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Abstract

We address the problem of epipolar geometry using the

motion of silhouettes. Such methods match epipolar lines

or frontier points across views, which are then used as

the set of putative correspondences. We introduce an ap-

proach that improves by two orders of magnitude the per-

formance over state-of-the-art methods, by significantly re-

ducing the number of outliers in the putative matching. We

model the frontier points’ correspondence problem as con-

strained flow optimization, requiring small differences be-

tween their coordinates over consecutive frames. Our ap-

proach is formulated as a Linear Integer Program and we

show that due to the nature of our problem, it can be solved

efficiently in an iterative manner. Our method was validated

on four standard datasets providing accurate calibrations

across very different viewpoints.

1. Introduction

Multi-camera systems are becoming increasingly more

popular for 3D reconstruction, marker-less motion cap-

ture, surveillance, and even for ”smart homes”. Tradition-

ally, epipolar geometry is computed by finding the corre-

sponding points between cameras. However, in such a set-

ting many camera pairs are from very different viewpoints

and consequently, not enough reliable feature points can be

matched automatically. In cases where the silhouettes of

the objects in the scene are available or are easily extracted,

it has been proposed to use their motion for calibration

[34]. These methods match tangent epipolar lines on the

convex hull of the silhouettes across views [33]. For each

frame, a similarity function for every possible matching of

the corresponding tangent epipolar lines is evaluated and

the pair with the highest similarity is selected as a putative

correspondence [7]. Recovering the corresponding tangent

epipolar lines induces matching between the projections of

special points, denoted as extremal frontier points, across

views where occlusions do not occur (see [19, 33, 12, 28]

for a detailed description). Hereafter, when referring to

frontier points, we will refer to the extremal 3D frontier

(a) (b)

Figure 1. (a) The set of possible frontier points are denoted by

green circles. It is difficult to distinguish between true and false

frontier points because often the candidates are at nearby positions

and share the same tangents to the convex hull. (b) The trajectory

of the true frontier points over 15 consecutive frames. We look for

frontier points whose positions vary slowly over time.

points or to the image points that represent their projections.

The epipolar geometry is evaluated by using RANSAC [16]

with the putative list of matching epipolar lines or frontier

points.

A key limitation of previous approaches is the high num-

ber of outliers in the recovered list of corresponding epipo-

lar lines or frontier points. This is mainly because two

nearby points on the convex hull might make only a minor

difference in their associated tangents. Here, we present

an approach that markedly reduces the number of outliers.

This leads to an improvement of two orders of magnitude in

the performance. Unlike previous approaches where the pu-

tative matching is carried out for each frame independently,

we require that the positions of frontier points in consecu-

tive frames will vary slowly. Fig. 1.a shows a set of possible

frontier points in the image denoted by full green circles.

Since nearby points share similar tangents, it is hard to re-

cover the true frontier points. Fig. 1.b shows the trajectories

of the true frontier points over 15 frames. By looking for

frontier points that vary slowly over time, we can accurately

recover their positions, up to sub-pixel accuracy.

We model the problem as a constrained flow optimiza-

tion problem. At each time instant we look for two corre-

sponding pairs of frontier points. This translates into find-

ing two paths in the graph under a set of constraints. The
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graph is formulated as an integer programming (IP) prob-

lem whose global maximum can be recovered with reason-

able complexity. However, since there is a large number of

variables and constraints, the solution to this problem might

be slow and not scalable for long sequences. We therefore

provide an efficient algorithm for obtaining an approximate

solution by iteratively applying the shortest path algorithm.

We show that for any practical camera setting, the global

optimum is recovered.

This paper therefore contributes by presenting: (a) a re-

formulation of the problem of finding frontier points across

views as a constrained graph optimization problem, (b) a

practical algorithm to recover its global maximum, and (c)

an accurate calibration method with superior performance

over state-of-the-art methods. We validated our approach

on several standard datasets and show that it is highly effec-

tive.

