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Abstract

It is possible to associate a highly constrained subset of

relative 6 DoF poses between two 3D shapes, as long as the

local surface orientation, the normal vector, is available

at every surface point. Local shape features can be used

to find putative point correspondences between the models

due to their ability to handle noisy and incomplete data.

However, this correspondence set is usually contaminated

by outliers in practical scenarios, which has led to many

past contributions based on robust detectors such as the

Hough transform or RANSAC. The key insight of our work

is that a single correspondence between oriented points on

the two models is constrained to cast votes in a 1 DoF ro-

tational subgroup of the full group of poses, SE(3). Kernel

density estimation allows combining the set of votes effi-

ciently to determine a full 6 DoF candidate pose between

the models. This modal pose with the highest density is sta-

ble under challenging conditions, such as noise, clutter, and

occlusions, and provides the output estimate of our method.

We first analyze the robustness of our method in relation

to noise and show that it handles high outlier rates much

better than RANSAC for the task of 6 DoF pose estimation.

We then apply our method to four state of the art data sets

for 3D object recognition that contain occluded and clut-

tered scenes. Our method achieves perfect recall on two LI-

DAR data sets and outperforms competing methods on two

RGB-D data sets, thus setting a new standard for general

3D object recognition using point cloud data.

1. Introduction

There is an ever-increasing need for robust percep-

tion systems and automated solutions in industry, service

robotics and other applications. One of the great challenges

is for an autonomous system to navigate in unstructured en-

vironments, which for manipulation tasks crucially relies

on the ability to recognize and localize the parts or ob-

jects of interest. Although some recognition tasks naturally

lend themselves to image-based techniques—some exam-

ples are pedestrian detection, traffic sign recognition and

gesture recognition—it is vital for an autonomous agent to

acquire the pose of objects in the ambient space to be able

to perform any real manipulation tasks. This involves de-

termining the full 3 DoF position and 3 DoF rotation of an

object, which can become a computationally expensive op-

eration in cluttered scenes.

Many contributions have been made on this matter [14],

in recent years heavily based on range or 3D data in the

form of either RGB-D images, point clouds or meshes.

These data are acquired from Kinect sensors, industrial

grade laser scanners or the likes. Steady improvements

have been achieved, when considering overall object recog-

nition performances in 3D data sets, where the aim usually

is to find the full 6 DoF pose of multiple objects in un-

structured or semi-structured scenes. In this very general

free-form recognition and localization scenario, one needs

to deal with some nuisances, including noise in the acquired

sensor data and partial occlusions of the objects due to ob-

scuring elements. In this work, we focus on the underlying

problem of recovering the 6 DoF pose of an object under

these conditions and adopt a feature-based approach, where

multiple local shape features are used to describe a full 3D

object model. These local features can be matched with

a scene, providing a set of point correspondences between

the object and the scene. In real applications this set of cor-

respondences is heavily contaminated by outliers, making

the search for the pose which brings the object into correct

alignment with the scene a very challenging problem.

This paper describes a method that can be used to local-

ize 3D objects within a scene acquired from a depth or 3D

sensor. The method is shown to be particularly robust to-

wards high fractions of outliers, which results in very com-

petitive recognition rates for a number of applications. To

achieve this, our method uses geometric constraints to cast

full 6 DoF votes for the pose using individual correspon-

dences. These votes are shown to lie on a small 1 DoF

manifold, which allows for a tractable inference step based

on kernel density estimation. Our method differs from pre-
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vious methods since these usually require two [11], three

[1] or more correspondences to compute pose candidates,

making the sampling process much more expensive. Our

method uses single correpondences to vote for a set of can-

didate poses and delays the determination of the correct

pose to a subsequent clustering process. We tested our

method on two well-known free-form object recognition

data sets and two recent RGB-D data set. In all cases, our

method outperforms competing methods.

This paper is structured as follows. In Sect. 2 we pro-

vide an overview of related work within the field of object

recognition and pose estimation in 3D data. Sect. 3 gives

the details of our algorithm and in Sect. 4 we explain how

our algorithm is used in a 3D object recognition and pose

estimation pipeline. In Sect. 5 we present experimental re-

sults and in Sect. 6 we conclude on our findings.

