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Abstract

Our goal is to design architectures that retain the

groundbreaking performance of CNNs for landmark lo-

calization and at the same time are lightweight, compact

and suitable for applications with limited computational

resources. To this end, we make the following contribu-

tions: (a) we are the first to study the effect of neural net-

work binarization on localization tasks, namely human pose

estimation and face alignment. We exhaustively evaluate

various design choices, identify performance bottlenecks,

and more importantly propose multiple orthogonal ways to

boost performance. (b) Based on our analysis, we propose

a novel hierarchical, parallel and multi-scale residual ar-

chitecture that yields large performance improvement over

the standard bottleneck block while having the same num-

ber of parameters, thus bridging the gap between the orig-

inal network and its binarized counterpart. (c) We per-

form a large number of ablation studies that shed light

on the properties and the performance of the proposed

block. (d) We present results for experiments on the most

challenging datasets for human pose estimation and face

alignment, reporting in many cases state-of-the-art perfor-

mance. Code can be downloaded from https://www.

adrianbulat.com/binary-cnn-landmarks

1. Introduction

This work is on localizing a predefined set of fiducial

points on objects of interest which can typically undergo

non-rigid deformations like the human body or face. Very

recently, work based on Convolutional Neural Networks

(CNNs) has revolutionized landmark localization, demon-

strating results of remarkable accuracy even on the most

challenging datasets for human pose estimation [2, 20, 32]

and face alignment [3]. However, deploying (and training)

such methods is computationally expensive, requiring one

or more high-end GPUs, while the learned models typically
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BN, Binary
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Figure 1: (a) The original bottleneck layer of [9]. (b) The

proposed hierarchical parallel & multi-scale structure: our

block increases the receptive field size, improves gradient

flow, is specifically designed to have (almost) the same

number of parameters as the original bottleneck, does not

contain 1 × 1 convolutions, and in general is derived from

the perspective of improving the performance and efficiency

for binary networks. Note: a layer is depicted as a rectan-

gular block containing: its filter size, the number of input

and output channels; ”C” - denotes concatenation and ”+”

an element-wise sum.

require hundreds of MBs, thus rendering them completely

unsuitable for real-time or mobile applications. This work

is on highly accurate and robust yet efficient and lightweight

landmark localization using binarized CNNs.

Our work is inspired by very recent results of binarized

CNN architectures on image classification [24, 7]. Contrary

to these works, we are the first to study the effect of neural

network binarization on fine-grained tasks like landmark lo-

calization. Similarly to [24, 7], we find that binarization re-

sults in performance drop, however to address this we opted

to investigate and propose several architectural innovations

which led to the introduction of a completely novel hierar-
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chical, parallel and multi-scale residual block, as opposed

to investigating ways to improve the binarization process as

proposed in [24, 7]. In summary, our contributions are:

1. We are the first to study the effect of binarization on

state-of-the-art CNN architectures for the problem of

localization, namely human pose estimation and face

alignment. To this end, we exhaustively evaluate various

design choices, and identify performance bottlenecks.

More importantly, we describe multiple orthogonal ways

to boost performance; see Subsections 4.2, 4.3 and 4.4.

2. Based on our analysis, we propose a new hierarchical,

parallel and multi-scale residual architecture (see Sub-

section 4.5) specifically designed to work well for the

binary case. Our block results in large performance im-

provement over the baseline binary residual block of

[9] (about 6% in absolute terms when the same num-

ber of parameters are used (see Subsection 5.1, Tables 3

and 4)).

3. While our newly proposed block was developed with the

goal of improving the performance of binary networks,

we also show that the performance boost offered by the

proposed architecture also generalizes to some extent for

the case of real-valued networks (see Subsection 5.2).

4. We perform a large number of ablation studies that shed

light on the properties and the performance of the pro-

posed block (see Sections 5 and 7).