2. Related Work

The most common uses of silhouettes in multi-camera

systems are for shape-from-silhouettes [11, 17, 3] and

camera calibration [23, 33, 10, 32, 39]. In shape-from-

silhouettes, the goal is to recover the visual hull [27, 30]

of the object. In calibration, it is assumed that the motion of

the silhouette is fully observed across different views. Cor-

respondences are established between frontier points across

different views based on the epipolar tangency constraints

[12] and are then used to compute the epipolar geome-

try. Most methods require a specific configuration that can-

not be applied in a general setting, which is considered

here. These include calibrated cameras, static objects, or-

thographic projection models, or known (turntable) motion

[18, 20, 37, 29, 23]. Calibration can be carried out without

explicitly finding the corresponding tangent epipolar lines,

such as in [10, 38]. These methods require a good initial

guess to converge.

In this paper we consider calibration in the most gen-

eral setting where only the motion of silhouettes is avail-

able without further assumptions. Sinha and Pollefeys [33]

considered such a setting for calibration. They searched for

the epipoles by randomly sampling lines from the tangent

envelope of the silhouette. They used RANSAC for ex-

tracting the most plausible solution. Ben-Artzi et al.[7] pro-

posed a temporal binary descriptor, denoted as a motion-

barcode, for suggesting the corresponding epipolar lines

across views. They sampled the lines from the tangent en-

velope according to the similarity induced by their descrip-

tor. Importantly, they showed that accuracy and runtime

are markedly improved. In both methods there is a signifi-

cant number of outliers and the frontier points in the current

frame are matched without taking into account the previous

or the next corresponding points. Kasten et al.[26] used the

same descriptor for calibrating crowded scenes. However,

Figure 2. (a) Top row. Two corresponding images captured from

different views. The red lines are the epipolar lines. The green cir-

cles are the ground truth frontier points. (b) Bottom row. The fron-

tier points can only be derived from a small set of points. These

are points on the convex hull intersecting with the silhouette; they

are denoted by a circle and are termed critical points. The green

critical points are also the ground truth frontier points.

they considered noisy, low-resolution images and provided

limited accuracy.

We used the similarity proposed by the binary motion-

barcode descriptor [7] as one of the cues for our algorithm.

Similar motion-based binary descriptors have been pro-

posed and used by [15],[14]. Both methods assume a planar

structure of the scene. Ben-Artzi et al. [8] used a similar de-

scriptor for matching events across different views, but their

method does not provide accurate localization. Pundik and

Moses [31] introduced a similar motion-based descriptor,

line signal, and used it for video synchronization. It de-

pends on the color and was used under the assumption of

known calibration.

3. Our Model

We assume that we have two sequences of binary silhou-

ette images, each captured from a different view. Consider

the image captured from the first view as the left image and

the image captured from the other view as the right image.

In each of the images, the convex hull of the silhouette is

extracted and the subset of points on the intersections of the

convex hull and the silhouettes are identified. These points

are termed critical points. The true correspondence of the

extremal frontier points across views can only be found be-

tween critical points [13, 33], such as is illustrated in Fig. 2.

In addition, we assume that we are given a similarity mea-

sure for the correspondence of critical points across views.

We model the matching problem as a constrained flow in

a graph. Our goal is to recover the two paths that maximize
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Figure 3. Our problem is represented as a directed acyclic graph

(DAG). Every vertex in graph v
k
t is associated with a binary vari-

able w
t
k and every edge in graph e

t−1

m,k is associated with a binary

variable f
t−1

m,k . The vertices represent all possible pairs of matched

frontier points across views.

the flow. Each path is a sequence of corresponding pairs of

frontier points across views, at each time instant.