2. Related work

Object recognition and pose estimation in 3D data has

been an active research area for more than two decades.

Early works include [8, 18], from which the well-known

Spin Images used local shape descriptors and correspon-

dence grouping for recognizing objects in range images. In

the years that followed, several variations of local shape de-

scriptors appeared. In [13] a local 3D shape context descrip-

tor was used for matching segmented point cloud models.

Similarly, in [6] a set of local descriptors were used to rec-

ognize shapes in scenes with no or limited amounts of clut-

ter. A more elaborate system for both 3D object modeling

and recognition in cluttered scenes was presented in [20].

Recognition was performed using randomly sampled point

pairs for which an area-based descriptor was computed. The

use of point pairs eased the process of computing a relative

pose between the object and scene models but came at an

increased computational cost. Progress in these cluttered

scenarios continued, with other methods, e.g. [26], using

RANSAC [12] for robust pose estimation, and [2] using a

tree search through the set of possible correspondences. In

an influential work [11], the use of point pairs was revis-

ited, but now with a simpler and computationally cheaper

feature and a fast pose estimation algorithm using a variant

of geometric hashing. The method was further developed in

several later works, including [4, 10, 17]. The development

of local shape features continued for a considerable varia-

tion of applications such as mesh based keypoint detection

and description [30] point cloud based registration [25] and

of course recognition and pose estimation [15].

A very different class of methods rely on 2.5D data, e.g.

from RGB-D sensors. The best-known method is arguably

LINEMOD [16], which allowed for real-time matching of

thousands of object templates in RGB-D data. Many com-

peting methods using template-based approaches were in-

troduced afterward, including [5, 23, 27] and most recently

[9, 19, 29]. The last three achieved very high detection rates

by learning an intermediate feature layer with either convo-

lutional or autoencoder neural networks.

Our method bears similarities with the 3D Hough voting

of [28], which computed full rotation frames at each fea-

ture and used the feature correspondences to cast votes for

the 3 DoF translation component of the pose. Although a

full rotation can also be computed for each vote, the authors

instead performed the mode finding in the reduced 3 DoF

Hough space and used RANSAC [12] to find the rotation. In

contrast, our method casts multiple full 6 DoF votes for each

feature correspondence, and we use a branch and bound

search strategy on the actual pose samples to find peaks.

The method that we use for computing the individual pose

votes is in principle similar to that of the point pair features

[11]. In this work randomly sampled oriented point pairs

were matched and pose clustering was performed by bin-

ning in a low-dimensional pose space. However, while this

method used individual point pair correspondences to com-

pute a single pose vote, our method computes a constant

number of pose votes for a single point correspondence and

delays the inference of the modal pose to the subsequent

clustering stage. This difference reduces the complexity of

our sampling stage from quadratic to linear.

Finally, some recent methods [1, 9, 22] introduced an ad-

ditional joint optimization stage. These methods used mul-

tiple candidate poses per object and performed a global op-

timization over the possible combinations of poses to find

a configuration of objects that was consistent with the ob-

served scene data. Any pose estimation method, includ-

ing ours, can in principle be used to provide inputs to these

joint optimization frameworks, but the overall performance

depends entirely on the ability of the underlying pose esti-

mation algorithms to produce good candidate poses. This

ability is the focus of the method presented in this work and

the competing methods included in our experiments.

3. Method

This section gives the details of our method, which is an

algorithm for computing one or more relative 6 DoF poses

between one or more 3D object models and a scene. Scene

data are usually obtained using a sensor, e.g. an RGB-D

camera or a laser scanner. In the general case, the challenge

is to locate the instance(s) of the object(s) present within the

scene, while remaining robust towards inaccuracies (noise),

missing data (occlusions) and irrelevant data (cluttering el-

ements). Our algorithm assumes correspondences between

surface points on the two models (the object and the scene)

are available. We will explain how these correspondences

are obtained using local shape features in Sect. 4.

