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Abstract

Most previous algorithms for the recognition of Action

Units (AUs) were trained on a small number of sample im-

ages. This was due to the limited amount of labeled data

available at the time. This meant that data-hungry deep

neural networks, which have shown their potential in other

computer vision problems, could not be successfully trained

to detect AUs. A recent publicly available database with

close to a million labeled images has made this training

possible. Image and individual variability (e.g., pose, scale,

illumination, ethnicity) in this set is very large. Unfortu-

nately, the labels in this dataset are not perfect (i.e., they

are noisy), making convergence of deep nets difficult. To

harness the richness of this dataset while being robust to

the inaccuracies of the labels, we derive a novel global-

local loss. This new loss function is shown to yield fast

globally meaningful convergences and locally accurate re-

sults. Comparative results with those of the EmotioNet chal-

lenge demonstrate that our newly derived loss yields supe-

rior recognition of AUs than state-of-the-art algorithms.

1. Introduction

Deep neural networks are proven algorithms in object

detection and classification [1, 2, 3, 4, 5]. However, this

advantage is only evident when a large number of annotated

images is available.

The present paper addresses the problem of learning to

detect Action Units (AUs) in images of facial expressions

of emotion “in the wild.” AUs are the observable anatomi-

cal facial movements defining a facial expression [6]. Each

observable anatomical facial movement is given a unique

number. For example, AU 1 is used to define the upper

movement of the inner section of the eyebrows, and AU 12

the pulling of the corners of the lips.

Manually annotating AUs in images is cumbersome and

can only be done by trained professionals [7]. This has lim-

ited the number of manually labeled images available to

researchers, with the largest datasets only including thou-

sands of samples [8, 9, 10]. These labeled images do not

provide enough image variability (illumination, pose, oc-

clusions) and ethnicity to take advantage of the richness of

possible functions (VC-dimensionality) represented in deep

nets [11].

Recently an AU-annotated set of about a million images

of facial expressions in the wild was made available [12]. A

large number of images were annotated with AUs 1, 2, 4, 5,

6, 9, 12, 17, 25 and 26. These images include the necessary

image and individual variability needed to harness the rich-

ness of functional representation of deep neural networks.

Unfortunately, the labels of the images in this dataset

are given by an algorithm developed by the authors of the

database. This yields inaccurate annotations – according to

the authors of this database, the annotations are about 81%

correct. These inaccuracies causes major convergence prob-

lems in deep nets.

In this paper, we derive a new global-local (GL) loss

that can circumvent this problem of inaccurate labels while

yielding accurate recognition results.

Previous loss functions used either a global or local ap-

proach [13, 14, 15]. Global approaches take advantage of

the overall structure of the object, yielding fast model to im-

age fitting and globally consistent results. Thus, global loss

functions facilitate convergence, but yield less accurate re-

sults. Local loss functions yield significantly more accurate

results, but require large numbers of very accurate labels to

converge.

Our newly derived GL-loss combines the idea of a lo-

cal loss function, to emphasize the importance of accurate

detections/recognitions, with a global loss, to yield a fast,

meaningful convergence.

We use this newly derived criterion on deep convolu-

tional neural networks (CNNs). A schematic comparison

of a typical CNN versus ours, which employs our derived

GL-criterion (GL-CNN), is shown in Figure 1. The result-

ing algorithm can be trained in a few hours. After training,
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Figure 1. CNNs versus proposed GL-CNN. In multi-output CNNs,

each output backpropagates its own local fit, i.e., backpropagation

is based on how well this single output matches the expected (true)

value. This is shown as filled red nodes and solid red lines on the

left image. This process results in slow convergence rates and may

lead to undesirable global fits, e.g., some of the outputs yield very

good estimates, but others perform poorly. We derive a Global-

Local (GL) loss function that optimizes each of the outputs of the

network by backpropagating it locally and globally, shown as red

circles and dashed lines in the neural network right of picture.

the system works in real time, i.e., > 60 frames/s on an i7.

We compare our results to those of the EmotioNet chal-

lenge, which was completed earlier this year [16]. Our re-

sults show that the proposed GL-loss achieves meaningful

convergences and results that are superior to those of state-

of-the-art algorithms, including other deep nets.

