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Abstract

Dictionary learning and component analysis are part

of one of the most well-studied and active research fields,

at the intersection of signal and image processing, com-

puter vision, and statistical machine learning. In dictionary

learning, the current methods of choice are arguably K-SVD

and its variants, which learn a dictionary (i.e., a decompo-

sition) for sparse coding via Singular Value Decomposition.

In robust component analysis, leading methods derive from

Principal Component Pursuit (PCP), which recovers a low-

rank matrix from sparse corruptions of unknown magnitude

and support. However, K-SVD is sensitive to the presence

of noise and outliers in the training set. Additionally, PCP

does not provide a dictionary that respects the structure of

the data (e.g., images), and requires expensive SVD com-

putations when solved by convex relaxation. In this paper,

we introduce a new robust decomposition of images by com-

bining ideas from sparse dictionary learning and PCP. We

propose a novel Kronecker-decomposable component anal-

ysis which is robust to gross corruption, can be used for

low-rank modeling, and leverages separability to solve sig-

nificantly smaller problems. We design an efficient learning

algorithm by drawing links with a restricted form of tensor

factorization. The effectiveness of the proposed approach

is demonstrated on real-world applications, namely back-

ground subtraction and image denoising, by performing a

thorough comparison with the current state of the art.

1. Introduction

Sparse dictionary learning [40, 45, 34] and Robust Prin-

cipal Component Analysis (RPCA) [6] are two popular

methods of learning representations that assume different

structure and answer different needs, but both are special

cases of structured matrix factorization. Assuming a set of

N data samples x1, . . . ,xn represented as the columns of a

matrix X, we seek a decomposition of X into meaningful

components of a given structure, in the generic form:

min
Z

l(X,Z) + g(Z) (1)

Where l(·) is a loss function, generally the ℓ2 error, and

g(·) a possibly non-smooth regularizer that encourages the

desired structure, often in the form of specific sparsity re-

quirements.

When Z is taken to be factorized in the form DR, we

obtain a range of different models depending on the choice

of the regularization. Imposing sparsity on the dictionary

D leads to sparse PCA, while sparsity only in the code R

yields sparse dictionary learning. The current methods of

choice for sparse dictionary learning are K-SVD [1] and its

variants [32], which seek an overcomplete dictionary D and

a sparse representation R = [r1, . . . , rn] by minimizing the

following constrained objective:

min
R,D

||X−DR||2F, s.t. ||ri||0 ≤ T0, (2)

where ||.||F is the Frobenius norm and ||.||0 is the ℓ0 pseudo-

norm, counting the number of non-zero elements. Problem

(2) is solved in an iterative manner that alternates between

sparse coding of the data samples on the current dictionary,

and a process of updating the dictionary atoms to better fit

the data using the Singular Value Decomposition (SVD).

When used to reconstruct images, K-SVD is trained on

overlapping image patches to allow for overcompleteness

[14]. Problems of this form suffer from a high computa-

tional burden that limits their applicability to small patches

that only capture local information, and prevent them from

scaling to larger images.

The recent developments in robust component analysis

are attributed to the advancements in compressive sensing

[7, 13, 8]. In this area, the emblematic model is Robust

Principal Component Analysis, proposed in [6]. RPCA as-

sumes that the observation matrix X is the sum of a low-

rank component A, and of a sparse matrix E that collects

the gross errors, or outliers. Finding the minimal rank solu-

tion for A and the sparsest solution for E is combinatorial

and NP-hard. Therefore, RPCA is obtained by solving the

Principal Component Pursuit (PCP) in which the discrete

rank and ℓ0-norm functions are approximated by their con-

vex envelopes as follows:

min
A,E

||A||∗ + ||E||1, s.t. X = A+E (3)
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where ||.||∗ is the nuclear norm and ||.||1 is the standard

ℓ1 norm. Like sparse dictionary learning, Robust PCA is

a special case of (1). The nuclear-norm relaxation is con-

vex but the cost of performing SVDs on the full-size ma-

trix A is high. Factorization-based formulations exploit

the fact that a rank-r matrix A ∈ R
m×n can be decom-

posed in A = UVT, U ∈ R
m×r,V ∈ R

n×r, to impose

low-rankness. These formulations are non-convex and algo-

rithms may get stuck in local optima or saddle points. We

refer to [28] for recent developments on the convergence of

non-convex matrix factorizations, [44, 36, 50, 47] for low-

rank problems, and [16] specifically for matrix completion.

1.1. Separable dictionaries

Analytical separable dictionaries have been proposed as

generalizations of 1-dimensional transforms in the form,

e.g., of tensor-product wavelets, and have since fallen out of

flavour for models that drop orthogonality in favour of over-

completeness to achieve geometric invariance [40]. How-

ever, recent work in the compressed sensing literature has

shown a regain of interest for separable dictionaries for

very high-dimensional signals where scalability is a hard-

requirement. Notably, high-resolution spatial angular rep-

resentations of diffusion-MRI signals, such as in HARDI

(High Angular Resolution Diffusion Imaging), represent

each voxel by a 3D signal, yielding prohibitive sampling

times. Traditional compressed sensing techniques can only

handle signal sparsity bounded below by the number of vox-

els (1 atom per voxel) and still cannot meet the needs of

medical imaging, but Kronecker extensions [42, 41] of Or-

thogonal Matching Pursuit (OMP) [37, 11], Dual ADMM

[5], and FISTA [4] allow sparser signals.