Our algorithm is related to the point pair feature (PPF)

method [11], as it uses surface normals to define local

frames. The PPF method uses a large set of point pair
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Figure 1: An example scenario visualizing the pose voting process between the Chicken model and the first scene of the

UWA data set used for the first test in Sect. 5. Left: two correct (green) and incorrect (red) correspondences are used to show

the geometry of our method. The votes (dashed circles) of the correct correspondences cluster near the center of the object

instance in the scene (rightmost black dot). Middle: the same scene—now seen from the back—showing all the votes cast for

the model center, with each vote colored proportionally to its SE(3) density estimate (blue is the highest). Right: the final

modal pose estimate shown by overlaying the aligned object model in green.

matches between the models to compute full object-relative

rotation frames and thereby cast votes for the object pose.

Another type of methods [15, 28] estimates a full local ref-

erence frame (LRF) directly at each surface point from the

underlying point cloud data. This approach reduces the vot-

ing to a linear operation, but results have been suboptimal

[28], most likely because the estimation of LRF is unstable

in noisy and occluded data. Our algorithm lies in between

these two approaches. Similar to the LRF method, we re-

quire only a linear number of votes, but we avoid the esti-

mation of a potentially unstable LRF. Instead, for each point

match, we compute multiple LRFs using the surface point

and the center point of the object. The use of the normal

orientation significantly limits the number of possible votes

for each point, as the votes are constrained to a 1 DoF man-

ifold. The method is formalized in the following sections.

3.1. Subgroup voting

We denote an oriented point on the object model as

(p, n), with p being the point coordinates and n be-

ing the 3D normal vector pointing away from the sur-

face. A matched feature from the scene provides a

correspondence with an oriented point in the scene,

which we denote (p′, n′). In the left part of Fig. 1

c

p
n

r δ we show some examples of correct

matches (green) and incorrect matches

(red). We first compute the scalar projec-

tion δ of the vector going from the object

center c to the object point p onto the unit normal n:

δ = (p− c) · n (1)

We now start from p and follow the negative of n with a

distance of δ. Then we compute a radial vector r going

from this point to the center c:

r = c− (p− δn) (2)

t

p'
n'

r'δ q

At this point we have enough information

to cast votes for possible translations of

the object center into the scene. Using the

matched point (p′, n′) we again follow the

negative scene normal using the stored projection for the

object center, δ. We call this the radial point, q:

q = p′ − δn′ (3)

The voting for the translation of the object center into the

scene proceeds as follows. We start by sampling a random

vector orthogonal to n′ and scale it to a length equal to the

radial vector ‖r‖. Denote this vector r′, and note that it is

an instantiation of the object radial vector r in the scene.

p'
n' δ t1

t30

We now choose a tessellation level Nr and

perform incremental rotations of r′ around

n′ with an angle of θ = 360◦/Nr. Ro-

drigues’ rotation formula can be used to ro-

tate a vector (r′) around another (n′) by a

specified angle (θ) and we use it Nr times to get the next

instantiation of the radial vector:

r′ ← r′ cos θ + (n′ × r′) sin θ + n′(n′ · r′)(1− cos θ)

= r′ cos θ + (n′ × r′) sin θ (4)

In our case, n′ and r′ are always orthogonal, allowing us

to eliminate the last term of this equation, as is done in the

second line above. For each of the Nr rotated versions of r′,
we add it to the radial point q and get a candidate translation

t of the center of the object into the scene as follows:

t = q + r′ (5)
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We refer again to Fig. 1 for a visualization of the different

geometric elements described here.

In the final part of our voting scheme, we show how

to recover a full 3 DoF relative rotation for each of the

Nr candidate translations t. Looking at Fig. 1, it can be

observed that all the translation candidates lie on a cir-

cle. This is a result of the fact that when the correspond-

ing normal vectors n and n′—which both have 2 DoFs—

are aligned, there is only 1 degree of freedom left to de-

termine. To find this last DoF, we first compute a full 3

DoF rotation frame at the oriented object point (p, n) and

do the same for the Nr tessellation points in the scene.

c

p
n

r δx

y

z

x

y

z

On the object side, this frame is con-

structed by setting the third column of the

rotation frame equal to the normal vector

n. The radial vector r is always orthogonal

to n, and we set the first column to this vector normalized.

