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Abstract

Principal Component Analysis (PCA) is a widely pop-

ular dimensionality reduction technique for vector-valued

inputs. In the past decade, a nonlinear generalization of

PCA, called the Principal Geodesic Analysis (PGA) was de-

veloped to tackle data that lie on a smooth manifold. PGA

suffers from the same problem as PCA in that, in both the

methods, each Principal Component (PC) is a linear com-

bination of the original variables. This makes it very dif-

ficult to interpret the PCs especially in high dimensions.

This lead to the introduction of sparse PCA (SPCA) in the

vector-space input case. In this paper, we present a novel

generalization of SPCA, called sparse exact PGA (SEPGA)

that can cope with manifold-valued input data and respect

the intrinsic geometry of the underlying manifold. Sparsity

has the advantage of not only easy interpretability but also

computational efficiency. We achieve this by formulating

the PGA problem as a minimization of the projection er-

ror in conjunction with sparsity constraints enforced on the

principal vectors post isomorphic mapping to Rm, where

m is the dimension of the manifold on which the data re-

side. Further, for constant curvature smooth manifolds, we

use analytic formulae for the projection error leading to an

efficient solution to the SEPGA problem. We present ex-

tensive experimental results demonstrating the performance

of SEPGA in achieving very good sparse principal com-

ponents without sacrificing the accuracy of reconstruction.

This makes SEPGA accurate and efficient in representing

manifold-valued data.

1. Introduction

Principal Component Analysis (PCA) [14] is a widely

used data-processing and dimensionality reduction tech-

nique with numerous applications in Science and Engineer-

ing. Given an N ×m data matrix, where N is the number

of m-dimensional data vectors, PCA seeks a linear combi-

nation of the original variables such that the data variance

is maximized along these derived variables. Each Principal

Component (PC) is a linear combination of all the m vari-

ables where each coefficient in the combination is typically

nonzero. This makes each PC difficult to interpret as each

PC is a linear combination of all of the m variables. This is

a serious drawback of PCA (see [31] for more discussion on

this issue). In order to overcome this drawback, researchers

[31, 15] proposed a sparse PCA (sPCA) where each prin-

cipal vector is sparse, and hence not only the dimension of

the data gets reduced but the number of explicitly used vari-

ables are also small. The effectiveness of sparse principal

vectors can be demonstrated with a simple example. Let the

data points lie in R
3 and we want to choose two principal

vectors, so a PCA algorithm can choose a set of two orthog-

onal vectors in R
3, say {v1, v2}, such that the data variance

in the subspace, V , spanned by {v1, v2} is maximized. Let

the set of {v1, v2} for which the data variance in V is max-

imized be denoted by U . If V is spanned by say (0, 1, 0)
and (1, 0, 0), we want these two vectors to be selected as

the principal vectors instead of some {v1, v2} ∈ U . This

is because, the former are most natural and also sparse. In

section 2, we present another toy example for further illus-

tration.

PCA further requires data to lie in a vector space. How-

ever, with the advent of new sensing technologies and

higher compute power, manifold-valued data have become

widely popular in many fields including Computer Vision,

Medical Imaging and Machine Learning. This motivated

researchers to generalize PCA to the manifold-valued data

setting. A nonlinear version of PCA, called the principal

geodesic analysis (PGA) was introduced in [9] for data ly-

ing on a Riemannian Manifold. Since the objective function

of PGA is nonlinear, Fletcher et al., proposed a linearized

version [9]. This linearized version, henceforth referred to

as PGA, though computationally efficient, lacks in perfor-

mance accuracy when the data variance is high. This mo-

tivated researchers [25, 4] to solve the objective function

of PGA exactly, instead of solving a linearized version of

the objective function as in [9]. But, the exact objective

function formulation in [25], hereafter referred to as exact

PGA, involves solving a hard optimization problem which

makes exact PGA infeasible even for moderate data size or

dimension. Recently, authors in [4] presented a solution to
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the exact objective function of PGA, hereafter referred to

as ePGA, on manifolds with constant sectional curvature.

They provided analytic formulae for the projection opera-

tion in the exact PGA formulation of [25].

Several other variants of PGA exist in literature and we

present a few representative methods here. On the special

Lie group, SO(3), authors in [21] computed the exact prin-

cipal geodesics. Geodesic PCA (GPCA) [13, 12] solves a

different optimization function namely, optimizing the pro-

jection error along the geodesics. The authors in [12] min-

imize the projection error instead of maximizing variance

in geodesic subspaces. GPCA does not use a linear ap-

proximation, but it is restricted to manifolds where a closed

form expression for the geodesics exists. More recently, a

probabilistic version of PGA called PPGA was presented in

[30], which is a nonlinear version of PPCA [26]. Recently,

Hauberg [11] generalized the concept of principal curves to

Riemannian manifolds and proposed this as a good alterna-

tive to PGA for representing the manifold valued data. He

argues that principal curves can be more useful than princi-

pal geodesics which are required to pass through the mean

of the data. Finally, none of the above variants of PGA at-

tempt to compute the solution to the exact PGA problem

defined in [25], nor do they address the sparsity of the prin-

cipal vectors.