The recent Separable Dictionary Learning (SeDiL) [23]

considers a dictionary that factorizes into the Kronecker

product of two smaller dictionaries A and B, and matrix

observations X = (Xi)i. The observations have sparse rep-

resentations R = (Ri)i in the bases A,B, and the learning

problem is recast as:

min
A,B,R

1

2

∑

i

||Xi−ARiB
T||2F+λg(R)+κr(A)+κr(B)

(4)

Where the regularizers g and r promote, respectively, spar-

sity in the representations, and low mutual-coherence of the

dictionary D = B⊗A. Here, D is constrained to have or-

thogonal columns, i.e., the pair A,B shall lie on the prod-

uct manifold of two product of sphere manifolds. A differ-

ent approach is taken in [25]. A separable 2D dictionary

is learnt in a two-step strategy similar to that of K-SVD.

Each matrix observation Xi is represented as ARiB
T. In

the first step, the sparse representations Ri are found by 2D

OMP. In the second step, a CP decomposition is performed

on a tensor of residuals via Regularized Alternating Least

Squares to solve minA,B,R ||X −R×1 A×2 B||F1.

1.2. Contributions

In this paper, we propose a novel method for separable

dictionary learning based on a robust tensor factorization

that learns simultaneously the dictionary and the sparse rep-

resentations. We extend the previous approaches by intro-

ducing an additional level of structure to make the model

robust to outliers. We do not seek overcompleteness, but

rather promote sparsity in the dictionary to learn a low-

rank representation of the input tensor. In this regard, our

method combines ideas from both Sparse Dictionary Learn-

ing and Robust PCA. We propose a non-convex paralleliz-

able ADMM algorithm and provide experimental evidence

of its effectiveness. Finally, we compare the performance

of our method against several tensor and matrix factoriza-

tion algorithms on computer vision benchmarks, and show

our model systematically matches or outperforms the state

of the art. We make the code available online2 along with

supplementary material.

Notations Throughout the paper, matrices (vectors) are

denoted by uppercase (lowercase) boldface letters e.g., X,

(x). I denotes the identity matrix of compatible dimen-

sions. The ith column of X is denoted as xi. Tensors

are considered as the multidimensional equivalent of matri-

ces (second-order tensors), and vectors (first-order tensors),

and denoted by bold calligraphic letters, e.g., X . The or-

der of a tensor is the number of indices needed to address

its elements. Consequently, each element of an M th-order

tensor X is addressed by M indices, i.e., (X )i1,i2,...,iM
.
=

xi1,i2,...,iM .

The sets of real and integer numbers are denoted by R

and Z, respectively. An M th-order real-valued tensor X is

defined over the tensor space RI1×I2×···×IM , where Im ∈ Z

for m = 1, 2, . . . ,M .

The mode-n product of a tensor X ∈ R
I1×I2×...×IM

with a matrix U ∈ R
J×In , denoted by X ×n U, is defined

element-wise as

(X ×m x)i1,...,in−1,in+1,...,iM =

In
∑

in=1

xi1,i2,...,iMxin . (5)

The Kronecker product of matrices A ∈ R
I×K , and

B ∈ R
L×M , is denoted by A ⊗ B, and yields a matrix

of dimensions I · L×K ·M .

Finally, we define the tensor Tucker rank as the vector of

the ranks of its mode-n unfoldings (i.e., its mode-n ranks),

and the tensor multi-rank [48, 31] as the vector of the ranks

of its frontal slices. More details about tensors, such as the

definitions of tensor slices and mode-n unfoldings, can be

found in [26] for example.

1c.f . notations for the product ×n
2https://github.com/mbahri/KDRSDL
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2. Model and updates

We first formulate our structured factorization, and de-

scribe a tailored optimization procedure.

2.1. Robustness and structure

Consider the following Sparse Dictionary Learning

problem with Frobenius-norm regularization on the dictio-

nary D, where we decompose N observations xi ∈ R
mn

on D ∈ R
mn×r1r2 with representations ri ∈ R

r1r2 :

min
D,R

∑

i

||xi −Dri||22 + λ
∑

i

||ri||1 + ||D||F (6)

We assume a Kronecker-decomposable dictionary D =
B ⊗A with A ∈ R

m×r1 ,B ∈ R
n×r2 . To model the pres-

ence of outliers, we introduce a set of vectors ei ∈ R
mn

and, with d = r1r2 + mn, define the block vectors and

matrices:

yi =

[

ri
ei

]

∈ R
d C =

[

B⊗A I
]

∈ R
mn×d (7)

We obtain a two-level structured dictionary C and the as-

sociated sparse encodings yi. Breaking-down the variables

to reduce dimensionality and discarding the constant ||I||F:

min
A,B,R,E

∑

i

||xi − (B⊗A)ri − ei||22

+λ
∑

i

||ri||1 + λ
∑

i

||ei||1 + ||B⊗A||F
(8)

Suppose now that the observations xi were obtained by vec-

torizing two-dimensional data such as images, i.e., xi =
vec(Xi),Xi ∈ R

m×n. We find preferable to keep the ob-

servations in matrix form as this preserves the spatial struc-

ture of the images, and - as we will see - allows us solve ma-

trix equations efficiently instead of high-dimensional linear

systems. Without loss of generality, we choose r1 = r2 = r

and ri = vec(Ri),Ri ∈ R
r×r, and recast the problem as:

min
A,B,R,E

∑

i

||Xi −ARiB
T −Ei||2F

+λ
∑

i

||Ri||1 + λ
∑

i

||Ei||1 + ||B⊗A||F
(9)

Equivalently, enforcing the equality constraints and writing

the problem explicitly as a structured tensor factorization:

minA,B,R,E λ||R||1 + λ||E ||1 + ||B⊗A||F
s.t X = R×1 A×2 B+ E

(10)

Where the matrices Xi,Ri, and Ei are concatenated as the

frontal slices of 3-way tensors. Figure 1 illustrates the de-

composition.