The final vector making up a full rotation frame for the fea-

ture point is computed using the cross product. We thus get

a 3-by-3 rotation matrix Rr as follows:

Rr =
[

r

‖r‖ n× r

‖r‖ n
]

(6)

t

p'n'

r'δ q
x

y
z

x

y

z

cam

The same operation is applied to the Nr ro-

tated versions of r′ in the scene to get Nr

candidate rotation frames Rr′ as follows:

Rr′ =
[

r
′

‖r′‖ n′ × r
′

‖r′‖ n′
]

(7)

Finally, the candidate relative rotation R for aligning the

object with the scene is given as follows:

R = R⊤
r′
·Rr (8)

p

c

p'

cam

T To summarize, we now have Nr 3 DoF ro-

tations R and 3 DoF translations t. Putting

each of these together in a 4-by-4 transfor-

mation matrix T gives us Nr pose candi-

dates:

T =

[

R t
0 0 0 1

]

∈ SE(3) (9)

For every correct correspondence, there will be one correct

and Nr − 1 incorrect pose votes, all lying on a 1 DoF sub-

group of SO(3). All in all, there will a pose vote count

equal to Nr times the number of correspondences. We

have tried a number of different values for Nr and overall

achieved better performance for finer tessellations. We have

therefore chosen Nr = 60 tessellations, giving an angular

resolution of θ = 6◦ of our pose votes. In the following

paragraph, we describe how to perform mode finding within

these poses to find the correct pose.

3.2. Density estimation and clustering

The many pose votes produced by the method described

in the previous subsection contain a significant fraction of

incorrect candidate poses. However, the six dimensions of

the pose group makes it very unlikely that incorrect poses

cluster together. This leaves a possibility for the correct

poses to cluster together near a detectable mode in SE(3),
even though there are only very few of these. This inference

process can in principle be performed in different ways,

e.g. using using k-means clustering, mean shift or other

mode seeking methods [7]. Unfortunately, the dimension-

ality of the search space makes many of these approaches

intractable due to either excessive memory requirements or

high computational complexities.

To overcome this, we use a kernel density estimate on

SE(3), computed at each of the pose votes T . This requires

a measure of distance from each vote to all other votes. A

bandwidth σ is used to preserve locality of the density esti-

mate at each vote. The kernel density estimate K for a pose

vote T is computed as follows:

K(T ) =

NT
∑

i=1

fK(d(T, Ti)/σ) (10)

where NT is the total number of pose votes, d is some mea-

sure of distance between two poses, and fK is the kernel

function. In this work we use the unnormalized Gaussian

kernel:

fK(x) = exp

(

−x2

2

)

(11)

Defining the metric d on SE(3) is non-trivial. Instead,

we decompose the density estimate to a product of two 3D

Gaussian kernels, one for translations and one for rotations:

K(T ) =
∑

T̂∈N (T )

fK

(

dt(t̂, t)

σt

)

· fK

(

dR(R̂, R)

σR

)

(12)

We use the Euclidean distance for the translations:

dt(t̂, t) = ‖t̂− t‖ (13)

For the rotations we use the minimal geodesic distance

along the manifold:

dR(R̂, R) = arccos

(

trace(R̂⊤R)− 1

2

)

(14)

which lies in the interval [0, 180]◦ and gives the minimal an-

gle needed to rotate R into R̂. In the SE(3) density estimate

in (12) we changed the summation to occur over a neigh-

borhood around T , denoted N (T ). This change is possible

because the kernel fK decays rapidly away from the center.

We, therefore, do not need to brute-force loop over all other
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votes to compute a reliable density estimate for T . Instead,

we can perform a branch and bound radius search around

T , with the influence radius set equal to the bandwidth, and

find all pose votes within a neighborhood.