Derivation of this proposed GL-criterion are in Section 2.

The derived CNN and comparisons with other state-of-the-

art nets are in Section 3. Comparative results are in Section

4. Conclusions are in Section 5.

2. Global-Local Loss

We present derivations of a global-local (GL) loss that

can be efficiently used in deep nets for detection and recog-

nition in images. We use this loss to train a deep CNN to

recognize AUs. In our framework, a portion of the network

is used to detect facial landmark points. These detections

are concatenated with the output of the fully connected layer

of the other components of the network to detect AUs.

2.1. Local fit

We define the image samples and their corresponding

output variable as the set {(I1,y1), . . . , (In,yn)}, where

Ii ∈ R
l×m is a l × m-pixel image of a face, yi is the true

(desirable) output, and n is the number of samples.

The output variable yi can take many forms. For

example, in the detection of 2D object landmark points

in images, yi is a vector of p 2D image coordinates

yi = (ui1, vi1, . . . , uip, vip)
T , (uij , vij)

T the jth landmark

points. In the recognition of AUs, the output variable cor-

responds to an indicator vector yi = (yi1, . . . , yiq)
T

, with

yij = 1 if AU j is present in image Ii and yij = −1 when

AU j is not present in that image. Figure 2 shows a face

image with a set of 2D landmarks (yellow circles) and AU

Figure 2. Detection of facial landmark points (left) and facial ac-

tion units (AUs) (right). Ii is the ith sample image, and yi the

desirable output. In landmark detection, the output corresponds to

the 2D image coordinates of a set of p face landmark points. In

AU recognition, the output vector indicates whether each AU is

present (1) or not present (−1).

attributes (red boxes) as well as their corresponding output

vectors.

The goal of a computer vision system is to iden-

tify the vector of mapping functions f(Ii,w) =

(f1(Ii, w1), . . . , fr(Ii, wr))
T

that converts the input im-

age Ii to an output vector yi of detections or attributes,

and w = (w1, . . . , wr)
T

is the vector of parameters of

these mapping functions. Note that r = p and f(.) =
(ûi1, v̂i1, . . . , ûip, v̂ip)

T in detection, with fj(Ii, wj) =

(ûij , v̂ij)
T

the estimates of the 2D image coordinates uij

and vij . Similarly, r = q and f(.) = (ŷi1, . . . , ŷiq)
T

in the

recognition of AUs, where ŷij is the estimate of whether AU

j is present (1) or not (−1) in image Ii, and q is the number

of AUs.

For a fixed mapping function f(Ii,w) (e.g., a CNN), the

goal is to optimize w; formally,

J (w̃) = min
w

Llocal(f(Ii,w),yi), (1)

where Llocal(.) denotes the loss function. A classical solu-

tion for this loss function is the L2-loss, defined as,

Llocal(f(Ii,w),yi) = r−1
r∑

j=1

(fj(Ii, wj)− yij)
2
, (2)

where yij is the jth element of yi, which is yij ∈ R
2 in

the detection of face landmark points and yij ∈ {−1,+1}
in the recognition of AUs.

Without loss of generality, we use fi in lieu of f(Ii,w)
and fij instead of fj(Ii, wj). Note that the functions fij are

the same for all i, but may be different for distinct values of

j.

The above derivations correspond to a local fit. That is,

(1) and (2) attempt to optimize the fit of each one of the

outputs independently and then take the average fit over all

outputs.

The above derived approach has several solutions, even

for a fixed fitting error J (.). For example, the error can
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be equally distributed across all outputs ‖fij − yij‖2 ≈
‖fik−yik‖2, ∀j, k, where ‖.‖2 is the 2-norm of a vector. Or,

most of the error may be in one (or a few) of the estimates:

‖fij −yij‖2 >> ‖fik−yik‖2 and ‖fik−yik‖2 ≈ 0, ∀k 6=
j. In general, for a fixed fitting error, the latter example

is less preferable, because it leads to large errors in one of

the output variables. When this happens we say that the

algorithm did not converge to a desirable result.