We impose r ≤ min(m,n) as a natural upper bound on

the rank of the frontal slices of L = R×1 A×2 B, and on

its mode-1 and mode-2 ranks.

= ×1 +×2

Figure 1: Illustration of the decomposition.

2.2. An efficient algorithm

Problem (10) is not jointly convex, but is convex in

each component individually. We resort to an alternating-

direction method and propose a non-convex ADMM proce-

dure that operates on the frontal slices.

Minimizing ||B ⊗ A||F presents a challenge: the prod-

uct is high-dimensional, the two bases are coupled, and

the loss is non-smooth. Using the identity ||A ⊗ B||p =
||A||p||B||p where ||.||p denotes the Schatten-p norm (this

follows from the compatibility of the Kronecker product

with the singular value decomposition), and remarking that

||B||F||A||F ≤ ||A||2F+||B||2F
2

, we minimize a simpler up-

per bound (||ABT||∗ [39]). The resulting sub-problems are

smaller, and therefore more scalable. In order to obtain ex-

act proximal steps for the encodings Ri, we introduce a split

variable Ki such that ∀i, Ki = Ri. Thus, we solve:

min
A,B,R,KE

λ||R||1 + λ||E ||1 + 1

2
(||A||2F + ||B||2F)

s.t X = K×1 A×2 B+ E

s.t R = K

(11)

Introducing the tensors of Lagrange multipliers Λ and

Y , such that the ith frontal slice corresponds to the ith con-

straint, and the dual step sizes µ and µK, we formulate the

Augmented Lagrangian of problem (11):

minλ
∑

i

||Ri||1 + λ
∑

i

||Ei||1 +
1

2
(||A||2F + ||B||2F)+

∑

i

〈Λi, Xi −AKiB
T −Ei〉+

∑

i

〈Yi, Ri −Ki〉+

µ

2

∑

i

||Xi −AKiB
T −Ei||2F +

µK

2

∑

i

||Ri −Ki||2F

(12)

We can now derive the ADMM updates. Each Ei is given

by shrinkage after rescaling:

Ei = Sλ/µ(Xi −AKiB
T +

1

µ
Λi) (13)

A similar rule is immediate to derive for Ri, and solving for

A and B is straightforward with some matrix algebra. We

therefore focus on the computation of the split variable Ki.
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Figure 2: Recovery performance with 60% corruption. Rel-

ative ℓ2 error and density.

Differentiating, we find Ki satisfies:

µKKi + µATAKiB
TB (14)

= AT(Λi + µ(Xi −Ei))B+ µKRi +Yi

The key for an efficient algorithm is here to recognize equa-

tion (14) is a Stein equation, and can be solved in cubical

time and quadratic space in r by solvers for discrete-time

Sylvester equations - such as the Hessenberg-Schur method

[19] - instead of the naive O(r6) time, O(r4) space solution

of vectorizing the equation in an r2 linear system.

In practice, we solve a slightly different problem with

α
∑

i ||Ri||1 + λ
∑

i ||Ei||1. This introduces an additional

degree of freedom and corresponds to rescaling the coef-

ficients of Ri. We found the modified problem to be nu-

merically more stable and to allow for tuning of the relative

importance of ||R||1 and ||E ||1. We obtain Algorithm 1.

3. Discussion

We show experimentally that our algorithm successfully

recovers the components of the decomposition (10), we then

prove the formulation encourages two different notions of

low-rankness on tensors, and finally discuss the issues of

non-convexity and convergence.

3.1. Validation on synthetic data

We generated synthetic data following the model’s as-

sumptions by first sampling two random bases A and B of

known ranks rA and rB, N Gaussian slices for the core

R, and forming the ground truth L = R ×1 A ×2 B.

We modeled additive random sparse Laplacian noise with

a tensor E whose entries are 0 with probability p, and 1 or

−1 with equal probability otherwise. We generated data for

p = 70% and p = 40%, leading to a noise density of, re-

spectively, 30% and 60%. We measured the reconstruction

error on L, E , and the density of E for varying values of λ,

and α = 1e−2. Our model achieved near-exact recovery of

both L and E , and exact recovery of the density of E , for

suitable values of λ. Experimental evidence is presented in

Figure 2 for the 60% noise case.
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Figure 3: Sample spectrums of A and B, the ground truth

is 42 for A and 12 for B, and is attained. r = 100.

The algorithm appears robust to small changes in λ,

which suggests not only one value can lead to optimal re-

sults, and that a simple criterion that provides consistently

good reconstruction may be derived, as in Robust PCA [6].

In the 30% noise case, we did not observe an increase in the

density of E as λ increases, and the ℓ2 error on both E and

L was of the order of 1e−7 (c.f . supplementary material).

3.2. Low­rank solutions

Seeing the model from the perspective of Robust PCA

(3), which seeks a low-rank representation A of the dataset

X, we minimize the rank of the low-rank tensor L. More

precisely, we show in theorem 3.1 that we simultaneously

penalize the Tucker rank and the multi-rank of L.

Theorem 3.1. Algorithm 1 encourages low mode-1 and

mode-2 rank, and thus, low-rankness in each frontal slice

of L, for suitable choices of the parameters λ and α.