To find the neighbor poses N (T ), we first perform a ra-

dius search in R
3 using a k-d tree to find an initial set of

pose neighbors within the translation bandwidth:

N (t) = {t̂ : dt(t̂, t) ≤ σt} (15)

The full pose neighbors N (T ) are now bounded signifi-

cantly, since none of these can be outside the set N (t). We

can, therefore, do a linear search within N (t) to find the

subset of neighbors within the rotation bandwidth:

N (T ) = {R̂ ∈ N (t̂) : dR(R̂, R) ≤ σR} (16)

To summarize, during inference we visit every pose vote,

make a search query to find the neighbors, and then visit

every neighbor pose and accumulate the density estimate

using (12). The poses with high densities represent local

modes in SE(3) and provide the output pose estimates T
for aligning the object model with one or more instances

present in the scene data:

T = argmax
T̂

K(T̂ ) (17)

An alignment using the modal pose is shown in the right

part of Fig. 1.

3.3. Computational complexity

Like many other competing methods, our algorithm is

based on correspondences from local shape features. The

computation of features is an O(N logN) operation in the

number of feature points N [21]. The PPF method does

not require expensive feature computation, but instead it

requires a sampling stage with a complexity of O(N2).
RANSAC does rely on feature correspondences but needs

samples with a cardinality of at least three for computing

a candidate pose, in which case the complexity rises to

O(N3). The most computationally expensive part of our

method is the density estimation stage, where we perform

a radius search among all the SE(3) votes. This is an

O(NrN log(NrN)) operation, where Nr is the number of

rotational tessellations. As mentioned in the previous sec-

tion, we use a fixed value of Nr = 60. We thus have a

complexity of O(N logN) with a considerable factor.

4. Object recognition and pose estimation

pipeline

The contributed method detailed in the previous section

takes part of a feature-based 3D object recognition pipeline.

The input to our pose clustering method is a set of corre-

spondences, which are obtained by matching local features,

which again require a good estimate of the local surface nor-

mals. When dealing with multiple objects, we process the

models sequentially and invoke the pose clustering once for

each object. We explain in this section the overall approach

taken in our recognition system and end by detailing how

we can also use our method for multi-instance recognition

of the same object. The source code for our method is pub-

licly available in the CoViS C++ library1.

Preprocessing Our algorithm can use both triangular

meshes or raw point clouds as input models; both types of

input data are treated similarly, with the one difference be-

ing that for a mesh model we use the faces to ensure glob-

ally consistent (i.e. outward-pointing) normals for the ob-

ject models. For point clouds, we compute surface normals

using PCL [24] and use a breadth-first search to traverse

the object surface and orient the normals consistently. We

then downsample both models to a constant resolution us-

ing a voxel grid to limit the amount of data for processing.

To further reduce the processing time, we avoid computing

local features at all surface points but use only a uniform

subset of around 10000 feature points per object model.

Feature computation and matching To boost the perfor-

mance of our recognition system, we use our own library

for computing discriminative local features. We use ran-

domized k-d trees for fast approximate neighbor searches

[21] and we always perform search queries with the scene

features into an offline generated randomized k-d tree index

of all the object features.

Multi-object and multi-instance recognition The fea-

ture matching stage produces a set of correspondences re-

lating the feature points in the scene to points on the objects.

In case of multiple objects, we order the objects according

to how many correspondences were found for them, starting

with the object with most correspondences in the scene. We

then run our pose clustering to get the modal pose and use

ICP [3] to refine the estimate. We then adopt a fast, greedy

approach, where we segment out the scene data containing

the object instance, before proceeding to the next object.

Our pose clustering method also allows for multi-

instance recognition, which is tested in the last part of the

next section. We first let our pose clustering method return

the highest-density pose of each correspondence and then

perform non-maximum suppression on this subset of poses

using a Euclidean threshold on the translation components

equal to 20 % of the object model bounding box diagonal.

The next section presents test results for our recognition

system in a range of recognition applications.

1https://gitlab.com/caro-sdu/covis
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Figure 2: Sensitivity analysis results obtained by matching the Stanford Bunny to its increasingly noisy counterparts using

RANSAC and our method. Left: translation errors for increasing noise levels. Middle: the corresponding rotation errors.