3.1. Formulation

We introduce a directed acyclic graph (DAG) G =
(V,E). Let xt

i denote a critical point in the left image and

x′t
j denote a critical point in the right image, both at time in-

stant t. Each vertex vtk in the graph represents a pair of two

critical points (xt
i, x

′t
j ). Each edge between vertices repre-

sents an admissible transition between a true match at time

t and a true match at time t+ 1. In our case we consider all

possible transitions between the time instants as admissible

transitions. The number of vertices at each time instant is

M = K1 × K2 vertices, where K1 and K2 are the total

number of critical points in the left and right images, re-

spectively. Let N(k) ⊂ {1...K} be the neighborhood of

vertex k. There is an edge eti,j from vti to vt+1
j if and only if

j ∈ N(i). Every vertex is associated with a binary variable

wt
i ∈ {0, 1}, indicating whether the current pair of critical

points are a true match of frontier points. Each edge eti,j
is associated with a binary variable f t

i,j , indicating whether

both vti and vt+1
j are a true match. Such a graph is illustrated

in Fig .3.

We now define the set of constraints that will ensure that

the set of flows accurately represent our matching problem.

First, for each vertex in the graph, the flow conservation

implies that the sum of flows coming into a vertex at time

t − 1 equals the sum of flows outgoing from the vertex at

time t:

∀t, j
∑

i∈N(j)

f t−1
i,j =

∑

k∈N(j)

f t
j,k = wt

j . (1)

We refer to N(x) as either edges outgoing from vertex x

or incoming into vertex x, depending on the meaning of the

index x.

Second, in our formulation, each vertex is either a true

or false match between frontier points. This implies that at

most, one unit of flow leaves the vertex:

∀t, i
∑

j∈N(i)

f t
i,j ≤ 1. (2)

Third, the flows must be positive:

∀t, i, jf t
i,j ≥ 0. (3)

Fourth, we are looking for two paths in the graph. To

enforce this, we introduce the source vertex vsrc, which is

linked to all vertices of the first time instant and the target

vertex vtrg , which is linked to all vertices of the last time

instant. The flow is from the source vertex to the target

vertex. The source vertex generates exactly two units of

flows and the target vertex absorbs exactly two units of flow:

∑

j∈N(src)

fsrc,j = 2,
∑

j∈N(trg)

fj,trg = 2. (4)

For brevity we do not explicitly write the flow conserva-

tion constraints for these vertices.

Fifth and last, the minimal distance between the frontier

points can often be bounded. Consequently, we look for two

paths in the graph that are C pixels far from each other. This

constant can be adjusted according to the specific setting,

although in practice one fixed constant is sufficient for all

camera pairs over all datasets, see Section 4.2.4. For a given

vertex vti = (x, x′), let D(i) ⊂ {1...M} be the nearby

vertices at the same time instant:

D(i) =
{

j|vtj = (y, y′),min{d(x, y), d(x′, y′)} < C
}

,

where d is the Euclidean distance and C is the constant rep-

resenting the required distance between the frontier points.

The last constraint is therefore:

∀t, k
∑

j∈N(k)

f t
k,j +

∑

m∈D(k)

∑

n∈N(m)

f t
m,n ≤ 1. (5)

3.2. Linear Integer Program

We assume that we have an estimator for the probability

that a given pair of critical points across views is the corre-

sponding frontier points:

pti = P (wt
i = 1). (6)

In addition, let us further assume that we can also esti-

mate the conditional probability of a true match in a vertex

given a true match in a predecessor vertex:

pt−1
i,j = P (wt

j = 1|wt−1
i = 1). (7)
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Our objective is to obtain a set of binary assignments w

that can best explain our estimations:

w
∗ = argmax

w∈S

P (w), (8)

where S is the space of feasible solutions satisfying con-

straints (1)-(5). Assuming that our model obeys the Markov

property, objective (8) can be written as:

w
∗ = argmax

w∈S

∑

t,i

logP (wt
i) +

∑

t,j,i∈N(j)

logP (wt
j |w

t−1
i ).