One solution to this problem is to add an additional con-

straint to minimize

2

r(r + 1)

∑

1≤j<k≤r

|(fij − yij)− (fik − yik)|
a

(3)

with a ≥ 1. However, this typically results in very slow

training, limiting the amount of training data that can be

efficiently used. By reducing the number of training sam-

ples, we generalize worse and typically obtain less accurate

detections/recognitions [17, 18]. This is of course incom-

patible with our goal of using a million sample images.

Another typical problem of this equation is that it some-

time leads to non-convergence (or convergence with very

large fitting error J (.)), because the constraint is not flex-

ible enough for current optimization algorithms. This, in

effect, reduces the VC-dimensionality of the net [19].

We solve the above defined problems in the next section

by adding a global criterion that instead of slowing or halt-

ing convergence, it facilitates it.

2.2. Adding global structure

We define a set of constraints to add global structure to

(1) by extending (2) to global descriptors.

It is key to note that the constraint in (2) is local because

it measures the fit of each element of yi (i.e., yij) inde-

pendently. By local, we mean that we only care about that

specific result, Figure 1.

The same criterion can nonetheless be used to measure

the fit of pairs of points; formally,

Lpairs(fi,yi) =
2

r(r + 1)
∑

1≤j<k≤r

(g (h(fij), h(fik))− g (yij ,yik))
2
, (4)

where g(x, z) is a function that computes the similarity be-

tween its two entries, and h(.) scales the (unconstrained)

output of the network into the appropriate value range.

In landmark detection, h(fij) = fij ∈ R
2 and

g(x, z) = ‖x− z‖b (5)

is the b-norm of x − z (e.g., the 2-norm, g(x, z) =√
(x− z)T (x− z) ), where x and z are 2D vectors defin-

ing the image coordinates of two landmarks, Figure 2.

Figure 3. Facial landmark points define the Delaunary triangu-

lation shown in the left image. Our proposed algorithm selects

all possible sets of t landmarks, x̃i = {x̃i1, . . . , x̃it}, with

t = 1, . . . , tmax. The middle image shows an example, with t = 5.

Ordering the points counterclockwise allows us to compute the

area of this polygon envelope (hull) with (9).

In AU recognition, h(fij) = sign(fij) ∈ {−1,+1} and

g(xij , xik) =

{
1, if xij = xik

0, otherwise,
(6)

where sign(.) returns −1 if the input number is negative

and +1 if this number is positive or zero. Recall, xij is 1
if AU j is present in image Ii and −1 if it is not present in

that image. Hence, the function h(.) : R → {−1,+1}.

Key to this process is to realize that (4) is no longer local,

since it takes into account the global structure of each pair

of elements, i.e., each pair of landmark points in detection

and each pair of AUs in recognition, Figure 1. That is, in

detection, we wish to use the information of the distance

between all landmark points and, in recognition, we want to

determine where pairs of AUs co-occur (meaning that the

two are simultaneously present or not present in the sample

image).

This global criterion can be easily extended to triplets.

Formally,

Ltrip(fi,yi) =

(
r

3

)−1 ∑

1≤j<k<s≤r

[g (h(fij), h(fik), h(fis))−

g (yij ,yik,yis)]
2, (7)

where g(x, z,u) is now a function that computes the simi-

larity between its three entries.

In detection, this means we can compute the norm as

in (5), e.g., g(x, z,u) = ‖(x− z) + (z− u)‖b, but we can

also calculate the area of the triangle defined by each triplet;

formally,

g(x, z,u) =
1

2
|(x− z)× (x− u)| , (8)

where we assume the three landmark points are non-co-

linear.

These equations can be readily extended to four or more

points. For instance, (8) can be extended to convex quadri-

laterals as g(x, z,u,v) = 1
2 |(x− u)× (z− v)|.

In the most general case, for t landmark points, we com-

pute the area of the polygon envelope, i.e., a non-self-
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intersecting polygon contained by the t landmark points

{xi1, . . . ,xit}.1 This polygon is given as follows.

First, the Delaunay triangulation of the facial landmark

points is computed, Figure 3. The polygon envelop is easily

obtained by connecting the lines of the set of t landmark

points in counter-clockwise order, Figure 3. We denote this

ordered set of landmark points x̃i = {x̃i1, . . . , x̃it}.