Right: ground truth inlier rates for the correspondence sets (black) and average normal angle deviations (gray).

5. Results

This section presents five experiments on 3D object

recognition and 6 DoF pose estimation. We first present

a sensitivity analysis to motivate the use of our method for

robust pose estimation under challenging conditions. Then

we show results for two well-known data sets, where the

objective is to perform recognition and pose estimation for

several objects in highly occluded and cluttered real scenes

captured by a LIDAR sensor. Finally, we show results for

two newer RGB-D data sets, one made for multi-instance

detections and one made for detection of domestic objects.

5.1. Pose clustering as a robust pose estimator

We first show a sensitivity analysis of our method. For

comparison, we included RANSAC [12], which is likely the

most robust pose estimator available, cf. its widespread use

in 3D recognition, e.g. [1, 22, 26]. The task is to align a 3D

model to itself under varying noise levels while monitoring

the pose errors. We took the classical Stanford Bunny2, con-

sisting of 35947 points and 69451 triangles, and applied in-

creasing random uniform displacements to the points using

MeshLab3, with the displacement norm bounded to a spec-

ified percentage of the diagonal. For the Bunny, the diago-

nal is 0.25 m, and we used noise levels from 0.1 % to 3.0 %

with increments of 0.1 %. We computed local features with

a spacing of 0.005 m—giving approximately 3000 feature

descriptors—on the original model and each noisy version.

We matched the original model to each corrupted model

and monitored the ground truth inlier rate by checking how

many features on the clean model matched to the same point

on the corrupted model with a tolerance of 0.005 m.

The relative pose to be found here is simply the identity

transformation, which allows us to easily measure pose er-

rors. For positions, the error is given by the norm of the

estimated translation, and for rotations, we can compute the

error as the geodesic distance between the rotation estimate

2http://graphics.stanford.edu/data/3Dscanrep
3http://meshlab.sourceforge.net

and the identity rotation by (14). Contrary to all subsequent

experiments, no refinement was used, since the purpose was

to investigate the robustness of the two estimators.

The results are shown in Fig. 2. For RANSAC, we tuned

the number of iterations to 10000 to allow the algorithm

to spend approximately the same runtime as ours. For our

method, we used a translation bandwidth of 0.01 m and a

rotation bandwidth of 22.5◦, which are exactly the same pa-

rameters that we used in all other experiments. One differ-

ence, however, is that since RANSAC is non-deterministic

by design, we repeated the the estimation 20 times and took

the mean over the 20 runs at each noise level. As shown, our

method remains considerably more robust towards noise.

We believe the explanation is that our method is better at

handling many outliers (wrong correspondences) occurring

at high noise levels by virtue of a more discriminating score

function. Indeed, our method produces a score proportional

to the frequency that a pose occurs in a certain 6 DoF neigh-

borhood of SE(3), which makes spurious local maxima

highly accidental. Conversely, RANSAC samples a cubic

number of poses and uses a geometric consistency scoring

criterion. When the noise increases, there is a much higher

risk that many correspondences will support a wrong pose.

The inlier rate, shown rightmost in Fig. 2, drops from

86 % at the lowest noise level to 0.2 % at the highest noise

level. Even under such extreme conditions, our method

produces the correct pose, whereas RANSAC fails to es-

timate the relative pose with a translation error of 0.048 m

and a rotation error of 43◦. Finally, we include a plot of

the noise in the surface normals, since our method crucially

relies on these for the voting process. We computed the

average angular deviation between the normals on each of

the corrupted models and those on the original model. As

can be seen rightmost in Fig. 2, there is a strong linear de-

pendency of these normal deviations on the artificial point

noise, leading to the conclusion that our pose estimates are

equivalently robust towards noise in the normals. The nor-

mals achieve average displacements of almost 25◦, while

our method still produces correct results.
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Method UWA Queen’s

Spin Images [18] 0.878 —

Tensor matching [20] 0.966 —

PPF* 0.936 0.992

EM [2] 0.975 0.824

RoPS [15] 0.989 0.954

VD-LSD [26] — 0.838

Pose clustering 1.00 1.00

Table 1: Recall rates for the UWA [20] and Queen’s [26]

data sets. All results except the ones for PPF* and Pose

clustering are taken from the literature.