Since a general Riemannian manifold lacks vector space

structure and hence does not have a canonical basis, spar-

sity is not well defined. In this work, we first define sparsity

of principal vectors on a Riemannian manifold. An obvious

and approximate way to perform sparse PGA is by lineariz-

ing the manifold locally, as was done in [9], and then apply

sPCA on that linearized space. This can be easily done on

the Riemannian manifold by first lifting every data point

on to the tangent space anchored at the Fréchet mean (FM)

[10], µ, of the data points and then performing sPCA on the

tangent space. Henceforth, we will refer to this formulation

as sPGA, which obviously has the same drawback as PGA

[9], i.e., for data with large variance the performance will

be quite poor. We demonstrate this low performance accu-

racy of sPGA via experiments in section 3. In this paper, we

define a sparse exact PGA algorithm, hereafter referred to

as SEPGA, which solves the objective function on the Rie-

mannian manifold without the linearization step described

above. We achieve the sparsity of principal vectors residing

in the tangent space (anchored at the Fréchet mean of the

given data) of the manifold by enforcing the ℓ1-norm con-

straint on the isomorphically mapped principal vectors to

Rm, where m is the dimension of the manifold on which

the input data reside. Note that the sparsity constraint can

not meaningfully be enforced in the tangent space prior to

the aforementioned isomorphic mapping to Rm. We present

an example in Fig. 1 to demonstrate the usefulness of our

sparse PG formulation for better interpretation of the data.

Figure 1. Sparse PGA interpretation

Let u1 = (1/
√
2, 1/

√
2, 0)t and u2 =

(−1/
√
2, 1/

√
2, 0)t. Further, let {u1,u2} form a ba-

sis of TµS
2, where µ = (0, 0, 1)t. Let e1 = (1, 0)t and

e2 = (0, 1)t, and ιµ map u1 7→ e1 and u2 7→ e2. In this

example, we use two methods to define sparsity, first we

add a sparsity constraint on the principal vector (which

lies in TµS
2) and second we add a sparsity constraint

on the isomorphically mapped principal vector. Let, the

first method return (1, 0, 0)t as the principal vector while

the second method returns say, (1/
√
2, 1/

√
2, 0)t as the

principal vector (after applying ιµ on (1/
√
2, 1/

√
2, 0)t

we get e1 = (1, 0)t). Although the first principal vector

has more zeros but if we expand (1, 0, 0)t in the chosen

basis of TµS
2, i.e., (1, 0, 0)t = 1/

√
2 u1 + (−1/

√
2) u2,

we can see that none of the components along any of the

basis vector is zero, i.e., we can not infer which dimension

of the data has more influence on the principal vector.

But, the principal vector returned by the second method

is (1/
√
2, 1/

√
2, 0)t = 1 u1 + 0 u2, i.e., we can easily

say that the second dimension of the data has no influence

on the principal vector. This example demonstrates that

more zeros in the principal vector (in the tangent space

of the manifold) does not imply that the vector is more

interpretable. This is because, in contrast to the Euclidean

space, where we have a canonical basis, the manifold lacks

any such canonical basis in it’s tangent space. Hence, a

principal vector is more interpretable if it is “close” to the

chosen basis of the tangent space.

Our SEPGA method overcomes the drawback of PGA

and provides a set of principal components each of which is

sparse. We will demonstrate the performance of the SEPGA

method in section 2 via comparisons to PGA [9], sPGA and

ePGA [4]. In this comparison, we report the average re-

construction error [25], average expressed variance and the

average sparsity measure (defined in section 3).

The rest of the paper is organized as follows. In Sec-

tion 2, we present the formulation and the algorithm of

our SEPGA method. We present experimental results for

the SEPGA algorithm along with comparisons to PGA and

ePGA in Section 3. Section 3 also contains a comparative

analysis with the sPGA algorithm. Finally, in section 4, we

draw conclusions.
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2. Sparse Exact PGA

Let (Mm, g) be a complete Riemannian manifold where

m = dim(M) is equipped with a Riemannian metric g [8].

Let, d : M×M → R be the distance function induced by g
on M given by, d(xi, xj) = gxi

(Logxi
xj , Logxi

xj), where

Log is the Riemannian inverse exponential map (Note that

the completeness assumption of manifold ensures that Log

map is defined on the entire manifold, but for a manifold

which is not geodesically complete, within a geodesic ball

of appropriate radius, the Log map is well defined). Con-

sider the data X = {xi}Ni=1 ⊂ M within a geodesic ball of

sufficient radius such that Fréchet mean (FM) [10], µ, exists

and is unique [1]. The goal of Principal Geodesic Analy-

sis (PGA) is to find a set of r < m orthogonal basis vec-

tors of TµM (called principal vectors), {vj}rj=1 such that

the data variance along the geodesic submanifold spanned

by these r vectors is maximized [9]. An alternative def-

inition of PGA [25] involves minimizing the reconstruc-

tion error,
∑

d2(xi, x̂i), where x̂i is the ith reconstructed

data point in the principal submanifold spanned by the ba-

sis vectors {vj}rj=1. It can be easily shown that on a man-

ifold with zero sectional curvature (canonically isomorphic

to Euclidean space), this alternative formulation leads to ex-

actly the same solution as one obtained from PGA [9, 4].