The area in x̃i is given by,

ga(x̃i) =
1

2

[(
t−1∑

k=1

(
x̃ik1x̃i(k+1)2 − x̃ik2x̃i(k+1)1

)
)
+

(x̃it1x̃i12 − x̃i12x̃it1)

]
, (9)

where we used the subscript a in ga(.) to denote “area,” and

x̃ik = (x̃ik1, x̃ik2)
T , Figure 3.

The result in (9) is easily obtained using Green’s theorem

as we show in the Supplementary Material. And, x̃i can

either be the t outputs of our CNN f̃i = {f̃ij , . . . , f̃it} or

the true values ỹi = {ỹij , . . . , ỹit}.

We can also compute the global b-norm, gn(.), for the

general case of t landmark points as,

gn(x̃i) =

t−1∑

k=1

‖x̃ik1 − x̃i(k+1)2‖b. (10)

The above derivations define the extension of g(.) in (4)

to three and more points in detection problems. Let us now

see how this applies to recognition of AUs.

We want to compute the co-occurrence of three or more

AUs in image Ii. Formally, let x̃i = {x̃i1, . . . , x̃it} be a set

of t AUs, with x̃ij ∈ {−1,+1}, j = 1, . . . , t, and

gAU (x̃i) =

{
1, if x̃i1 = · · · = x̃it

0, otherwise.
(11)

2.3. GLloss

The final local-global (GL) loss function is given by,

L(fi,yi) = α0Llocal(fi,yi) + Lglobal(fi,yi), (12)

where the global loss Lglobal is defined as

Lglobal(fi,yi) =

tmax∑

t=1

αt

[
g
(
h(f̃ij), . . . , h(f̃it)

)
− g (ỹij , . . . , ỹit)

]
,

(13)

g(.) is either ga(.) or gn(.) or both in detection and gAU (.)
in recognition, and αi are normalizing constants learned us-

ing cross-validation on the training set,.

1Another solution is to compute the area of the convex hull of these

t points. However, the structure of the convex hulls thus computed are

very similar; polygons provide larger structural variety, facilitating higher

accuracy in our results.

Figure 4. A schematic of the proposed algorithm as it applies to

landmark detection. We use four convolutional layers, two max

pooling layers and two fully-connected layers. The deep network

for AU recognition is similarly defined (see text).

2.4. Backpropagation

To optimize the parameters of our CNN, w, we need to

compute
∂L

∂w
= α0

∂Llocal

∂w
+

∂Lglobal

∂w
. (14)

The partial derivaties of the local loss is of course given by

∂Llocal

∂wj

=
2

r

∂fij
∂wj

(fij − yij) . (15)

But how about the partial derivatives of the global loss?

In our definition of the global loss in (13) we used the

mapping function h(.). In landmark detection, h(fij) = fij
and, hence, the derivatives of the global loss have the same

form as those of the local loss shown in (15). But for AU

recognition, we used h(fij) = sign(fij) ∈ {−1,+1}. This

function is not differentiable. Thankfully, we can solve this

problem with the following simple redefinition h(fij) =

fij/
√
f2
ij + ǫ, for some small ǫ > 0. Its partial derivative

is ∂h(fij)/∂wj = 1/2 + 1/
√
fij + ǫ.

3. Proposed Deep Net

We define a deep convolutional neural network for the

recognition of AUs. Our network consists of two parts: The

first part of our network is used to detect a large number

of facial landmark points, Figure 4. This was previously

illustrated in Figure 2. These landmark points allow us to

compute our GL-loss (12), as shown in Figure 3.

The results of these detections are normalized and con-

catenated with the output of the first fully connected layer

of the second part of the network, Figure 5. This is to embed

the location information of the landmarks into the network

used to recognize AUs. This facilitates the detection of lo-

cal shape changes typically observed in the expression of

emotion [20]. This is done with (11) in the definition of the

GL-loss.

Specifically, in our proposed network, nine layers are

dedicated to the detection of facial landmark points (Fig-

ure 4), and the others are used to recognize AUs (Figure 5).
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Figure 5. The proposed network for AU detection.