Proof. From the equivalence of norms in finite-dimensions,

∃k ∈ R
∗
+, ||A ⊗ B||∗ ≤ k||A ⊗ B||F. We minimise

λ||E ||1 +α||R||1 + ||A⊗B||F. By choosing α = α′

k , λ =
λ′

k , we penalize rank(A⊗B) = rank(A)rank(B). Given

that the rank is a non-negative integer, rank(A) or rank(B)
decreases necessarily. Therefore, we minimize the mode-1
and mode-2 ranks of L = R ×1 A ×2 B. Additionally,

∀i, rank(ARiB
T) ≤ min(rank(A), rank(B), rank(Ri)).

Exhibiting a valid k may help in the choice of parame-

ters. We show ∀A ∈ R
m×n, ||A||∗ ≤

√

min(m,n)||A||F:

We know ∀x ∈ R
n, ||x||1 ≤ √

n||x||2. By definition, the

Schatten-p norm of A is the ℓp norm of its singular values.

Recalling the nuclear norm and the Frobenius norm are the

Schatten-1 and Schatten-2 norms, A has min(m,n) singu-

lar values, hence the result.

In practice, we find that on synthetic data designed to

test the model, we effectively recover the ranks of A and B

regardless of the choice of r, as seen in Figure 3.
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Algorithm 1 Kronecker-Decomposable Robust Sparse Dictionary Learning.

1: procedure KDRSDL(X , r, λ, α)

2: A0,B0,E0,R0,K0
← INITIALIZE(X )

3: while not converged do

4: Et+1
← Sλ/µt (X −Kt

×1 At ×2 Bt + 1

µt Λ
t)

5: X̃
t+1
← X − Et+1

6: At+1 ← (
∑

i(µ
tX̃

t+1

i +Λt
i)B

t(Kt
i)

T) / (I+ µt
∑

i K
t
i(B

t)TBt(Kt
i)

T)

7: Bt+1 ← (
∑

i(µ
tX̃

t+1

i +Λt
i)

TAt+1Kt
i) / (I+ µt

∑

i(K
t
i)

T(At+1)TAt+1Kt
i)

8: for all i do

9: K
t+1

i ← STEIN(−
µt

µt

K

(At+1)TAt+1, (Bt+1)TBt+1, 1

µt

K

[

(At+1)T(Λt
i + µtX̃

t+1

i )Bt+1 +Yt
i

]

+Rt
i)

10: R
t+1

i ← Sα/µt

K

(Kt+1

i −
1

µt

K

Yt
i)

11: end for

12: Λt+1 ← Λt + µt(X̃
t+1
−Kt+1

×1 At+1 ×2 Bt+1)
13: Yt+1

← Yt + µt
K
(Rt+1

−Kt+1)
14: µt+1 ← min(µ∗, ρµt)
15: µt+1

K
← min(µ∗

K
, ρµt

K
)

16: end while

17: return A,B,R,E
18: end procedure

3.3. Convergence and complexity

Convergence and initialization: The problem is non-

convex, therefore global convergence is a priori not guar-

anteed. Recent work [24, 43] studies the convergence of

ADMM for non-convex and possibly non-smooth objective

functions with linear constraints. Here, the constraints are

not linear. In [21, 22] the authors derive conditions for

global optimality in specific non-convex matrix and tensor

factorizations that may be extended to other formulations,

including our model. However, the theoretical study of the

global convergence of our algorithm is out of the scope of

this paper and is left for future work. Instead, we provide

experimental results and discuss the strategy implemented.

We propose a simple initialization scheme in the wake of

[29]. We initialize the bases A and B and the core R by

performing SVD on each observation Xi = UiSiV
T

i . We

set Ri = Si, A = 1

N

∑

i Ui and B = 1

N

∑

i Vi. To ini-

tialize the dual-variables for the constraint Xi−ARiB
T−

Ei = 0, we take µ0 = ηN∑
i
||Xi||F

where η is a scal-

ing coefficient, chosen in practice to be η = 1.25 as in

[29]. Similarly, we chose µ0
K

= ηN∑
i
||Ri||F

. These cor-

respond to averaging the initial values for each individual

slice and its corresponding constraint. Our convergence

criterion corresponds to primal-feasibility of problem (11),

and is given by max(errrec, errsplit) ≤ ǫ where errrec =

maxi
||Xi−ARiB

T−Ei||
2
F

||Xi||2F
and errsplit = maxi

||Ri−Ki||
2
F

||Ri||2F
.

Empirically, we obtained systematic convergence to a good

solution, and a linear convergence rate, as shown in Figure

4. The parameter ρ > 1 can be tuned and affects the speed

of convergence. High values may lead to the algorithm di-

verging, while values closer to 1 will lead to an increased

number of iterations. We used ρ = 1.2 and set upper bounds

µ∗ = µ0 × 107 and µ∗
K

= µ0
K
× 107 as usual with ADMM.
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Figure 4: Convergence on synthetic data with 30% and 60%

corruption.

Computational complexity: The time and space com-

plexity per iteration of Algorithm 1 are O(N(mnr + (m+
n)r + mn + min(m,n)r2 + r3 + r2)) and O(N(mn +
r2) + (m + n)r + r2). Since r ≤ min(m,n), the terms in

r are asymptotically negligible, but in practice it is useful

to know how the computational requirements scale with the

size of the dictionary. Similarly, the initialization procedure

has cost O(N(mnmin(m,n)+(min(m,n))3+mn)+mn)
in time and needs quadratic space per slice, assuming a stan-

dard algorithm is used for the SVD[9]. Several key steps in

the algorithm, such as summations of independent terms,

are trivially distributed in a MapReduce [12] way. Proximal

operators are separable in nature and are therefore paral-

lelizable. Consequently, highly parallel and distributed im-

plementations are possible, and computational complexity

can be further reduced by adaptively adopting sparse linear

algebra structures and algorithms.