But, on a general Riemannian manifold these two formu-

lations are not equivalent, but nonetheless it serves as an

alternative formulation [25]. We will use this alternative

formulation to define PGA on a Riemannian manifold since

it uses the intrinsic geometry of the Riemannian manifold

under consideration and does not consider a linearization as

in the PGA formulation in [9]. The principal vectors {vj}
are defined recursively by,

vj = argmin
‖v‖=1,v∈V ⊥

j−1

1

N

N∑

i=1

d2(xi,ΠSj
(xi)) (1)

Sj = Expµ(span{Vj−1,vj}) (2)

where, Vj−1 = {v1, · · · , vj−1}. Sj is the submanifold

spanned by Vj = {Vj−1,vj}, and ΠSj
(x) is the point in

Sj closest to x ∈ M.

2.1. Various Forms of the Projection Operator

We now present a method to approximate ΠSj
(x) on a

general manifold M and present exact analytic forms de-

rived in [4] for ΠSj
(x) in the case of constant curvature

manifolds. Let x̂ = ΠSj
(x), then x̂ can be expressed as

Expµ

(∑
j c(x,vj) vj

)
where the coefficient function

c : M× TµM → R can be defined as:

c(x,vj) = sgn(gµ(vj , Logµx)) d(µ,Πspan{vj}(x)) (3)

where Πspan{vj}(x) returns the closest point of x on the

geodesic of dim-1 submanifold spanned by vj . Note

that, we used sgn(gµ(vj , Logµx)) to define c(x,vj) as a

signed distance, since the coefficient, c(x,vj), can be neg-

ative as well. Since, on a general Riemannian manifold,

Πspan{vj}(x) is the solution of a hard optimization problem

[25], hence, we approximate c(x,vj) as follows:

c(x,vj) = gµ(Logµx,vj) (4)

But, for a constant curvature manifold, we can use the ex-

act analytic form of Πspan{vj}(x) by using the closed form

expressions for the projection operator derived in a recently

published work [4]. It is well known in Differential Geom-

etry that any nonzero constant curvature m-dim manifold is

isomorphic to either the hypersphere, Sm, or the hyperbolic

manifold H
m. Therefore, we only need to consider these

two cases. For the sake of completeness, we will restate

these closed form expressions for the projection operator,

Πspan{vj}(x), in the case where x ∈ S
m or x ∈ H

m.

On S
m,

Πspan{vj}(x) = cos

(
arctan

(
〈vj , x〉/〈x, µ〉

|vj |

))
µ

+sin

(
arctan

(
〈vj , x〉/〈x, µ〉

|vj |

))
vj/|vj | (5)

where 〈., .〉 is the standard inner product on R
m+1. Analo-

gously, we can define Πspan{vj}(x) on H
m as

Πspan{vj}(x) = cosh(a)µ+ sinh(a)vj/|vj | (6)

where, a = tanh−1

(
− 〈vj ,x〉H/〈x,µ〉H

|vj |

)
. Here 〈x, y〉H is

defined as follows: 〈x, y〉H = −x1y1 +
∑m+1

i=2 xiyi. Note

that, both 〈x, y〉 and 〈x, y〉H are defined on the ambient

space R
m+1. Equipped with these closed form expressions

for Πspan{vj}(x) on constant curvature manifolds, we can

compute c(x,xj) analytically.

2.2. Sparse PGA Formulation and Algorithm

In Principal Component analysis (PCA), each principal

vector is a linear combination of all the basis vectors and

moreover all the coefficients are in general nonzero. For

example, given a data in R
3, suppose (a, b, c)t (for some

non zero a, b, c such that a2 + b2 + c2 = 1) and (d, f, 0)t

(with non zero d, f with d2 + f2 = 1) both capture the

maximum variance. Then both (a, b, c)t and (d, f, 0)t are

the first principal vectors but (d, f, 0)t is sparse, hence more

preferable. The reason for (d, f, 0)t being preferable over

non-sparse principal vectors is that, it is easy to interpret

the data using (d, f, 0)t as the principal vector, i.e., we can

say that the third dimension of the data is redundant in cap-

turing the maximum variance of the data as, (d, f, 0)t =
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de1+f e2+0e3. Since, (a, b, c)t = ae1+be2+ce3, where

ei are canonical basis and a, b, c are non-zero, the principal

vector (a, b, c)t does not reveal much about the structure of

the data. So, the goal of sparse PCA is to find principal vec-

tors that have more zero components, i.e., to find vectors

that are “close” to being the canonical basis vectors. We

refer the readers to [31] for a detailed discussion regarding

the usefulness of sparse principal vectors. The usefulness

of sparse PCA motivates us to seek a generalization in a

general Riemannian manifold setting, i.e., to find “sparse”

principal geodesics. Unfortunately, as a general Rieman-

nian manifold, M, lacks vector space structure, there is no

canonical basis, i.e.,“sparsity” is not well-defined. But no-

tice that on M, tangent space at any point is isomorphic

to R
m, where m is the dimension of M. The principal

vectors, {vi} lie on the tangent space at µ, TµM, so we de-

fine a principal vector vi to be sparse if and only if ιµ(vi)
is sparse, where ιµ is an isomorphism from TµM to R

m.