Layer type Filter size Number of filters

1st convoulutional 5× 5 80

1st max pooling 2× 2 –

2nd convoulutional 4× 4 96

2nd max pooling 2× 2 –

3rd convoulutional 3× 3 128

4rd convoulutional 3× 3 128

1st fully connected 1× 1 1800

2nd fully connected 1× 1 1000

Output – 66× 2

Table 1. Parameters used in the first part of the network to detect

facial landmark points.

Let us first provide the details of the layers devoted to the

detection of facial landmark points.

3.1. Facial landmark point detection

The general structure of our net is summarized in Figure

4. We use three convolutional layers, two max pooling lay-

ers and two fully connected layers. Following [4], we apply

normalization, dropout, and rectified linear units (ReLU) at

the end of each convolutional layer. Details on this first set

of layers of our CNN are in Table 1.

The weights in these layers are optimized using back-

propagation – using the derived GL-loss (12). The global

loss is given by (9). The backpropagation equations are in

Section 2.4.

We used this part of the network to detect a total of 66
facial landmark points.

As mentioned in the introduction of this paper, one ad-

vantage of the proposed GL-loss is that it can be efficiently

trained on very large datasets. Since we wish to have a fa-

cial landmark detector invariant to any affine transformation

and partial occlusions, we performed a data augmentation

approach as follows.

Data augmentation: We generated additional images by

applying two-dimensional affine transformations to the ex-

isting training set, i.e., scale, reflection, translation and rota-

tion. Specifically, scale was taken between 2 and .5, rotation

was −10◦ to 10◦, and translation and reflection were ran-

domly generated. To make the network more robust to par-

tial occlusions, we added random occluding boxes of d× d
pixels, with d between .2 and .4 times the inter-eye distance.

25% of our training images had partial occlusions.

3.2. AU recognition

As shown in Figure 5, the second part of the network

combines the face appearance features with the landmark

locations given by the first part of the network. Specifically,

in the output of the first fully connected layer of the sec-

ond part of the network, we concatenate the appearance im-

age features with the normalized 66 automatically detected

landmark points.

Formally, let si = (sTi1, ..., s
T
ip)

T be the vector of land-

mark points in the ith sample image (i = 1, ...n), where

sik ∈ R
2 are the 2D image coordinates of the kth landmark,

and n is the number of sample images. Thus si ∈ R
132. All

images are then normalized to have the same inter-eye dis-

tance of τ pixels. That is, ŝi = csi, where c = τ
||l−r||2

,

l and r are the image coordinates of the center of the

left and right eye, || · ||2 defines the 2−norm of a vector,

ŝi = (ŝTi1, ..., ŝ
T
ip)

T and we use τ = 200.

We further normalize the landmark points as ŝ′ik =

R(ŝik − l̂) + l̂, where l̂ = cl, and here we multiply the

landmark points with a rotation matrix R to make the outer

corner of left and right eyes match the horizontal line. Fi-

nally, we rescale and shift these values ŝ′i to move the outer

corner of left and right eyes to the pre-determined positions

of (.5, 0) and (−.5, 0), respectively.

As for the structure of the deep net, we adopt that of

GoogleNet [21]. Because the input of our network is the

face image, we changed the size of the filter in the first layer

to adapt to our input, and randomly initialize the weight

for these filters. In order to embed landmark in our net-

work, we also changed the number of filters in the first fully

connected layer. And, we changed the number of filters

for output as the number of AUs. Thus, a single deep net

is employed to detect all AUs in images of facial expres-

sions. The main modifications made to the architecture of

GoogleNet are summarized in Table 2.

Of course, the loss used by our network is the GL-loss

defined in the present paper.

The weights of this second part of the network are opti-

mized using backpropagation on (12), with the global loss

defined in (11). Details of these derivations are in Section

2.4.

We performed data augmentation by adding random

noise to the 2D landmark points, and applying the same

affine transformations described in Section 3.1.

3.3. Training the network

We used the labelled EmotioNet dataset of [12], which

includes a large number of sample images with AUs 1, 2, 4,
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Layer type Filter size Number of filters

1st convoulutional 3× 3 64

1st fully connected 1× 1 4096+132

Output – Active AUs

Table 2. Summary of the main changes made to the overall archi-

tecture of the GoogleNet of [21].

5, 6, 9, 12, 17, 25 and 26.