4. Experimental evaluation

We compared the performance of our model against a

range of state-of-the-art tensor decomposition algorithms

on four low-rank modeling computer vision benchmarks:
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two for image denoising, and two for background subtrac-

tion. As a baseline, we report the performance of ma-

trix Robust PCA implemented via inexact ALM (RPCA)

[6, 29], and of Non-Negative Robust Dictionary Learning

(RNNDL) [35]. We chose the following methods to in-

clude recent representatives of various existing approaches

to low-rank modeling on tensors: The singleton version of

Higher-Order Robust PCA (HORPCA-S) [18] optimizes the

Tucker rank of the tensor through the sum of the nuclear

norms of its unfoldings. In [46], the authors consider a sim-

ilar model but with robust M-estimators as loss functions,

either a Cauchy loss or a Welsh loss, and support both hard

and soft thresholding; we tested the soft-thresholding mod-

els (Cauchy ST and Welsh ST). Non-convex Tensor Robust

PCA (NC TRPCA) [2] adapts to tensors the matrix non-

convex RPCA [33]. Finally, the two Tensor RPCA algo-

rithms [31, 48] (TRPCA ’14 and TRPCA ’16) work with

slightly different definitions of the tensor nuclear norm as a

convex surrogate of the tensor multi-rank.

For each model, we identified a maximum of two pa-

rameters to tune via grid-search in order to keep parameter

tuning tractable. When criteria or heuristics for choosing

the parameters were provided by the authors, we chose the

search space around the value obtained from them. In all

cases, the tuning process explored a wide range of parame-

ters to maximize performance. The range of values investi-

gated are provided as supplementary material.

When the performance of one method was significantly

worse than that of the other, the result is not reported so as

not to clutter the text, and is made available in the supple-

mentary material. This is the case of Separable Dictionary

Learning [23] whose drastically different nature renders un-

suitable for robust low-rank modeling, but was compared

for completeness. For the same reason, we did not compare

our method against K-SVD [1], or [25].

4.1. Background subtraction

Background subtraction is a common task in computer

vision and can be tackled by robust low-rank modeling: the

static or mostly static background of a video sequence can

effectively be represented as a low-rank tensor while the

foreground forms a sparse component of outliers.

Experimental procedure We compared the algorithms

on two benchmarks. The first is an excerpt of the Highway

dataset [20], and consists in a video sequence of cars travel-

ling on a highway; the background is completely static. We

kept 400 gray-scale images re-sized to 48× 64 pixels. The

second is the Airport Hall dataset ([27]) and has been cho-

sen as a more challenging benchmark since the background

is not fully static and the scene is richer. We used the same

excerpt of 300 frames (frames 3301 to 3600) as in [49], and

kept the frames in their original size of 144× 176 pixels.

We treat background subtraction as a binary classifica-

(a) Cauchy ST (b) Welsh ST (c) TRPCA ’16 (d) HORPCA-S (e) NCTRPCA

(f) RNNDL (g) RPCA (h) KDRSDL (i) Ground truth (j) Original

Figure 5: Results on Airport Hall. TRPCA ’14 removed.

tion problem. Since ground truth frames are available for

our excerpts, we report the AUC [15] on both videos. The

value of α was set to 1e−2 for both experiments.

Results We provide the original, ground truth, and recov-

ered frames in Figure 5 for the Hall experiment (Highway

in supplementary material).

Table 1 presents the AUC scores of the algorithms,

ranked in order of their mean performance on the two

benchmarks. The two matrix methods rank high on both

benchmarks and only half of the tensor algorithms match

or outperform this baseline. Our proposed model matches

the best performance on the Highway dataset and provides

significantly higher performance than the other on the more

challenging Hall benchmark. Visual inspection of the re-

sults show KDRSDL is the only method that doesn’t fully

capture the immobile people in the background, and there-

fore achieves the best trade-off between foreground detec-

tion and background-foreground contamination.

Algorithm Highway Hall

KDRSDL (proposed) 0.94 0.88

TRPCA ’16 0.94 0.86

NC TRPCA 0.93 0.86

RPCA (baseline) 0.94 0.85

RNNDL (baseline) 0.94 0.85

HORPCA-S 0.93 0.86

Cauchy ST 0.83 0.76

Welsh ST 0.82 0.71

TRPCA ’14 0.76 0.61

Table 1: AUC on Highway and Hall ordered by mean AUC.

4.2. Image denoising

Many natural and artificial images exhibit an inherent

low-rank structure and are suitably denoised by low-rank

modeling algorithms. In this section, we assess the perfor-

mance of the cohort on two datasets chosen for their popu-

larity, and for the typical use cases they represent.

We consider collections of grayscale images, and color

images represented as 3-way tensors. Laplacian (salt & pep-

per) noise was introduced separately in all frontal slices of
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Figure 6: Mean PSNR and FSIM on the 64 images of the

first subject of Yale at noise levels 10%, 30%, and 60%.

the observation tensor at three different levels: 10%, 30%,

and 60%, to simulate medium, high, and gross corruption.

In these experiments we set the value of α to 1e−3 for noise

levels up to 30%, and to 1e−2 at the 60% level.

We report two quantitative metrics designed to measure

two key aspects of image recovery. The Peak Signal To

Noise Ratio (PSNR) will be used as an indicator of the

element-wise reconstruction quality of the signals, while

the Feature Similarity Index (FSIM, FSIMc for color im-

ages) [30] evaluates the recovery of structural information.