Hence, given an isomorphism ιµ, our goal is to find a set

of r principal vectors (r corresponding principal geodesics)

that are isomorphic to the canonical basis of Rm (or “close”

to being canonical) such that they minimize the reconstruc-

tion error.

Figure 2. Sparse PGA for a toy data set.

As an exam-

ple, consider

the following

toy data given

in Fig. 2. Here,

we randomly

generated 500
points (with

µ = (0, 0, 1)t)
along two orthogonal geodesics on S

2 with added random

noise. Note that TµM ∼= R
2. Let us choose the basis of

TµM to be (0, 1, 0)t and (1, 0, 0)t. Let us define ιµ to be

ιµ((0, 1, 0)
t) = e1 and ιµ((1, 0, 0)

t) = e2 (Note that in

order to define isomorphism between vector spaces, it is

enough to define the mapping on the basis vectors). The

principal geodesics are computed using PGA [9], Exact

PGA (ePGA) [4] and the proposed method of sparse PGA

(SEPGA). It is evident from the figure, that SEPGA yields a

set of vectors (0, 1, 0)t and (1, 0, 0)t, which are isomorphic

to e1 and e2 respectively. The other two PGA methods fail

to do so, as expected. However, it should be pointed out

that all of these three methods give perfect reconstruction

of the data, as the principal vectors obtained by all three

methods span the same subspace.

By choosing appropriate ιµ, we will get different variants

of sparse PGA, as suggested below.

• If we don’t know the structure of the data on M, we

can choose an arbitrary basis of TµM, and hence ιµ
(by Algorithm 1), then get the sparse principal vectors

with respect to the chosen ιµ. In all of our experiments,

we follow this procedure.

• If we know that the data has sparse principal vec-

tors in the ambient space, e.g., the synthetic example

in Fig. 2 where we know the sparse principal vec-

tors are the two canonical basis of R3, (0, 1, 0)t and

(1, 0, 0)trespectively, we can choose ιµ to be the iden-

tity map (Note that, here the identity map is defined

using the embedding of S2 in R
3).

• One can choose the principal vectors given by [9, 4]

as the basis of TµM and hence choose ιµ. Then, the

algorithms in [9, 4] are special cases of our sparse for-

mulation. In other words, we can generate the same

principal vectors as given by [9, 4] without removing

the sparsity constraint.

In the rest of this section, we will develop the SEPGA

algorithm. Using the above hypothesis and notations, the

SEPGA objective function is given below:

argmin
{vj}

r
j=1

⊂TµM

E =
1

N

N∑

i=1

d2(xi, x̂i)

︸ ︷︷ ︸
e1

+λ1

r∑

j=1

‖ιµ(vj)‖1
︸ ︷︷ ︸

e2

(7)

subject to, gµ(vj ,vk) = δjk︸ ︷︷ ︸
e3

, ∀j, k

where,

x̂i = Expµ

(∑

j

c(xi,vj) vj

)
, ∀i (8)

Here,

c(xi,vj) =





sgn(gµ(vj , ṽi)) d(µ,Πij), S
m(Eq.5)

sgn(gµ(vj , ṽi)) d(µ,Πij), H
m(Eq.6)

gµ(ṽi,vj), other M(Eq.4)

Where, ṽi = Logµxi and Πij = Πspan{vj}(xi). The tangent

space, TxM is isomorphic to R
m for all x ∈ M. Let,

ιx : TxM
∼=−→
jx

Vm

∼=−→
ι

R
m be an isomorphism, where Vm

is an m-dimensional vector space. So, ιx = jx ◦ ι. Note

that, below, we will show that jx is an isometry (with a pull

back inner product on Vm) but i is not, so in general, ιx is

not an isometry. We define a pull back inner product, g̃ on

Vm as follows:

g̃(ũ, ṽ) :=

((
ι−1
x

)∗
g

)
(ũ, ṽ) = g

(
ι−1
x (ũ), ι−1

x (ṽ)

)
(9)

where, ũ, ṽ ∈ Vm. As ιx is an isomorphism, hence Ker = ∅,

so, g̃ is positive definite, which makes g̃ a valid inner prod-

uct on Vm. On, SPD(m), jx(v) = vec(v), where “vec”
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is the standard vectorization operation on matrices, and

ιx(v) = upper(v), where upper is the vectorized upper-

diagonal (including the diagonal elements) of v. On S
m,

jx is the identity map, e.g., let m = 2, x = (0, 0, 1)t,
v = (a, b, 0)t, a, b ∈ R, then ιx(v) = (a, b)t. In Algorithm

1, we give an algorithm to get ιx for M where x ∈ M.