(9)

Because wt
i is a binary variable, we can write

logP (wt
i) = wt

i logP (wt
i = 1) + (1− wt

i)logP (wt
i = 0)

= wt
i log(

pti
1− pti

) + J(pti), (10)

where J(pti) is a term that does not depend on wt
i . Similarly,

logP (wt
j |w

t−1
i ) ∝ f t−1

i,j log(
pt−1
i,j

1− pt−1
i,j

). (11)

Plugging Eqs. (10)-(11) into Eq. (9), ignoring the terms

that do not depend on w, and expressing wi
t in terms of

flows, we obtain the following Integer Program:

maximize
f

∑

t,i

log(
pti

1− pti
)

∑

j∈N(i)

f t
i,j+ (12)

∑

t,j,i∈N(j)

log(
pt−1
i,j

1− pt−1
i,j

)f t−1
i,j

subject to ∀t, i, j f t
i,j ≥ 0, f t

i,j ∈ {0, 1}

∀t, i
∑

j∈N(i)

f t
i,j ≤ 1,

∀t, j
∑

i∈N(j)

f t−1
i,j −

∑

k∈N(j)

f t
j,k = 0

∑

j∈N(src)

fsrc,j = 2 ,
∑

j∈N(trg)

fj,trg = 2

∀t, k
∑

j∈N(k)

f t
k,j +

∑

m∈D(k)

∑

n∈N(m)

f t
m,n ≤ 1

3.3. Optimization

Using standard LP solvers, a solution can be found

for our Integer Program (12). Because solving IP is NP-

complete, finding such an exact solution is not feasible for

real-life applications. One can relax the problem into a con-

tinuous Linear Program and obtain a solution at a polyno-

mial time, but the constraints matrix of (12) is not Totally

Unimodular [24] and it is not likely to converge to the origi-

nal optimal solution. However, we show that in our case, the

optimal integer solution can always be computed in a much

better way than the brute-force approach. This is stated in

the following theorem:

Theorem 1 The optimal integer solution of (12) can be re-

covered in O(TK4), where T is the number of time instants

and K is the maximum number of vertices at each time in-

stant.

The proof is given in the supplementary material. How-

ever, such an approach can only be applied for moderately

sized problems and is not scalable. Therefore, in the fol-

lowing we show how to compute the optimal solution in an

efficient way that can also be applied to large size problems.

We show that except for degenerated cases, the solution is

the optimal one. It has been applied successfully for all

camera pairs over all the datasets.

Similarly to [36, 9], we iteratively use the shortest path

algorithm to solve the problem. This approach is also dis-

cussed in [25].

We construct a directed acyclic graph (DAG) G′ =
(V ′, E′) with the same structure as the graph G. An edge

e′ti,j is assigned the weight:

u(e′ti,j) = −log(
pt+1
j

1− pt+1
j

)− log(
pti,j

1− pti,j
). (13)

The weights for the edges outgoing from the source

vertex are assigned only the first term from (13), and the

weights for the edges incoming to the target vertex are set

to zero. The optimal solution to our Integer Program f
∗ can

be written on the graph G′ as:

f
∗ = argmin

f∈S

∑

t,i,j∈N(i)

u(e′ti,j)f
t
i,j ,

where S is the set of feasible solutions of (12), satisfying

the constraints given in Eqs. (1)-(5). To recover the optimal

solution, we use the following:

• Find the shortest path s1 on G′.

• For each vertex in the shortest path v′ti ∈ s1, set the

outgoing edges of the vertex and the nearby vertices

{v′|v′ ∈ D(i)} to ∞.

• Find the new shortest path s2 on the modified graph.

• Return f̂ = {s1 ∪ s2}.

The above procedure is much more efficient than recov-

ering the optimal integer solution and it can be implemented

easily. In our case, we have a trellis graph and the shortest

path is computed by dynamic programming [6]. Assum-

ing there are at most K vertices at each time instant and
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Boxer Girl Street Kung-Fu

# Pairs 6 28 15 300

# Frames 778 200 250 200

Type Real Real Real Graphics

Table 1. Dataset properties

(a) (b)

(c) (d)

Figure 4. The datasets. (a) Boxer. (b) Girl. (c) Street (Dancer). (d)

Kung-Fu.