Quantitative metrics are not perfect replacements for sub-

jective visual assessment of image quality; therefore, we

present sample reconstructed images for verification. Our

measure of choice for determining which images to com-

pare visually is the FSIM(c) for its higher correlation with

human evaluation than the PSNR.

Monochromatic face images Our face denoising exper-

iment uses the Extented Yale-B dataset [17] of 10 different

subject, each under 64 different lighting conditions. Ac-

cording to [38, 3], face images of one subject under vari-

ous illuminations lie approximately on a 9-dimensional sub-

space, and are therefore suitable for low-rank modeling. We

used the pre-cropped 64 images of the first subject and kept

them at full resolution. The resulting collection of images

constitutes a 3-way tensor of 64 images of size 192 × 168.

Each mode corresponds respectively to the columns and

rows of the images, and to the illumination component. All

three are expected to be low-rank due to the spatial corre-

lation within frontal slices and to the correlation between

images of the same subject under different illuminations.

We present the comparative quantitative performance of the

methods tested in Figure 6, and provide visualizations of the

reconstructed first image at the 30% noise level in Figure 7.

We report the metrics averaged on the 64 images.

(a) Cauchy ST (b) Welsh ST (c) TRPCA ’16 (d) HORPCA-S (e) NCTRPCA

(f) RNNDL (g) RPCA (h) KDRSDL (i) Noisy (j) Original

Figure 7: Results on the Yale benchmark with 30% noise.

TRPCA ’14 removed.

At the 10% noise level, nearly every method provided

good to excellent recovery of the original images. We there-

fore omit this noise level (c.f . supplementary material). On

the other hand, most methods, with the notable exception

of KDRSDL, NC TRPCA, and TRPCA ’16, failed to pro-

vide acceptable reconstruction in the gross corruption case.

Thus, we present the denoised images at the 30% level,

and compare the performance of the three best performing

methods in Table 2 for the 60% noise level.

Clear differences appeared at the 30% noise level, as

demonstrated both by the quantitative metrics, and by visual

inspection of Figure 7. Overall, performance was markedly

lower than at the 10% level, and most methods started to

lose much of the details. Visual inspection of the results

confirms a higher reconstruction quality for KDRSDL. We

invite the reader to look at the texture of the skin, the white

of the eye, and at the reflection of the light on the subject’s

skin and pupil. The latter, in particular, is very close in na-

ture to the white pixel corruption of the salt & pepper noise.

Out of all methods, KDRSDL provided the best reconstruc-

tion quality: it is the only algorithm that removed all the

noise and for which all the aforementioned details are dis-

tinguishable in the reconstruction.

Noisy KDRSDL NC TRPCA TRPCA ’16

PSNR 26.6057 22.8502 22.566

FSIM 0.8956 0.8509 0.8427

Table 2: Three best results on Yale at 60% noise.

At the 60% noise level, our method scored markedly

higher than its competitors on image quality metrics, as

seen both in Figure 6 and in Table 2. Visualizing the re-
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Figure 8: PSNR and FSIMc of all methods on the Facade

benchmark at noise levels 10%, 30%, and 60%.

constructions confirms the difference: the image recovered

by KDRSDL at the 60% noise level is comparable to the

output of competing algorithms at the 30% noise level.

Color image denoising Our benchmark is the Facade im-

age [10]: the rich details and lighting makes it interesting

to assess fine reconstruction. The geometric nature of the

building’s front wall, and the strong correlation between the

RGB bands indicate the data can be modeled by a low-rank

3-way tensor where each frontal slice is a color channel.

At the 10% noise level, KDRSDL attained the highest

PSNR, and among the highest FSIMc values. Most meth-

ods provided excellent reconstruction, in agreement with

the high values of the metrics shown in Figure 8. As in the

previous benchmark, the results are omitted because of the

space constraints (c.f . supplementary material). At the 30%

noise level, Cauchy ST exhibited the highest PSNR, while

TRPCA ’16 scored best on the FSIMc metric. KDRSDL

had the second highest PSNR and among the highest FSIMc

scores. Details of the results are provided in Figure 9. Vi-

sually, clear differences are visible, and are best seen on the

fine details of the picture, such as the black iron ornaments,

or the light coming through the window. Our method best

preserved the dynamics of the lighting, and the sharpness

of the details, and in the end provided the reconstruction

visually closest to the original. Competing models tend to

oversmooth the image, and to make the light dimmer; indi-

cating substantial losses of high-frequency and dynamic in-

formation. KDRSDL appears to also provide the best color

fidelity.

In the gross-corruption case, KDRSDL was the best per-

former on both PSNR and FSIMc. As seen on Figure

3, KDRSDL was the only method with TRPCA ’16 and

HORPCA-S to provide a reconstruction with distinguish-

able details, and did it best.

(a) Cauchy ST (b) Welsh ST (c) TRPCA ’14 (d) TRPCA ’16 (e) HORPCA-S

(f) NCTRPCA (g) RNNDL (h) RPCA (i) KDRSDL (j) Noisy

(k) Original

Figure 9: Results on the Facade benchmark with 30% noise.

Noisy KDRSDL TRPCA ’16 HORPCA-S

PSNR 23.8064 23.6552 22.8811

FSIMc 0.9152 0.9109 0.9060

Table 3: Three best results on Facade at 60% noise.

5. Conclusion

The method we propose combines aspects from Ro-

bust Principal Component Analysis, and Sparse Dictionary

Learning. As in K-SVD, our algorithm learns iteratively

and alternatively both the dictionary and the sparse repre-

sentations. Similarly to Robust PCA, our method assumes

the data decompose additively in a sparse and low-rank

component, and is able to separate the two signals. We

introduce a two-level structure in the dictionary to allow

for both scalable training, and robustness to outliers. Im-

posing this structure exhibits links with tensor factoriza-

tions and allows us to better model spatial correlation in

images than classical matrix methods. These theoretical ad-

vantages translate directly in the experimental performance,

as our method exhibits desirable scalability properties, and

matches or outperforms the current state of the art in low-

rank modeling.