Algorithm 1: The algorithm to find ιx

Input: x ∈M
Output: ιx

1 Identify TxM with Vm by jx, m is the dimension ofM;

2 Choose m orthogonal basis, {ui}
m
i=1 of Vm using Grahm-Schmidt

orthogonalization;

3 Define a linear map ιµ which maps ui to ei, for all i, where ei is

the canonical basis of Rm;

4 As we define ιµ to be linear, we can get ιx(v) for the given

v ∈ TxM ;

In the objective function in Eq. 7, the error term e1 rep-

resents the average reconstruction error and the term e2 in-

duces sparsity on ιµ(vj). The constraint e3 ensures that

the principal vectors {vj} are orthonormal and mutually or-

thogonal (the δ is the Kronecker-delta function). λ1 is the

regularizing constant and we used a cross validation scheme

to select the appropriate values for these parameters. Fur-

ther details on this is presented in the experimental section.

We used an augmented Lagrangian formulation to solve the

objective function. The unconstrained objective using the

augmented Lagrangian is given below where λjk, λ2 are

the Lagrange multipliers.

argmin
{vj}

r
j=1

⊂TµM

E =
1

N

N∑

i=1

d2(xi, x̂i) + λ1

r∑

j=1

‖ιµ(vj)‖1

+
λ2

2

∑

jk

(gµ(vj ,vk)− δjk)
2

−
∑

jk

λjk (gµ(vj ,vk)− δjk) (10)

Now, we optimize this unconstrained objective function

using a gradient descent technique. The detailed algorithm

is given in Algorithm 2. To illustrate the computation of

the gradient of the objective function, E, with respect to

{vj}, we now present this for two commonly encountered

manifolds in Computer Vision namely, Sm and SPD(m)
(i.e., manifold of m-dimensional symmetric positive

definite matrices).

Computation of the gradient on S
m

∂e1
∂ιµ(vj)

=
1

N

N∑

i=1

(
Logxi

x̂i

)t

c(xi,vj)Im+vj
∂c(xi,vj)

∂vj

(11)

where,

∂c(xi,vj)

∂ιµ(vj)
= sgn(vt

jLogµxi)
−µt

√
1− (µtΠij)2

∂Πij

∂vj
(12)

and

Πij

∂ιµ(vj)
=

µtxi

((µ+ vj)txi)2

{
cos

(
arctan(

v
t
jxi

µtxi
)

)
vj−

sin

(
arctan(

v
t
jxi

µtxi
)

)
µ

}
xt
i + sin

(
arctan(

v
t
jxi

µtxi
)

)
Im

(13)

∂e2
∂ιµ(vj)

= sgn(vtj) (14)

We can obtain an analogous formula on H
m for ∂e1

∂ιµ(vj)

that can be derived using Eqs. [6, 11]. The formula for ∂e2
∂vj

will be same as in Eq. 14.

Computation of the gradient on SPD(m)

On SPD(m), we use the GL(m) invariant metric, where

GL(m) denotes the m-dimensional general linear group.

Let, x ∈ SPD(m), u,v ∈ TxSPD(m). Then, the

GL(m) invariant metric is defined by, gx(u,v) = ghxht(
huht, hvht), ∀h ∈ GL(m) [8]. On SPD(m), the GL(m)
invariant inner product takes the form

gx(u,v) = tr(x−1/2
ux−1

vx−1/2). (15)

Note that, TxSPD(m) can be identified with the space of

symmetric matrices. Hence, in Eq. 7, {vj} are symmetric

matrices when the underlying manifold is SPD(m). Now,

we are ready to give the expression for the gradients:

∂e1
∂ιµ(vj)

=
2

N

N∑

i=1

ιµ

(
µ−1/2Logxi

x̂iµ
−1/2

)t (
µ−1/2

)⊗2

(
c(xi,vj)(Im ⊗ Im) +

∂c(xi,vj)

∂ιµ(vj)

)
(16)

where,

∂c(xi,vj)

∂ιµ(vj)
= ιµ

(
µ−1/2Logµxiµ

−1/2
)t (

µ−1/2
)⊗2

(17)

where,
(
µ−1/2

)⊗2
=
(
µ−1/2 ⊗ µ−1/2

)
.

∂e2
∂ιµ(vj)

= sgn(ιµ(vj)
t) (18)
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Algorithm 2: The SEPGA algorithm

Input: X = {xi}
N
i=1 ⊂M, λ1, λ2, η > 0, ǫ > 0

Output: {vj}
r
j=1 ⊂ TµM

1 Compute the FM, µ of X;

2 Find an isomorphism, ιµ, using Algorithm 1 ;

3 Randomly initialize {vj}
r
j=1 to be unit vectors on TµM;

4 For constant curvature manifold, Sm(Hm), use Eq. 5(6) to

compute c(xi,vj) and for a general smooth manifold, use Eq. 4;

5 x̂i ← Expµ

(

∑

j c(xi,vj) vj

)

, ∀i using Eq. 8;