T time instants, the solution is at a cost of O(TK2), in-

stead of O(TK4) for the optimal integer solution. The key

drawback is that it does not always guarantee that the global

maximum can be recovered. However, as stated in the fol-

lowing theorem, unless there is a degenerate configuration,

the solution will always be converged to the global one.

Theorem 2 Let f∗ = {s∗1 ∪ s∗2} be the optimal two-path

solution for the Integer Program (12) and let C be the con-

stant selected for constraint (5). Then, f∗ 6= f̂ if and only

if (a) s∗1 6= s1 and s∗2 6= s2 and (b) ∃t, i, j s.t. vti ∈ s∗1, v
t
j ∈

s∗2 and d(vti , v
t
j) < 2C.

The proof for the above theorem is given in the supple-

mentary material. The outcome is that the optimal solution

will not be recovered only if the two pairs of frontier points

at the same time instant will be less than 2C pixels apart. In

practice, one fixed constant is sufficient for all the camera

pairs over all datasets (see Section 4.2.4).

4. Experiments

We compared our method with the state-of-the-art ap-

proaches of Ben-Artzi et al.[7] and Sinha et al.[33]. For

accurate comparisons, we followed the exact same proce-

dures as in Ben-Artzi et al.[7]. The fundamental matrix F

was computed by RANSAC-based sampling, based on the

putative points correspondences. It is optimized using the

same non-linear Levenberg-Marquardt (LM) optimization

procedure.

4.1. Datasets

We used four datasets. The datasets are Boxer [5], Girl

[1], Street (Dancer) [35], and Kung-Fu [2]. Table 1 presents

the properties of each dataset and Fig. 4 shows sample im-

ages. All datasets used are publicly available, along with

ground truth calibrations.

4.2. Implementation Details

We implemented both approaches in MATLAB using

standard libraries on a computer with i7 quad-core CPU and

8GB memory. The Linear Integer Program was formulated

using CVX [21] and solved with MOSEK solver [4]. We

found the shortest path in our trellis by dynamic program-

ming [6] and in all experiments, we report the results of the

fast iterative algorithm.

As our input, we used two sources of information. The

first is the coordinates of the critical points in each image,

computed by the intersection of the convex hull of each sil-

houette. The second is a similarity measure of the corre-

spondence between two critical points across views. This

was used to produce pti, p
t
i,j of Eqs. (6)-(7), which will be

described next.

4.2.1 The Conditional Probability Estimator

We constructed pti,j , based on the distance between the two

pairs. Let vti = (x, x′) be the pair of critical points with

coordinate x in one image and x′ in the other image, at time

instant t. Let vt+1
j = (y, y′) be the pair of critical points at

time instant t + 1. The conditional probability estimator is

according to the assumption that the Euclidean distance be-

tween the coordinates is a random variable distributed nor-

mally with zero mean and unit variance:

d([x, x′], [y, y′]) ∼ N (0, 1),

where N (·) is the normal distribution and [·, ·] denotes con-

catenations of vectors.

4.2.2 The Similarity Estimator

Assume that we have access to a similarity measure

sim(l, l′), such that it gives us an estimate of how likely

these two lines l, l′ are corresponding epipolar lines. As-

sume that vtk represents the critical pair (x, x′). For vtk
to represent a true correspondence between frontier points

across views, the corresponding epipolar lines must be inci-

dent to these points. Since we do not know the exact tangent

line, for each critical point there is a set of possible tangent

lines. This is the set of lines L = {li}
K
i=1 from the tangent

envelope of the silhouette at time instant t, which are inci-

dent to the critical point x. Similarly, consider L′ for x′. We

define the similarity estimator as:

pti ∝ max({sim(l, l′)|l ∈ L, l′ ∈ L′}).
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(a) (b)

Figure 5. The Motion Barcode descriptor used for the similarity of

epipolar lines. (a) The image of the boxer and a selected (arbitrary)

line. Over time, at each instant the intersection of the line with

the silhouette is tested and recorded as zero or one, accordingly.