6. Acknowledgements

The work of Y. Panagakis has been partially supported

by the European Community Horizon 2020 [H2020/2014-

2020] under Grant Agreement No. 645094 (SEWA).

S. Zafeiriou was partially funded by EPSRC Project

EP/N007743/1 (FACER2VM).

3359



References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006. 1, 6

[2] A. Anandkumar, P. Jain, Y. Shi, and U. N. Niranjan. Ten-

sor vs Matrix Methods: Robust Tensor Decomposition under

Block Sparse Perturbations. In A. Gretton and R. C. Chris-

tian, editors, Proceedings of the 19th International Confer-

ence on Artificial Intelligence and Statistics, AISTATS 2016,

Cadiz, Spain, 2016. JMLR.org. 6

[3] R. Basri and D. Jacobs. Lambertian reflectance and linear

subspaces. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 25(2):218–233, 2 2003. 7

[4] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-

Thresholding Algorithm for Linear Inverse Problems. SIAM

Journal on Imaging Sciences, 2(1):183–202, 2009. 2

[5] S. Boyd. Distributed Optimization and Statistical Learning

via the Alternating Direction Method of Multipliers. Founda-

tions and Trends R© in Machine Learning, 3(1):1–122, 2010.

2

[6] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal

component analysis? Journal of the ACM, 58(3):1–37, 5

2011. 1, 4, 6

[7] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty

principles: Exact signal reconstruction from highly incom-

plete frequency information. IEEE Transactions on Infor-

mation Theory, 52(2):489–509, 2 2006. 1

[8] E. J. Candes and T. Tao. Decoding by linear programming.

IEEE Transactions on Information Theory, 51(12):4203–

4215, 12 2005. 1

[9] T. F. Chan. An Improved Algorithm for Computing the Sin-

gular Value Decomposition. ACM Transactions on Mathe-

matical Software, 8(1):72–83, 1982. 5

[10] X. Chen, Z. Han, Y. Wang, Q. Zhao, D. Meng, and Y. Tang.

Robust Tensor Factorization with Unknown Noise. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 5213–5221, 2016. 8

[11] G. M. Davis, S. G. Mallat, and Z. Zhang. Adap-

tive time-frequency decompositions. Optical Engineering,

33(7):2183–2191, 1994. 2

[12] J. Dean and S. Ghemawat. MapReduce: Simplied Data Pro-

cessing on Large Clusters. Proceedings of 6th Symposium on

Operating Systems Design and Implementation, pages 137–

149, 2004. 5

[13] D. L. Donoho. For most large underdetermined systems

of equations, the minimal L1-norm near-solution approxi-

mates the sparsest near-solution. Comm. Pure Appl. Math.,

59(7):907–934, 2006. 1

[14] M. Elad and M. Aharon. Image denoising via sparse and re-

dundant representation over learned dictionaries. IEEE Tran-

sations on Image Processing, 15(12):3736–3745, 12 2006. 1

[15] T. Fawcett. An introduction to ROC analysis. Pattern Recog-

nition Letters, 27(8):861–874, 2006. 6

[16] R. Ge, J. D. Lee, and T. Ma. Matrix completion has no spu-

rious local minimum. In Advances in Neural Information

Processing Systems 29: Annual Conference on Neural In-

formation Processing Systems 2016, December 5-10, 2016,

Barcelona, Spain, pages 2973–2981, 2016. 2

[17] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: illumination cone models for face recognition un-

der variable lighting and pose. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(6):643–660, 6 2001.

7

[18] D. Goldfarb and Z. T. Qin. Robust Low-Rank Tensor Re-

covery: Models and Algorithms. SIAM Journal on Matrix

Analysis and Applications, 35(1):225–253, 3 2014. 6

[19] G. Golub, S. Nash, and C. Van Loan. A Hessenberg-Schur

method for the problem AX + XB= C. IEEE Transactions

on Automatic Control, 24(6):909–913, 12 1979. 4

[20] N. Goyette, P. M. Jodoin, F. Porikli, J. Konrad, and P. Ish-

war. changedetection.net: A new change detection bench-

mark dataset. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, pages

1–8, 2012. 6

[21] B. Haeffele, E. Young, and R. Vidal. Structured low-rank

matrix factorization: Optimality, algorithm, and applications

to image processing. In T. Jebara and E. P. Xing, editors, Pro-

ceedings of the 31st International Conference on Machine

Learning (ICML-14), pages 2007–2015. JMLR Workshop

and Conference Proceedings, 2014. 5

[22] B. D. Haeffele and R. Vidal. Global Optimality in Ten-

sor Factorization, Deep Learning, and Beyond. CoRR,

abs/1506.0, 2015. 5

[23] S. Hawe, M. Seibert, and M. Kleinsteuber. Separable Dictio-

nary Learning. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 3

2013. 2, 6

[24] M. Hong, Z. Q. Luo, and M. Razaviyayn. Convergence

analysis of alternating direction method of multipliers for

a family of nonconvex problems. In 2015 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 3836–3840, 2015. 5

[25] S. H. Hsieh, C. S. Lu, and S. C. Pei. 2D sparse dictionary

learning via tensor decomposition. 2014 IEEE Global Con-

ference on Signal and Information Processing, GlobalSIP

2014, pages 492–496, 2014. 2, 6

[26] T. G. Kolda and B. W. Bader. Tensor Decompositions and

Applications. SIAM Review, 51(3):455–500, 8 2009. 2

[27] L. Li, W. Huang, I.-H. Gu, and Q. Tian. Statistical Modeling

of Complex Backgrounds for Foreground Object Detection.