6 Compute the objective function, E, using Eq. 7;

7 Eold ← E, and flag← 1;

8 Initialize λjk ;

9 while flag = 1 do

10 Compute ∂E
∂ιµ(vj)

, ∀j = 1, · · · , r. ;

11 vnew
j ← ι−1

µ

(

ιµ(vj)− η ∂E
∂ιµ(vj)

)

, ∀j = 1, · · · , r;

12 vnew
j ← ι−1

µ (ιµ(vj)) , ∀j = 1, · · · , r;

13 Recompute x̂i ← Expµ

(

∑

j c(xi,v
new
j ) vnew

j

)

, ∀i using

Eq. 8;

14 Recompute the objective function, E, using Eq. 7;

15 if ‖ ∂E
∂ιµ(vnew

j
)
‖ < ǫ, ∀j = 1, · · · , r then

16 flag← 0;

17 end

18 if E < Eold then

19 λjk ← λjk − λ2 (gµ(vnew
j ,vnew

k
)− δjk), ∀j, k;

20 vj ← vnew
j , ∀j, and Eold ← E;

21 else

22 η ← 0.9 η;

23 end

24 end

3. Experimental Results

In this section, we present experimental results demon-

strating the comparative performance of SEPGA with PGA

[9], sPGA and ePGA [4]. For sPGA, we used the publicly

available code for the algorithm in [23] to run sPCA in the

tangent space. For ePGA, we used the code available online

for the algorithm in [3]. For exact PGA on general mani-

folds, we used the code available online provided by authors

of [24]. This implementation however is not scalable to data

of moderate size and dimensions. Further, it requires the

computation of the Hessian of the objective, which is com-

putationally expensive. Hence, for the real data applications

that we present in this section, we were unable to report the

results for the exact PGA algorithm. Though one can use

a Sparse matrix version of the exact PGA code, along with

efficient parallelization to make the exact PGA algorithm

suitable for moderately large data, we would like to point

out that since our algorithm does not need such modifica-

tions, it clearly gives SEPGA an additional advantage over

exact PGA from a computational efficiency perspective.

Performance comparisons between SEPGA, PGA, sPGA

and ePGA were achieved using the average reconstruction

error measure i.e., the term, e1 in Eq. 7. We also report

the expressed variance (denoted by evar) defined as : the

ratio of the variance captured by the PGs to the data vari-

ance. Hence, the value is in the interval [0, 1], with 1 being

the best possible evar value. We also measured the average

sparsity (denoted by ς) which is defined as the average per-

centage of the components in the isomorphically mapped

principal vectors ≤ 1E − 4. Note that, for sPGA, ePGA

and PGA we took ιµ to be identity. For ePGA and PGA,

the average sparsity over all experiments is < 5%, hence

we do not report the average sparsity for these two meth-

ods. We report the average reconstruction error, e1, value

as obtained by sPGA while approximately maintaining the

same sparsity (percentage) as given by SEPGA. The com-

putation time required by SEPGA is comparable to the other

PGA methods. We have used a cross validation scheme to

compute λ1 and λ2 values in SEPGA. All the experiments

reported here were performed on a desktop with a single

3.33 GHz Intel-i7 CPU with 24 GB RAM.

3.1. Comparative performance of SEPGA on OA
SIS data [19]

In this section, we present the comparative results on

publicly available OASIS data [19]. This dataset contains

T1-MR brain scans of subjects with ages ranging between

18 to 96 including individuals with early Alzheimer’s Dis-

ease. We randomly picked 4 brain scans from within each

decade, totaling 36 brain images. From each brain scan,

we segmented the corpus callosum (CC) region. Then, we

constructed two data representations from each of the CC

shapes as follows. (1) We take the boundary of the CC

shape and map it to S
24575 using the Schrödinger distance

transform (SDT) feature [7]. (2) We selected a set of 250
landmark points on each CC shape and map these points on

to the Kendall shape space [16] of dimension 250 which is

a complex projective space isomorphic to S
499. The perfor-

mance of all the four methods are shown in Table 1.

From the results in Table 1, we can see that SEPGA gives

very good sparsity without sacrificing the reconstruction er-

ror, e1, and the expressed variance. sPGA performs very

poorly in terms of expressed variance. Although ePGA

maximizes the expressed variance, SEPGA gives a better

competitive expressed variance along sparse principal vec-

tors. We now present some reconstruction results in Fig-

ure 3, which depicts the point cloud representation of the

CC shape boundary, using the principal geodesics given

by SEPGA. The first row contains the original CC shapes

of varying ages (age of the subjects is shown in the last

row). The second and third row contain the reconstructed

shapes using 30 and 50 (sparse) principal components, re-

spectively. It is evident from the figure that using only 50
principal components (the original data dimension in the

Kendall shape space is 250), SEPGA gives a nearly perfect

reconstruction (e1 ≈ 1E − 16).
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r
SEPGA sPGA PGA ePGA

e1 ς(%) evar e1 ς(%) evar e1 evar e1 evar

1 0.03 (0.97) 55.23 (58.00) 0.36 (0.29) 0.05 (1.14) 20.23 (3.80) 0.00 (0.00) 0.04 (1.10) 0.23 (0.02) 0.03 (0.97) 0.36 (0.30)