5.2. Recognition results on the UWA data set

We first tested our method on the UWA data set [20],

which is the most well-known and established data set in

the literature and has been the subject of several evaluations.

The data set contains four complete object models and 50

scenes, all captured with a laser scanner and given as high-

resolution triangular meshes. Almost all scenes contain all

objects, giving 188 instances to recognize in total. The ob-

jects are highly occluded, with a less than 25 % average

visibility in each scene. We ran the multi-object pipeline

outlined in Sect. 4 to search for the objects in each scene.

We compared against a select number of classical and re-

cent, best-performing methods. For the PPF method, orig-

inally proposed in [11], we used the latest and optimized

implementation of the PPF method, which is now part of

the commercial machine vision software Halcon 13.0.0.24.

We will denote this method PPF* in the folllowing.

Results for the UWA data set are given in the middle col-

umn of Tab. 1. For all methods, we give recall rates between

0 and 1, where 1 means 100 % recognition rate. Concern-

ing precision, we used a lower threshold on the modal pose

density (12) to reject false positives and increase precision.

To our knowledge, we are the first to achieve a 100 %

recognition rate on this data set without the use of joint op-

timization, as in e.g. [1, 22]. Additionally, our method pro-

duced few false positives, resulting in a precision of 96.9 %

and a maximum F1 score of 0.995.

5.3. Recognition results on Queen’s data set

The next tested data set was the Queen’s data set [26],

created in a similar manner to the UWA data set. This data

set has five objects, 80 scenes and 240 instances. Compared

to UWA, it contains a higher variation in the number of ob-

jects present in each scene. Each scene also contains spu-

rious data from the ground plane and in general all models

are of lower quality and have non-uniform resolution.

We report comparative results for the Queen’s data set

in the right column of Tab. 1, which reveals reduced recog-

4http://www.mvtec.com/products/halcon

Method Object Recall

Tejani et al. [27]
Coffee cup 0.314

Juice 0.248

Doumanoglou et al. [9]
Coffee cup 0.335

Juice 0.251

PPF*
Coffee cup 0.474

Juice 0.279

Pose clustering
Coffee cup 0.638

Juice 0.449

Table 2: Recall rates for the bin picking data set [9].

nition rates for many of the competing methods relative to

UWA. Remarkably, both our method and PPF* perform bet-

ter than UWA on this data set. PPF* achieves a recall of

99.2 % and the same precision. On this data set, our method

achieves 100 % recall at a precision of 100 %.

5.4. Recognition results on the bin picking data set

Another experiment was done on a very recent data set

[9], where the authors introduced a bin picking data set con-

sisting of 183 RGB-D images showing multiple instances

of two test objects in a small bin. The scenes are split up

in three sequences: one where the bin contains 15 instances

of the Coffee cup object, one where the bin contains five in-

stances of the Juice box object and finally a mixed sequence

where each image shows the bin containing nine and four

instances of the Coffee cup and the Juice box, respectively.

The protocol for this data set is to match the two objects to

their dedicated sequences and to the mixed sequence. Al-

though this data set is primarily targeted at another class of

detection methods—namely RGB-D based systems that use

both color and depth information—we wanted to test the

performance of our method, even though our method re-

lies purely on geometric cues. On the other hand, the PPF*

method and ours do not require expensive training but de-

rive the features for matching directly from the oriented sur-

faces. Contrary to the two previous experiments, the objec-

tive is now multi-instance detection, so we extracted the ten

top ranked modes after non-maximum suppression using

our method. The same applies to the PPF* method where

we set it to return the ten top scoring poses. Other than

that, all experimental parameters for both methods were the

same as previously. The results, including the baseline re-

sults from [9, 27], are given in Tab. 2 and a multi-instance

recognition example is shown in Fig. 3.