This database includes 950, 000 automatically labelled

images, called the training set, and 25, 000 manually la-

beled images, dubbed the verification set. We use the train-

ing set to train the network until convergence is achieved.

After that, we use the verification set to fine-tune the net-

work. These sets were enlarged using the data augmentation

approach described above.

Training was done in mini-batches. For this, the training

images were divided into subsets of about 125, 000 each.

Gradient descent was applied to each mini-batch. The veri-

fication set of 25, 000 manually annotated images was used

as a final check after the first complete set of mini-batches

finished. If needed, the data was divided into a new set of

mini-batches and this process was repeated until the verifi-

cation error was minimized. The derived GL-loss yielded

very fast convergences in this framework. Adding the de-

rived global term in the loss function reduced the number

of epochs by more than 25% compared to when this term is

not included.

3.4. Related work

AU recognition is an important task for emotion recog-

nition. With the rapid development of deep neural network,

some deep learning based methods were proposed in recent

years. In [22], the authors proposed an attention map CNN,

enhancing the regions of interest on the face when training

the network. Instead of applying a regular CNN to the entire

input image, Zhao et al. [23] proposed to add a region layer

in CNN to identify specific regions for different AUs. How-

ever, limited annotated data makes the training of deep net-

works for AU recognition very challenging. More recently,

a large annotated dataset with almost one million labeled

images was published, which made this training possible.

The top algorithm uses residual blocks and a sum of binary

cross-entropy loss. Wang et al. [24] won the second place in

the challenge and they use a multi-label softmax loss func-

tion. These algorithms suffer from convergence issues, as

reported by the authors. Our proposed GL-loss yields fast

convergences and better results, as shown in Section 4.

Neural nets generally use the square (L2) loss [25]. The

square-loss subtracts each output of the network to its corre-

sponding desirable (true) values and squares it. The weights

of the net responsible for this output are then modified using

backpropagation. This local fitting process can easily lead

to undesirable convergence due to the lack of global con-

straints, i.e., local criteria usually yield highly non-linear

error functions, making it difficult to find a good local min-

imum. This is especially problematic in fine-grained detec-

tion and recognition problems (e.g., facial landmark detec-

tion and AU recognition) [26, 27]. Global constraints can

be added to reduce the complexity of local fitting functions

(e.g., with Glivenko-Cantelli estimates) [28], but this typi-

cally results in less accurate local fits than locally-defined

loss functions.

A CNN solution is to define independent outputs for each

detection/attribute using a region-based approach [29]. The

same is true for the detection of landmark points [30] and

the recognition of AUs [31]. Other constraints (e.g. spatio-

temporal features where a video sequence is available) can

be used to address the local-fitting problem too [32, 33].

The GL-loss function derived above diverges from these

previous approaches in several and important ways. Our

global constraints are based on the structure of the object

(face). Specifically, in facial landmark detection, we de-

fined the polygons of every set of t landmark points and de-

rived an efficient algorithm to measure similarity between

the output of the net and the true values. For AU recog-

nition, we computed the co-occurrence of t AUs in each

training image, i.e., either all t AUs are present or not. We

showed that with the addition of these global constraints, a

single global (non-patch based) CNN can be successfully

defined. Our experimental results reported below demon-

strate that this approach yields results superior to those of

the state-of-the-art in the recognition of AUs.

4. Experimental Results

We provide extensive evaluations of the proposed ap-

proach and comparisons to state-of-the-art algorithms on

the EmotioNet challenge [16]. The EmotioNet dataset [12]

provides images of facial expressions “in the wild” with dif-

ferent natural illuminations, occlusions, poses and ethnici-

ties, to name but a few characteristics.

Our evaluation is divided into four experiments. First,

we present results following the evaluation protocol of the

EmotioNet challenge. Second, we present results showing

that the system is robust to scale changes. Third, we show

that the proposed methodology is robust to occlusions. Fi-

nally, we show that the proposed algorithm is less sensitive

to changes in pose than previous methods.