5 0.01 (0.65) 69.38 (62.68) 0.69 (0.78) 0.04 (1.14) 20.19 (23.92) 0.00 (0.00) 0.02 (0.91) 0.61 (0.15) 0.01 (0.65) 0.76 (0.87)

10 0.00 (0.52) 55.98 (63.95) 0.93 (0.86) 0.044 (1.10) 21.25 (18.26) 0.00 (0.02) 0.01 (0.69) 0.70 (0.31) 0.00 (0.52) 0.99 (0.90)

Table 1. Comparison results on OASIS data using SDT (Kendall shape space) features

Figure 3. Reconstruction of OASIS data using sparse PGs (the fig-

ures depict CC boundary as a point cloud)

r
SEPGA sPGA PGA ePGA

e1 ς(%) evar e1 ς(%) evar e1 evar e1 evar

1 0.09 59.34 0.19 0.11 43.34 0.00 0.10 0.17 0.09 0.19

5 0.06 63.84 0.51 0.11 50.12 0.00 0.06 0.47 0.06 0.51

10 0.04 65.20 0.68 0.11 48.92 0.00 0.05 0.64 0.04 0.70

Table 2. Comparison results on Gator Bait data using SDT features

(on S
29999)

3.2. Comparative performance of SEPGA on Gator
Bait data [20]

In this section, we performed principal geodesic analysis

on Gator Bait data [20]. This dataset is a 2D point set data

of 100 fish images with varying subspecies. From each im-

age, we extract the SDT feature [7] to map each data set on

to S
29999. The comparative performance of SEPGA with

sPGA, PGA and ePGA is reported in Table 2.

From the results reported in Table 2, we can see that

SEPGA and ePGA perform equally well in terms of e1 and

evar respectively. In terms of sparsity, though sPGA gives

sparse principal vectors, it fails to capture the principal di-

rection along which the data variance is maximized, as is

evident from the evar value.

3.3. Comparative performance of SEPGA on Yale
face data [17]

In this section, we used data from the YaleExtend-

edB [17] face recognition dataset to perform the principal

geodesic analysis. This data contains 16128 face images

taken from 28 human subjects with varying pose and il-

lumination conditions. This data is a suited for classifica-

tion purposes. We performed PGA for each human subject

after extracting features from his/ her face images. Now,

we measure the average reconstruction error within a class.

A small average within class reconstruction error implies a

good classification using principal geodesics as features, as

shown in [5]. For person i, construct the SIFT descriptor

matrix, F ij [18] with his/ her jth face image. We compute

the covariance matrix Cij with the first d principal vectors

of F ij . Cij is a d×d matrix which is symmetric and positive

semidefinite. We add ǫId to this matrix with small ǫ > 0 to

make each Cij positive definite. Now, from this data, we

choose n = 125, d = 25 to map each face image on to the

SPD(25) manifold. Here, we performed principal geodesic

analysis for each subject and reported the average perfor-

mance.

r
SEPGA sPGA PGA

e1 ς(%) evar e1 ς(%) evar e1 evar

1 0.00 79.34 0.69 0.00 96.16 0.00 0.00 0.53

5 0.00 81.54 0.78 0.00 96.54 0.00 0.00 0.65

10 0.00 80.91 0.98 0.00 97.57 0.00 0.00 0.73

Table 3. Comparison results on YaleExtendedB data (on SPD(25))

In this experiment, we could not compare with ePGA

since SPD(m) is not a constant curvature manifold. From

the results reported in Table 3, we can see that the average

reconstruction error using only the first principal compo-

nent is approximately zero which suggests that one prin-

cipal component is sufficient to almost exactly reconstruct

the images of a person. This is true for SEPGA, sPGA and

PGA. But, SEPGA achieves this almost perfect reconstruc-

tion using only 21% of the original dimension which is 325
in this case! This indicates a significant amount of savings

in storage which is a consequence of the sparsity in our

SEPGA algorithm making it more attractive for use than

the competing PGA methods. This highly sparse represen-

tation clearly gives evidence of a very “tight cluster” struc-

ture, which yields good classification accuracy, as was also

reported in [5]. sPGA gives better sparse principal vectors,

but it performs poorly in terms of expressed variance.