IEEE Transactions on Image Processing, 13(11):1459–1472,

11 2004. 6

[28] X. Li, Z. Wang, J. Lu, R. Arora, J. D. Haupt, H. Liu, and

T. Zhao. Symmetry, saddle points, and global geometry

of nonconvex matrix factorization. CoRR, abs/1612.09296,

2016. 2

[29] Z. Lin, M. Chen, and Y. Ma. The Augmented Lagrange Mul-

tiplier Method for Exact Recovery of Corrupted Low-Rank

Matrices. arXiv:1009.5055, page 23, 9 2010. 5, 6

[30] Lin Zhang, Lei Zhang, Xuanqin Mou, and D. Zhang. FSIM:

A Feature Similarity Index for Image Quality Assessment.

IEEE Transactions on Image Processing, 20(8):2378–2386,

8 2011. 7

3360



[31] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan. Ten-

sor Robust Principal Component Analysis: Exact Recovery

of Corrupted Low-Rank Tensors via Convex Optimization.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2, 6

[32] J. Mairal, M. Elad, and G. Sapiro. Sparse learned represen-

tations for image restoration. Sparse learned representations

for image restoration, (December):1–10, 2008. 1

[33] P. Netrapalli, U. N. Niranjan, S. Sanghavi, A. Anandkumar,

and P. Jain. Non-convex Robust PCA. Advances in Neural

Information Processing Systems 27 (Proceedings of NIPS),

pages 1–9, 10 2014. 6

[34] B. A. Olshausen and D. J. Field. Sparse coding with an over-

complete basis set: A strategy employed by V1? Vision

Research, 37(23):3311–3325, 1997. 1

[35] Q. Pan, D. Kong, C. Ding, and B. Luo. Robust Non-negative

Dictionary Learning. In Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence, AAAI’14, pages

2027–2033. AAAI Press, 2014. 6

[36] D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi. Find-

ing Low-Rank Solutions via Non-Convex Matrix Factoriza-

tion, Efficiently and Provably. ArXiv e-prints, 2016. 2

[37] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal

matching pursuit: recursive function approximation with ap-

plications to wavelet decomposition. In Proceedings of 27th

Asilomar Conference on Signals, Systems and Computers,

pages 40–44, 11 1993. 2

[38] R. Ramamoorthi and P. Hanrahan. An efficient representa-

tion for irradiance environment maps. In Proceedings of the

28th annual conference on Computer graphics and interac-

tive techniques - SIGGRAPH ’01, volume 64, pages 497–

500, New York, New York, USA, 2001. ACM Press. 7

[39] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed Minimum-

Rank Solutions of Linear Matrix Equations via Nuclear

Norm Minimization. Optimization Online, 52(3):1–33, 6

2007. 3

[40] R. Rubinstein, A. M. Bruckstein, and M. Elad. Dictionaries

for sparse representation modeling. Proceedings of the IEEE,

98(6):1045–1057, 6 2010. 1, 2

[41] E. Schwab, R. Vidal, and N. Charon. Efficient Global

Spatial-Angular Sparse Coding for Diffusion MRI with Sep-

arable Dictionaries. ArXiv e-prints, Dec. 2016. 2

[42] E. Schwab, R. Vidal, and N. Charon. Spatial-Angular Sparse

Coding for HARDI. In S. Ourselin, L. Joskowicz, M. R.

Sabuncu, G. Unal, and W. Wells, editors, Medical Image

Computing and Computer-Assisted Intervention – MICCAI

2016: 19th International Conference, Athens, Greece, Oc-

tober 17-21, 2016, Proceedings, Part III, pages 475–483.

Springer International Publishing, Cham, 2016. 2

[43] Y. Wang, W. Yin, and J. Zeng. Global Convergence of

ADMM in Nonconvex Nonsmooth Optimization. ArXiv e-

prints, 2015. 5

[44] K. Wei, J.-F. Cai, T. F. Chan, and S. Leung. Guarantees of

Riemannian Optimization for Low Rank Matrix Completion.

ArXiv e-prints, 2016. 2

[45] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and

S. Yan. Sparse Representation for Computer Vision and

Pattern Recognition. Proceedings of the IEEE, 98(6):1031–

1044, 6 2010. 1

[46] Y. Yang, Y. Feng, and J. A. K. Suykens. Robust Low-

Rank Tensor Recovery With Regularized Redescending M-

Estimator. IEEE Transactions on Neural Networks and

Learning Systems, 27(9):1933–1946, 9 2015. 6

[47] X. Zhang, L. Wang, and Q. Gu. A Nonconvex Free Lunch

for Low-Rank plus Sparse Matrix Recovery. ArXiv e-prints,

Feb. 2017. 2

[48] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer. Novel

methods for multilinear data completion and de-noising

based on tensor-SVD. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, pages 3842–3849, 2014. 2, 6

[49] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S.-I. Amari.

Bayesian Robust Tensor Factorization for Incomplete Mul-

tiway Data. IEEE Transactions on Neural Networks and

Learning Systems, 27(4):736–748, 4 2016. 6

[50] Z. Zhu, Q. Li, G. Tang, and M. B. Wakin. Global Optimality

in Low-rank Matrix Optimization. ArXiv e-prints, Feb. 2017.

2

3361