The recorded series of zero/one is illustrated at the bottom of the

image, where black is one and white is zero. (b) Three different

silhouettes at different time instants. In the first and the last time

instants the motion barcode is recorded as one and for the second

time instant it is recorded as zero; thus it is [1, 0, 1].

4.2.3 Motion-Based Similarity of Epipolar Lines

Here we briefly describe the similarity measure for two lines

to represent the corresponding epipolar lines. It is the input

to our similarity estimator. It was used in [7, 26, 8], which

also provides a detailed description.

The similarity measure is based on a descriptor denoted

as motion barcode. For a given image line, a motion bar-

code is constructed as follows. For each image in the se-

quence, the intersection of the line with the silhouette is

tested. The value of the motion barcode at that time instant

is set to either zero or one, accordingly. Thus, it is a binary

sequence of the same length as the number of images in the

sequence. It has been shown that if two lines are indeed

corresponding epipolar lines, their motion barcodes should

be very similar [7]. The similarity between the motion bar-

codes of two lines is the correlation between the binary se-

quences. The motion barcode is illustrated in Fig. 5.

4.2.4 The Graph

We set the required minimal distance between the frontier

points C for D(·) to 15 pixels, in all the experiments across

all datasets and camera pairs, without fine-tuning it for each

camera pair individually. The required distance depends on

the specific setting and can in principle be adjusted for each

specific case accordingly. We verified that the same sin-

gle constant is valid for all valid frontier points over all the

frames in the datasets.

Our method results in two paths in the graph. Each path

Figure 6. True correspondences of non-frontier points. On rare

occasions, less than 1%, our method also matches non-frontier

points. Each row is two views from the same time instant, ordered

by time from the top downward. The red lines are the epipolar

lines. The first and last rows from the top show matched frontier

points, denoted in green. The middle row is the time instant with

non-frontier points that are matched, denoted in yellow. These are

true corresponding critical points. See text for more details.

consists of a set of vertices representing a match between

frontier points across views. The flow conservation con-

straints required selecting vertices at each frame, even if the

similarity estimator and the conditional probability estima-

tor output have very low probabilities. Similarly to [7], we

used a threshold of 0.95 on the motion barcodes similar-

ity measure to remove unreliable matches whose associated

similarity is lower than this threshold.

In addition to recovering frontier points, on rare occa-

sions our method also matches non-frontier points. Fig. 6

shows a time instant for which non-frontier points are

matched. It presents samples from eight consecutive

frames, ordered by time from the top downward; each row

shows corresponding views for the same time instant. The

red lines denote the corresponding epipolar lines. The actor

raises his hands and then lowers them. At the time instances

represented by the first and last rows from the top, the true

frontier point correspondences are recovered, denoted by

green circles. At the time instant represented by the sec-

ond row from the top, the matched points denoted by yellow

circles are indeed true corresponding points but they are not

frontier points. These cases are less than 1% of the matches

and occur when a) the similarity estimator outputs for these

critical points which are non-frontier points very high prob-

ability to be a true correspondence and b) the corresponding

true frontier points are matched in nearby positions, imme-

diately before and after this specific time instant. Due to the

regularization, the non-frontier points are preferred over the

frontier points.

The smoothness constraint on the coordinates of the

frontier point across frames may not always hold, mainly
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in cases where an abrupt motion is being carried. Consider-

ing such a motion as a distance of more than 30 pixels be-

tween consecutive corresponding frontier points, it is then

occurs in approximately 17% of the cases. In such cases the

performance of our approach depends on the ability of the

motion-barcode feature to clearly distinguish between true

and false correspondences.

4.3. Evaluation

4.3.1 Metrics

Quality of Fundamental Matrix. A standard metric for

assessing the quality of the fundamental matrix is the sym-

metric epipolar error [22] defined as:

Q(F ) =
1

N

∑

i

d(x′

i, Fxi)
2 + d(xi, F

Tx′

i)
2,

where F is the evaluated fundamental matrix and

{(xi, x
′

i)}
N
i=1 are the corresponding points across views.