The results show that the 3D methods (PPF* and ours)

compete well with RGB-D based methods. This is achieved

in approximately the same runtime for all methods, which

is in the order of seconds per recognized instance. These

results support the use of our method for multi-instance

recognition problems. We believe the main reason why our

method is able to outperform PPF* is that we use smooth
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Figure 3: Multi-instance recognition output (the top ten de-

tections) for the first bin picking scene with nine true posi-

tives (green) and one false positive in the back (red).

density estimates on SE(3), whereas PPF* uses approx-

imate clustering. Our method achieves a substantial im-

provement over other methods, in particular the two RGB-D

based methods, which were designed for this kind of data.

5.5. Recognition results on domestic data set

The final experiment was performed on the data set

of [27], which is a challenging RGB-D based recognition

data set for domestic environments, containing thousands of

test scenes. Results have been reported for LINEMOD [16],

PPF [11] and two new RGB-D based methods [9, 27]. As

recommended in [27], we extract the top five modes in each

scene to build the precision-recall curves. For all objects ex-

cept the Shampoo, our method produces a higher F1 score

than the other 3D method, PPF. For the Camera object, the

most recent RGB-D method [9] outperforms ours. On av-

erage, our method outperforms existing methods, producing

the highest average F1 score. The results are listed in Tab. 3.

We stress that the methods [9, 16, 27] use both geometric

and appearance cues from RGB-D templates, whereas PPF

and our method use only the geometry to match a full 3D

model to a scene view. We would like to try using color-

based local 3D features with our approach, as this should

allow for further improvements for RGB-D data sets.

5.6. Runtimes

In practice, our system has a per-object runtime—

including preprocessing, feature computation and match-

ing, which are all amortized over all objects—of 2–4 s (3.5 s

for UWA, 4 s for Queen’s, 2 s for the bin picking data set and

3 s for the domestic data set). These numbers are obtained

by execution on a consumer laptop with a 2.60 GHz Intel i7-

5600U CPU with four cores, leaving a potential for speedup

on other architectures and with further optimizations. More

than 90 % of this time is spent on 3D features and matching

Object [16] [11] [27] [9] Ours

Coffee cup 0.819 0.867 0.877 0.932 0.993

Shampoo 0.625 0.651 0.759 0.735 0.709

Joystick 0.454 0.277 0.534 0.924 0.973

Camera 0.422 0.407 0.372 0.903 0.711

Juice 0.494 0.604 0.870 0.819 0.975

Milk 0.176 0.259 0.385 0.510 0.776

Average 0.498 0.511 0.633 0.803 0.856

Table 3: F1 scores for the data set [27] and the follow-

ing methods: LINEMOD [16], PPF [11], Tejani et al. [27],

Doumanoglou et al. [9] and our pose clustering method.

to obtain correspondences. Thus, the clustering and mode

finding is not the bottleneck in our system.

For PPF* we used a regularly updated implementation

from the Halcon software (we used v. 13.0.0.2), which also

runs in a few seconds per instance. In [9], the total process-

ing time is unspecified, although it is stated that the main

bottleneck of the system takes 4–7 s. In [27] the runtime is

unspecified. Other systems relying on local features report

runtimes such as a few seconds [1] and minutes [15, 20].

6. Conclusions and future work

This work contributed a method for 3D object recogni-

tion using a new pose voting and clustering method for ob-

taining robust pose estimates in cluttered scenes. The pose

voting exploited the fact that corresponding oriented points

between two models can be used to cast a constrained num-

ber of votes for the correct pose aligning the two models.

For the final inference step, a branch and bound search was

performed to compute density estimates for each pose. An

initial sensitivity analysis showed increased robustness to

outlier correspondences compared to RANSAC. When in-

tegrated into a local feature-based recognition pipeline, our

method achieved perfect recall for two well-known recog-

nition data sets and it has outperformed recent methods on

two RGB-D recognition data sets.

Our method is slightly sensitive towards planar or repeti-

tive structures, since the local feature correspondences scat-

ter randomly in their presence. We are currently investi-

gating whether other local features, e.g. edge based, can

be used to obtain better correspondences under such condi-

tions. We are also working on incorporating appearance in-

formation into our method using color-based local features,

which should allow for increased accuracy on RGB-D data.
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