ≈ 16 bytes per vector

Method R@1 R@4 R@16 R@64 R@256 R@1 R@4 R@16 R@64 R@256

SIFT1M

OPQ 0.241 0.469 0.724 0.904 0.983 0.463 0.776 0.949 0.995 0.999
Twin OPQ 0.292 0.545 0.787 0.944 0.991 0.506 0.812 0.965 0.997 0.999

Multi-D-ADC 0.282 0.530 0.772 0.935 0.988 0.464 0.763 0.947 0.996 0.999
StarC 0.307 0.556 0.802 0.947 0.992 0.484 0.794 0.964 0.997 1.0

ArborC 0.316 0.587 0.823 0.957 0.997 0.487 0.798 0.966 0.998 1.0

DEEP1M

OPQ 0.161 0.351 0.610 0.839 0.959 0.356 0.658 0.895 0.984 0.999
Twin OPQ 0.182 0.398 0.660 0.872 0.971 0.372 0.689 0.916 0.989 0.999

Multi-D-ADC 0.203 0.434 0.693 0.894 0.978 0.406 0.729 0.935 0.994 0.999
StarC 0.223 0.460 0.725 0.915 0.987 0.408 0.737 0.941 0.994 0.999

ArborC 0.243 0.485 0.750 0.924 0.989 0.421 0.757 0.947 0.995 0.999

DEEP10M

OPQ 0.134 0.270 0.466 0.694 0.875 0.309 0.570 0.816 0.948 0.992
Twin OPQ 0.151 0.305 0.516 0.736 0.903 0.331 0.600 0.841 0.960 0.993

Multi-D-ADC 0.188 0.362 0.587 0.805 0.939 0.370 0.657 0.891 0.980 0.998
StarC 0.206 0.394 0.629 0.837 0.957 0.388 0.681 0.899 0.984 0.998

ArborC 0.212 0.414 0.656 0.863 0.964 0.404 0.705 0.911 0.985 0.998

Table 1: Euclidean nearest neighbor search accuracy based on different compression methods for three datasets with the

different code lengths. The standard Recall@k measure (the probability of the true nearest neighbor being retrieved) is

used to compare the compression methods. Arborescence coding performance is uniformly higher than for the baselines on

datasets of deep features, while on SIFT1M (16 bytes) TwinOPQ is better for small k.

an earlier IVFADC system [14]). Multi-D-ADC first uses

“coarse-level” OPQ with M ′ = 2 large codebooks (K ′ =
512 for SIFT1M and DEEP1M, K ′ = 1024 for DEEP10M,

and K ′ = 512 for SFLD). K ′ was chosen to allow a slightly

more memory for the size of the coarse-level table in Multi-

D-ADC than the amount of memory spent on arborescence

topologies in arborescence coding. Each descriptor is then

assigned to the closest “centroid” out of K ′2 variants cor-

responding to different combinations of coarse-level code-

words, and then the displacement w.r.t. the centroid is en-

coded using product quantization (in the rotated system)

with the same M and K as in our method. If fast exhaus-

tive ANN search through the dataset is desired then Multi-

D-ADC also requires storing the quantized length with each

descriptor (an alternative is to either re-compute look-up ta-

bles for each visited non-empty cell or to store the tables of

scalar products between coarse-level codebooks and fine-

level codebooks). Overall, the memory footprint of Multi-

D-ADC in our comparisons is very close to the footprint of

arborescence coding and slightly larger than the footprint of

star coding.

5.1. Results

We compare different compression schemes using the

following two metrics. The mean squared reconstruction

error (MSRE) directly measures the reconstruction accu-

racy attained by different methods. For each dataset, we

also consider a hold-out set of query vectors, and consider

how well is the nearest neighbor search in the compressed

dataset able to recover the true nearest neighbor. As is

common for this task, we report recall@k measure (for

k = 1, 4, 16, 64, 256), which is the probability that the true

nearest neighbor is among k closest neighbors in the com-

pressed dataset. Two compression levels (≈ 8, 16 bytes per

vector) were evaluated.

Compression error. The average compression errors on

four datasets obtained by the different coding methods are

presented in Figure 2. Star coding and arborescence coding

provide significant improvements in the encoding accuracy.

The improvement over baselines are uniform everywhere

except the setting M = 16 for SIFT-1M. In particular, the

compression error is reduced by upto 20% on deep datasets.

On the dataset of SIFT descriptors the TwinOPQ baseline

provides smaller error, that, probably, reflects the fact that

the SIFT data is a favourable case for (O)PQ methods due to

its histogram-based construction process. We also demon-

strate the average compression errors for different classes of

points in arborescence coding. Each point in arborescence

coding belongs to the one of four classes depending on their

role in the arborescence structure. The singleton points do

not have a parent node and children nodes. The roots have

children nodes and do not have parent nodes. The leaves

do not have children nodes (but have parents) and the inter-

mediate nodes have both a parent and children nodes. The

distributions of descriptors over classes are shown in the pie

charts in Figure 2. Note, that the leaves and the intermedi-

ate nodes are compressed with much smaller errors than the

nodes without parents. Interestingly, the compression errors

for singletons and roots can be higher than average baseline

errors, but as their numbers is relatively small (about 10-

15%) the encoding accuracy of the whole dataset is higher.