Efficiency. The efficiency measure is the expected number

of RANSAC iterations needed to achieve a given or a better

quality of a fundamental matrix (a lower error).

4.3.2 Methodology

Efficiency Comparison. For the generation of the ef-

ficiency metric, we followed the protocol by [7]. They

selected the best error every 1000 iterations and optimized

it using non-linear Levenberg-Marquardt (LM) optimiza-

tion procedure. For example, in the Girl dataset there are 28
camera pairs and therefore, our sample size is 2800 errors.

We then calculated the cumulative distribution function

(CDF) of the error and used it in the evaluation as in the

baselines.

Inliers’ Probabilities. The efficiency metric used by [7]

is based on (a) the probability of having an inlier, (b) the

selection of the best sample using the ground truth points,

and (c) the non-linear optimization technique. Thus, it

might not directly reflect the quality of the putative corre-

spondences using the tested approach. We therefore present

the probability of having an inlier for various thresholds

using our approach, which can be used for future reference.

It is calculated as follows. We measured the symmetric

epipolar distance for each recovered corresponding pair of

points using our approach with respect to the ground truth

fundamental matrices. Using this distance, the fraction

of inliers can be evaluated for each dataset and required

accuracy.

Overhead. Our method requires an additional step of

finding the two paths on the graph. The runtime cost is

Epipolar Distance 1 0.8 0.5 0.4 0.3 0.2

Boxer
Sinha 2.9M 2.9M - - - -

Ben-Artzi 5K 12K 111K 996K - -

Ours 1230 1354 13K 300K 600K -

Girl Sinha 149K 388K 13M - - -

Ben-Artzi 4K 9K 129K 918K 13.7M -

Ours 828 867 1195 4562 30283 560K

Street Sinha 159K 340K 1.8M 7.4M - -

Ben-Artzi 7K 20K 255K 616K 1.2M -

Ours 928 959 1279 2142 6245 62.5K

Kung-Fu
Sinha 65K 134K 822K 1.9M 8.6M -

Ben-Artzi 2K 4K 23K 71K 302K -

Ours 711 720 814 998 2058 13.4K

Table 2. The expected number of RANSAC iterations required to

reach a given accuracy of the fundamental matrix, using our ap-

proach and the baselines. In each dataset, the number of iterations

is averaged over all cameras pairs. Accuracy is measured using

the symmetric epipolar distance with respect to the ground-truth

points. The best hypothesis is selected every 1000 RANSAC it-

erations and is optimized using non-linear Levenberg-Marquardt

(LM) method. Empty cells indicate that the required accuracy was

not attained.

Figure 7. Ratio of the average running time between our method

and the baselines. The x-axis is the datasets and the y-axis is the

log2 running time ratio. White cells represent Sinha’s method and

black cells represent Ben-Artzi’s method. Time is averaged over

all cameras pairs and over all accuracy levels presented in Table 2.

The runtime was measured on Intel Xeon Server E5-2650 2.3GH,

implemented in MATLAB.

equivalent to 300 − 1200 RANSAC iterations, depending

on the length of the sequence and the number of vertices. It

was added to the comparisons.

4.4. Results

Table 2 presents the expected number of RANSAC iter-

ations per accuracy using our method and the baselines.

Following [7], the best hypothesis is selected every 1000

RANSAC iterations and is optimized using the non-linear

(LM) method. The accuracy is the symmetric epipolar dis-

tance with respect to ground-truth points. A very high ac-

curacy can be reached very quickly. For example, reaching

an accuracy of 0.3 for the Street dataset requires on average
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Epipolar Distance 1 0.8 0.5 0.4 0.3 0.2

Boxer 0.37 0.30 0.19 0.15 0.11 0.07

Girl 0.46 0.38 0.24 0.19 0.15 0.11

Street 0.66 0.53 0.35 0.28 0.21 0.14

Kung-Fu 0.65 0.56 0.39 0.32 0.25 0.17

Table 3. The inliers probabilities for each required accuracy and

for each dataset, averaged over all camera pairs in the dataset. It

was measured by determining the symmetric epipolar distance of

our recovered points with respect to the ground truth fundamental

matrices.