3.4. Comparative performance of SEPGA on KTH
action recognition data [22]

In this section, we continue with our demonstration of

the benefits of SEPGA in comparison to sPGA and PGA

on the KTH action recognition data sets [22]. This dataset

contains 2200 action videos taken from 25 human subjects

performing 6 actions in 4 scenarios. Similar to subsection

3.3, we compute PGs for a fixed action and then report the

average error, sparsity and expressed variance. From each

video, we extract 25 frames and compute the HOG features

[6] from each frame. Here, for ith action and jth video of

this action sequence, we map the data on to the SPD(25)
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manifold. The results are reported in Table 4.

r
SEPGA sPGA PGA

e1 ς(%) evar e1 ς(%) evar e1 evar

1 0.00 27.38 0.76 0.35 16.00 0.00 0.34 0.63

5 0.00 71.59 0.89 0.42 60.16 0.00 0.34 0.65

10 0.00 70.15 0.98 0.53 70.32 0.00 0.30 0.73

Table 4. Comparison results on KTH action data (on SPD(25))

From the results, we can see that with just the first princi-

pal component, SEPGA yields perfect reconstruction while

maintaining an expressed variance of 0.76. Both PGA and

sPGA perform poorly in terms of the reconstruction error.

sPGA gives comparable sparsity but does not yield a good

evar. So, as before, these results also suggest the useful-

ness of SEPGA which yields high level of sparsity with-

out affecting either the reconstruction error or the expressed

variance.

3.5. Comparative performance of SEPGA on HCP
data [27]

In this section, we report performance results on the Hu-

man Connectome Project (HCP) data. Here all the subjects

in the cohort were scanned on a dedicated 3 Tesla (3T) scan-

ner. We analyzed the high-quality curated diffusion MR

imaging data (publicly available) obtained from over 840

healthy adults from the WU-Minn consortium [27]. We ob-

tained diffusion tensor images (DTI) from the dMRI data

by non-linear fitting of the tensors to the diffusion weighted

(b = 1000 s/mm2) images. These DTI images were spa-

tially normalized using DTI-TK [29] which is a non-linear

diffeomorphic registration and template estimation pipeline

that can directly operate on the diffusion tensors using a

log-Euclidean framework. Seventeen major white matter

pathways were obtained by registering the publicly avail-

able IIT white matter atlas [28] to the HCP template using

the ANTS software [2]. We analyzed data from the fornix

and cingulum bundles which form a region of interest (ROI)

of 228 voxels. From each voxel we extracted 3×3 SPD ma-

trices to obtain a product manifold of SPD(3) matrices of

dimension (228× 6 = 1368).

r
SEPGA sPGA PGA

e1 ς(%) evar e1 ς(%) evar e1 evar

1 2.92 28.96 0.52 4.68 10.53 0.29 4.68 0.29

3 1.43 59.23 0.82 2.90 34.12 0.51 2.88 0.52

5 0.28 74.37 0.95 1.01 49.08 0.72 1.02 0.77

Table 5. Comparison results on HCP data.
The results are reported in Table 5, which shows better

performance of SEPGA over it’s competitors.

3.6. Comparative performance of SEPGA and
sPGA on Synthetic Data

In section 1, we described a simple extension of sPCA to

Riemannian manifolds by doing sPCA on TµM. Though

this formulation is easier to solve, it has the same disadvan-

tage as PGA, i.e., on data with large variance the perfor-

mance is lacking. In this section, we compare the perfor-

mance of SEPGA with sPGA on synthetic data to explicitly

demonstrate this lacking behavior of sPGA.

r var.
SEPGA sPGA

e1 ς(%) evar e1 ς(%) evar

2 0.006 0.00 50.00 0.99 0.00 66.67 0.51

2 0.718 0.04 50.00 0.98 0.11 50.00 0.13

Table 6. Comparative performance on synthetic data (on S
2).

In Table 6, we report comparative results of SEPGA vs.

sPGA on two synthetic datasets on S
2. As we seek only

2 principal components on S
2, i.e., r = 2, the maximum

achievable sparsity is 50%, i.e., 2 out of 4 components are

nonzero (exactly 1) for SEPGA. For, sPGA, the maximum

achievable sparsity is 66.67% (4 out of 6 components are

0), since ιµ is the identity map. For data with small vari-

ance both SEPGA and sPGA achieve maximum sparsity,

while SEPGA gives almost perfect expressed variance. But

with a moderately large data variance, equal to 0.718, sPGA

yields a poor reconstruction error e1, and SEPGA achieves

much higher sparsity in comparison to sPGA. Note that,

here the value of ς is same for both sPGA and SEPGA, but

for SEPGA the maximum achievable sparsity is 50%, while

for sPGA it is 66.67%.

4. Conclusions

In this paper, we presented a novel algorithm, called

SEPGA, for performing sparse exact PGA using the projec-

tion error cost function optimization proposed in [25]. Spar-

sity in the context of SEPGA has the same advantages over

PGA as does the vector space version namely, SPCA over

PCA. More explicitly, SEPGA provides a sparse represen-

tation of the principal components computed. This sparsity

has the advantage that it provides the most “natural” basis in

the principal submanifold to represent the data. Moreover,

SEPGA overcomes the drawbacks of the linear approxima-

tion in PGA. Through an extensive set of experiments, we

demonstrated the performance of SEPGA in comparison to

PGA and ePGA. SEPGA achieves nearly same or better ac-

curacy as the competing methods but with a high level of

sparsity. We also proposed a sparse version of the PGA al-

gorithm, namely the sPGA, which performs comparably to

SEPGA for data with a small variance. However, for moder-

ate data variance, sPGA exhibits the same lacking behavior

as that of PGA.
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dans un espace distancié. Annales de l’institut Henri
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