5. We present results for experiments on the most challeng-

ing datasets for human pose estimation and face align-

ment, reporting in many cases state-of-the-art perfor-

mance (see Section 7).

2. Closely Related Work

This Section reviews related work on network quantiza-

tion, network design, and gives an overview of the state-of-

the-art on human pose estimation and face alignment.

Network quantization. Prior work [10] suggests that high

precision parameters are not essential for obtaining top re-

sults for image classification. In light of this, [5, 17] propose

16- and 8-bit quantization, showing negligible performance

drop on a few small datasets [16]. [36] proposes a tech-

nique which allocates different numbers of bits (1-2-6) for

the network parameters, activations and gradients.

Binarization (i.e. the extreme case of quantization) was

long considered to be impractical due to the destructive

property of such a representation [5]. Recently [26] showed

this not to be the case and that by quantizing to {−1, 1}
good results can be actually obtained. [6] introduces a new

technique for training CNNs that uses binary weights for

both forward and backward passes, however, the real pa-

rameters are still required during training. The work of [7]

goes one step further and binarizes both parameters and ac-

tivations. In this case multiplications can be replaced with

elementary binary operations [7]. By estimating the binary

weights with the help of a scaling factor, [24] is the first

work to report good results on a large dataset (ImageNet).

Notably, our method makes use of the recent findings from

[24] and [7] using the same way of quantizing the weights

and replacing multiplications with bit-wise xor operations.

Our method differs from all aforementioned works in

two key respects: (a) instead of focusing on image classi-

fication, we are the first to study neural network binariza-

tion in the context of a fine-grained computer vision task

namely landmark localization (human pose estimation and

facial alignment) by predicting a dense output (heatmaps)

in a fully convolutional manner, and (b) instead of enhanc-

ing the results by improving the quantization method, we

follow a completely different path, by enhancing the per-

formance via proposing a novel architectural design for a

hierarchical, parallel and multi-scale residual block.

Block design. The proposed method uses a residual-based

architecture and hence the starting point of our work is the

bottleneck block described in [8, 9]. More recently, [33] ex-

plores the idea of increasing the cardinality of the residual

block by splitting it into a series of c parallel (and much

smaller so that the number of parameters remains roughly

the same) sub-blocks with the same topology which behave

as an ensemble. Beyond bottleneck layers, Szegedy et al.

[28] propose the inception block which introduces parallel

paths with different receptive field sizes and various ways of

lowering the number of parameters by factorizing convolu-

tional layers with large filters into smaller ones. In a follow-

up paper [27], the authors introduce a number of inception-

residual architectures. The latter work is the most related

one to the proposed method.

Our method is different from the aforementioned archi-

tectures in the following ways (see Fig. 1b): we create a

hierarchical, parallel and multi-scale structure that (a) in-

creases the receptive field size inside the block and (b) im-

proves gradient flow, (c) is specifically designed to have (al-

most) the same number of parameters as the original bottle-

neck, (d) our block does not contain 1×1 convolutions, and

(e) our block is derived from the perspective of improving

the performance and efficiency of binary networks.

Network design. Our target was not to propose a new net-

work architecture for landmark localization; hence we used

the state-of-the-art Hour-Glass (HG) network of [20] which

makes use of the bottleneck block of [8]. Because we are in-

terested in efficiency, all of our experiments are conducted

using a single network i.e. we do not use stacking as in

[20]. Our baseline was the binary HG obtained by directly

quantizing it using [24]. As Table 1 shows, there is a sig-

nificant performance gap between the binary and the real

valued HGs. We bridge this gap by replacing the bottleneck

block used in the original HG with the proposed block.

Human Pose Estimation. Recent work using CNNs has
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shown remarkable results [31, 30, 21, 11, 2, 20, 32], yet all

these methods are computationally demanding, requiring at

least one high-end GPU. In contrast, our network uses bi-

nary weights and activations and as such is intended to run

on systems with limited resources (e.g. smartphones).