4.1. Facial expressions in the wild

We tested our algorithm following the protocol of the

EmotioNet challenge [16]. The results reported in this sec-

tion correspond to those obtained in the sequestered testing

set, which was not available during training. A few qualita-

tive examples of AU detections given by our algorithm can

be found in Figure 6.
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Figure 6. Examples of automatic annotations given by our deep net with our newly derived GL-loss. Top row shows images with AU 12

(lip corner puller), middle row shows images with AU 4 (brow lowerer), and lower row images with AU 17 (chin raiser).

The quantitative evaluation of the challenge includes two

criteria. The first is F1 score of AU i, defined as,

F1i = 2×
Precisioni ×Recalli
Precisioni +Recalli

, (16)

where Precision is the fraction of the automatic annota-

tions of AU i that are correctly recognized (i.e., number of

correct recognitions of AU i divided by the number of im-

ages with detected AU i), and Recall is the number of cor-

rect recognitions of AU i over the actual number of images

with AU i.
The second is accuracy of detection of AU i, defined as,

Accuracyi =
True positivesi + True negativesi

Total population
,

(17)

where True positivesi are correctly identified test in-

stances of AU i, True negativesi are test images correctly

labeled as not belonging to AU i, and Total population is

the total number of test images.

In the EmotioNet challenge, these two criteria are aver-

aged in a signal Final score, as

Final scorei =
Accuracyi + F1i

2
. (18)

Comparative results on the recognition of AUs are given

in Figure 7. We provide comparative results as Final score
as well as F1 score.

Figure 7 shows comparative results with: a) the deep

neural network presented in this paper, b) the top 2 con-

tenders in the EmotioNet Challenge [16] (both of them

CNNs), and d) AlexNet using the standard softmax loss.

Note that the implementation of AlexNet uses a different

network to detect each AU i, whereas our proposed algo-

rithm employs a single network. Training a single AlexNet

to detect all AU (as in our approach) yielded much worse

results than those reported in the figure.

4.2. Recognition at different scales and under oc
clusion

To evaluate the robustness of the system to scale, im-

ages were reduced to 1/2 and 1/4 of their original size. This

yielded faces at different scales.

Figure 8 shows comparisons of the results of the pro-

posed algorithm with the methods described in Section 4.1.

As seen in the figure, image resolution did not affect the

accuracy of the proposed algorithm.

Our experiments also included testing the robustness of

the proposed algorithm to random occlusions in the test im-

ages. These correspond to black boxes of about 1/5th the

size of the face, as described in [16].

Figure 9 shows comparative results with the methods

listed in Section 4.1. Sample AU detection in these images

by our algorithm are in Figure 10.
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Figure 7. Results on the EmotionNet testing dataset. Top plot: Fi-

nal scores given by (18). Bottom plot: F1 scores calculated using

(16).

Figure 8. Average Final scores (given by (18)) for images at dif-

ferent scales.

Figure 9. Final scores (equation (18)) for images with small oc-

cluders.

Figure 10. Examples of annotationsof AU 4 with images with ar-

tificial occlusions.

4.3. Pose invariance

Pose is known to be a major factor on the recognition

of AUs in images of facial expressions “in the wild.” We

used the pose information of the test images provided by

[16] to test the robustness of the derived algorithm in the

recognition of AUs at different poses.

The results are in Figure 11. Pose is given in degrees and

is defined as,

pose =
|pitch|+ |yaw|

2
, (19)

where |.| is the absolute value.

Figure 11. Average Final score as function of the Pose. Pose is

defined in equation (19) and is given in degrees in the x-axis. The

y-axis is the average Final score defined in (18).

5. Conclusions

We have derived a new Global-Local loss function for

deep nets that can be efficiently used in detection of similar

object landmark points of interest as well as recognition of

object attributes. We have presented detailed derivations of

the approach and several alternative models. The derived

local+global loss yields accurate local results without the

need to use patch-based approaches and results in fast and

desirable convergences. Other than our theoretical argu-

ments in favor of these claims, we have shown several ex-

perimental results demonstrating these abilities on our im-

plementation of the derived algorithm in accuracy of detec-

tion/recognition and speed – our algorithm runs at > 60
frames/s. Our experimental results also demonstrate that

the proposed GL-based algorithm outperforms other state-

of-the-art methods in the recognition of action units. The

derived loss achieves this by finding this structure, e.g., the

co-articulation of AUs or the spatial arrangement of land-

mark points in a face.
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