Epipolar Distance 1 0.8 0.5 0.4 0.3 0.2

Mean Inliers prob. 0.53 0.44 0.29 0.23 0.18 0.12

Required Samples 390 1440 26K 135K 752K 1.28M

Table 4. First row. The mean probability of having an inlier of a

given accuracy for all camera pairs over all datasets. Second row.

The required number of samples using the RANSAC procedure

for reaching the required accuracy. On average, only 26K samples

are needed to reach a sub-pixel accuracy of 0.5.

only 6245 RANSAC iterations. Generally, the higher the

required accuracy, the more the improvement can be intro-

duced. Our approach is the only one to reach a very high

accuracy level of 0.2.

Fig. 7 presents the ratio between the average runtime of

our method and the baselines. For each dataset and for each

method, time is averaged over all camera pairs and accuracy

levels presented in Table 2. Our approach introduces an

improvement of orders of magnitude, for each datasets and

for all accuracy levels. Overall, the mean improvement is

92.82 with respect to [7] and 993.71 with respect to [33].

Table 3 presents the inliers’ probabilities. It was com-

puted based on the symmetric epipolar distance to the

ground truths fundamental matrices. The probability for

each required accuracy is the average over all camera pairs

in the dataset. Table 4 shows the mean probability of hav-

ing an inlier of a required accuracy for all camera pairs over

all datasets. It also shows the required number of RANSAC

samples needed to reach each accuracy. On average, only

1440 samples are needed to reach a sub-pixel accuracy of

0.8. For a required accuracy of 0.5, only 26K samples are

needed on average. Table 5 shows the number of recovered

putative corresponding pairs for a given accuracy using our

approach, based on the inlier probabilities. For the boxer

dataset, we were able to recover more than 100 pairs with

an accuracy of 0.5 and 60 pairs with an accuracy of 0.3.

Fig. 8 shows the percentage of converged cameras using

our method and the baselines, for a required accuracy of

0.8. In all datasets except Kung-Fu, using our approach, all

camera pairs converged. In the Kung-Fu dataset, however,

88% of the camera pairs converged. This is due to the fact

that there are camera pairs for which the epipoles are inside

the convex hull. In such cases, tangent-based methods of-

ten fail to recover accurate matching points. These cases of

Accuracy \Dataset Boxer Girl Street Kung-Fu

Any 547 108 127 150

0.5 104 26 44 58

0.3 60 16 27 37

Table 5. The number of corresponding points recovered for each

dataset, over all the camera pairs. The first row is the total number

of points recovered. The second row is the number of inliers hav-

ing a symmetric epipolar distance equal or less than 0.5, and the

third row is for a symmetric epipolar distance of 0.3.

Figure 8. The fraction of camera pairs whose fundamental matrices

reached a required symmetric epipolar distance of 0.8. The x-axis

is the dataset and the y-axis is the fraction of the camera pairs that

reached the required accuracy. Using our approach, all camera

pairs, in all datasets except Kung-Fu converged. For the Kung-Fu

dataset, 88% of the cameras converged. See text for more details.

failure are inherent in such approaches, see [7] for an illus-

trative example. Nevertheless, due to the dynamic nature of

the object there are often frames within the same sequence

where the epipoles are also outside the convex hull, which

is sufficient for calibration. For example, for a required ac-

curacy of 1.5, only two camera pairs failed in the Kung-Fu

dataset and all other camera pairs over all the other datasets

converged.

5. Conclusion

We introduced a graphical model for calibrating a

multi-camera system from the motion of silhouettes.

Our approach recovers corresponding points efficiently

and accurately, outperforming state-of-the-art methods

by several orders of magnitude. It is optimized very

efficiently, providing a practical solution. Our approach fits

seamlessly into a silhouettes-based pipeline, and it can be

used automatically each time a new sequence of silhouettes

is captured.
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