Face alignment. Current state-of-the-art for large pose 2D

and 3D face alignment is also based on CNNs [14, 1, 3];

however, these methods are computationally demanding.

Our network produces state-of-the-art results for this task,

yet it is designed to run on devices with limited resources.

3. Background

The ResNet consists of two type of blocks: basic and

bottleneck. We are interested only in the latter one which

was designed to reduce the number of parameters and keep

the network memory footprint under control. We use the

“pre-activation” version of [9], in which batch normaliza-

tion [12] and the activation function precede the convolu-

tional layer. This block is shown in Fig. 1a. Note that we

used the version of bottleneck defined in [20] the middle

layer of which has 128 channels (vs 64 used in [9]).

The residual block is the main building block of the HG

which is a state-of-the-art architecture for landmark local-

ization that predicts a set of heatmaps (one for each land-

mark) in a fully convolutional fashion. The HG network is

an extension of [18] allowing however for a more symmet-

ric top-down and bottom-up processing. See also [20].

4. Method

Herein, we describe how we derive the proposed binary

hierarchical, parallel and multi-scale block of Fig. 4e. In

Section 5.1, by reducing the number of its parameters to

match the ones of the original bottleneck, we further derive

the block of Fig. 1b. This Section is organized as follows:

• We start by analyzing the performance of the binarized

HG in Subsection 4.1 which provides the motivation as

well as the baseline for our method.

• Then, we propose a series of architectural innovations in

Subsections 4.2, 4.3, 4.4 and 4.5 (shown in Figs. 4b, 4c

and 4d) each of which is evaluated and compared against

the binarized residual block of Subsection 4.1.

• Finally, by combining ideas from these architectures, we

propose the binary hierarchical, parallel and multi-scale

block of Fig. 4e. Note that the proposed block is not

a trivial combination of the aforementioned architectures

but a completely new structure.

We note that all results for this Section were generated

for the task of human pose estimation using the standard

training-validation partition of MPII [2, 20].

4.1. Binarized HG

We start from the original bottleneck blocks of the HG

network and, following [24], we binarize them keeping only

the first and last layers of the network real. This is crucial,

especially for the very last layer where higher precision is

required for producing a dense output (heatmaps). Note that

these layers account for less than 0.01% of the total number

of parameters.

The performance of the original (real-valued) and the bi-

narized HG networks can be seen in Table 1. We observe

that binarization results in significant performance drop. As

we may notice, for almost all parts, there is a large differ-

ence in performance which clearly indicates that the binary

network has significant less representational power. Some

failure cases are shown in Fig. 2 illustrating that the binary

network was not able to learn some difficult poses. We ad-

dress this with a better architecture as detailed in the next

four Subsections.

Crit. Bottleneck (real) Bottleneck (binary)

Head 94.9 90.5

Shld 85.8 79.6

Elbow 76.9 63.0

Wrist 71.3 57.2

Hip 78.1 71.1

Knee 70.1 58.2

Ankle 63.2 53.4

PCKh 76.5 67.2

# par. 3.5M 3.5M

Table 1: PCKh error on MPII dataset for real-valued and

binary bottleneck blocks within the HG network.

B
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a
l

Figure 2: Examples of failure cases for the binarized HG

(first row) and predictions of its real-valued counterpart

(second row). The binary HG misses certain range of poses

while having similar accuracy for the correct parts.

4.2. On the Width of Residual Blocks

The original bottleneck block of Fig. 4a is composed

of 3 convolutional layers with a filter size of 1 × 1, 3 × 3
and 1× 1, with the first layer having the role of limiting the
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width (i.e. the number of channels) of the second layer, thus

greatly reducing the number of parameters inside the mod-

ule. However, it is unclear whether the idea of having a bot-

tleneck structure will be also successful for the binary case,

too. Due to the limited representational power of the bi-

nary layers, greatly reducing the number of channels might

reduce the amount of information that can be passed from

one layer to another, leading to lower performance.