Approximate nearest neighbor search. Here we evalu-

ate different coding schemes for nearest neighbor search in

compressed databases. The recall@k values obtained with
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≈ 8 bytes per vector ≈ 16 bytes per vector

Method R@1 R@2 R@5 R@10 R@20 R@50 R@1 R@2 R@5 R@10 R@20 R@50

San Francisco Landmark

Uncompressed 0.305 0.359 0.425 0.457 0.509 0.585 0.305 0.359 0.425 0.457 0.509 0.585
Twin OPQ 0.164 0.215 0.289 0.349 0.407 0.499 0.242 0.299 0.377 0.436 0.489 0.567

Multi-D-ADC 0.167 0.221 0.297 0.353 0.407 0.506 0.245 0.300 0.379 0.437 0.497 0.571
StarC 0.168 0.225 0.304 0.355 0.410 0.503 0.253 0.306 0.385 0.441 0.502 0.575

ArborC 0.183 0.240 0.318 0.359 0.413 0.509 0.260 0.312 0.393 0.447 0.509 0.581

Table 2: The average recall w.r.t. ground truth matches obtained with retrieval from the San Francisco database compressed

with different methods and code lengths. Images in the database are presented by 128-dimensional SPoC descriptors[4].

The performance of arborescence coding is uniformly higher than for baselines for both memory budgets and all lengths of

candidate lists.

different compression schemes of the search databases are

presented in Table 1. As can be observed, the higher en-

coding accuracy results in higher search performance. Ar-

borescence coding provides considerable improvement over

baselines for deep descriptors and perform best in general

except for SIFT-1M (16 bytes), where the TwinOPQ base-

line is better for small k.

Landmark recognition. We also apply the proposed

methods to the problem of visual localization. We com-

pressed the set of SPoC descriptors of SFLD database im-

ages with different coding schemes and produce the list of

candidate matches for each of the uncompressed query im-

ages. Then for different methods we compare the mean re-

call w.r.t. the ground truth matches that are hand-labeled for

each query. In this experiment the database contains both

PCI and PFI images and GPS data is not used (for more

details see the protocol in [10]). The recall values for dif-

ferent number of candidates are presented in Table 2. The

advantage of arborescence coding is uniform for both com-

pression levels and different lengths of candidate lists.

Timings. The most computationally expensive part of

the AnnArbor encoding is the calculation of the topology

and the codes (corresponding to the variables pi and ti)
given codebooks and rotation matrix. In our experiments

the encoding of one million points with unoptimized Python

code requires 14 minutes on Xeon E5 CPU. The update of

codebooks and rotation matrix during learning is typically

much faster, e.g. on SIFT1M/DEEP1M one update requires

four minutes. These timings are obtained with the single-

thread implementation of the initialization procedure (sec-

tion 4.2) while the other parts use 30 CPU threads.

Hold-out set encoding. Finally, to confirm the ability of

the AnnArbor scheme to generalize to new datasets, when

the parameters are learned on hold-out data, we performed

the following experiment. We took the last one million

points from the DEEP10M dataset and encoded them with

the parameters obtained by training on DEEP1M (8 bytes)

that does not overlap with the test set. The results in the

Table 3 demonstrate that the MSRE increase on the hold-

out set for Star and Arborescence Coding is on par with the

baselines and the relative-performance of the methods on

the hold-out set is the same as on the train set.

Method OPQ TwinOPQ Multi-D-ADC StarC ArborC

In-sample

MSRE
0.250 0.231 0.219 0.203 0.185

Out-of-sample

MSRE
0.257 0.238 0.223 0.208 0.192

Table 3: The encoding mean-squared reconstruction er-

ror obtained with the different coding schemes trained on

the test and hold-out sets. The first row corresponds to

the setup where the coding parameters are trained on the

DEEP1M and the same dataset is encoded. The second row

presents MSRE obtained by the coding schemes trained on

DEEP1M, while the test set consists of the last one mil-

lion points from the DEEP10M which does not overlap

with DEEP1M. Eight bytes encoding is used in both setups.

The relative performance of coding schemes is the same be-

tween the two lines.

6. Discussion

We have presented a new descriptor coding scheme (ar-

borescence coding) and its variant (star coding). The new

schemes can be implemented on top of almost any of the ex-

isting quantization methods (and, in fact, almost any vector

compression methods), and are able to reduce the coding

error of the underlying method considerably by arranging

descriptors into arborescence graphs and coding the rela-

tive displacements rather than absolute positions. The en-

coded datasets still permit efficient search using look up ta-

bles, while the memory overhead that is required to store

the topology of the arborescences is very small.

To the best of our understanding, the source of the con-

siderable reduction of error within arborescence coding is

the ability of descriptors to choose their parents among large

pools of potential parents. Even though the distribution of

displacements between neighbors may not be much easier

to model than the distribution of absolute positions (as even

nearest neighbors in the high-dimensional space are usually

far away), each descriptor can get encoded with low error

if only one neighbor (not necessarily the nearest one) corre-

sponds to the displacement with low quantization error.

Future work involves implementations of arborescence

coding and star coding on top of other quantization

schemes, as well as combination of arborescence coding

with indexing approaches.
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[9] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham,
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