To investigate this, we modify the bottleneck block by

increasing the number of channels in the thin 3 × 3 layer

from 128 to 256. By doing so, we match the number of

channels from the first and last layer, effectively removing

the “bottleneck”, and increasing the amount of information

that can be passed from one block to another. The resulting

wider block is shown in Fig. 4b. Here, “wider”1 refers to

the increased number of channels over the initial thin layer.

As Table 2 illustrates, while this improves performance

against the baseline, it also raises the memory requirements.

Conclusion: Widening the thin layer offers tangible perfor-

mance improvement, however at a high computational cost.

4.3. On Multi­Scale Filtering

Small filters have been shown both effective and efficient

[25, 28] with models being solely made up by a combination

of convolutional layers with 3× 3 and/or 1× 1 filters [8, 9,

25]. For the case of real-valued networks, a large number

of kernels can be learned. However, for the binary case, the

number of possible unique convolutional kernels is limited

to 2k states only, where k is the size of the filter.

To address the limited representation power of 3× 3 fil-

ters for the binary case, and similarly to [27], we largely de-

part from the block of Fig. 4b by proposing the multi-scale

structure of Fig. 4c. Note that we implement our multi-scale

approach using both larger filter sizes and max-pooling,

which greatly increase the effective receptive field within

the block. Also, because our goal is to analyze the impact

of a multi-scale approach alone, we intentionally keep the

number of parameters to a similar level to that of the origi-

nal bottleneck block of Fig. 4a. To this end, we avoid a leap

in the number of parameters, by (a) decomposing the 5× 5
filters into two layers of 3× 3 filters, and (b) by preserving

the presence of thin layer(s) in the middle of the block.

Given the above, we split the input into two branches.

The first (left) branch works at the same scale as the original

bottleneck of Fig. 4a but has a 1 × 1 layer that projects the

256 channels into 64 (instead of 128) before going to the

3 × 3 one. The second (right) branch performs a multi-

1The term wider here strictly refers to a “moderate” increase in the

number of channels in the thin layer (up to 256), effectively removing the

“bottleneck”. Except for the naming there is no other resemblance with

[34] which performs a study of wide vs deep, using a different building

block alongside a much higher number of channels (up to 2048) and with-

out any form of quantization. A similar study falls outside the scope of our

work.

scale analysis by firstly passing the input through a max-

pooling layer and then creating two branches, one using a

3 × 3 filter and a second one using a 5 × 5 decomposed

into two 3 × 3. By concatenating the outputs of these two

sub-branches, we obtain the remaining 64 channels (out of

the 128 of the original bottleneck block). Finally, the two

main branches are concatenated adding up to 128 channels,

which are again back-projected to 256 with the help of a

convolutional layer with 1× 1 filters.

The accuracy of the proposed structure can be found in

Table 2. We can observe a healthy performance improve-

ment at little additional cost and similar computational re-

quirements to the original bottleneck of Fig. 4a.

Conclusion: When designing binarized networks, multi-

scale filters should be preferred.

4.4. On 1× 1 Convolutions

In the previously proposed block of Fig. 4c, we opted to

avoid an increase in the number of parameters, by retain-

ing the two convolutional layers with 1 × 1 filters. In this

Subsection, by relaxing this restriction, we analyze the in-

fluence of 1× 1 filters on the overall network performance.

In particular, we remove all convolutional layers with 1×
1 filters from the multi-scale block of Fig. 4c, leading to

the structure of Fig. 4d. Our motivation to remove 1 × 1
convolutions for the binary case is the following: because

1 × 1 filters are limited to two states only (either 1 or -1)

they have a very limited learning power. Due to their nature,

they behave as simple filters deciding when a certain value

should be passed or not. In practice, this allows the input to

pass through the layer with little modifications, sometimes

actually blocking “good features” and hurting the overall

performance by a noticeable amount. This is particularly

problematic for the task of landmark localization, where a

high level of detail is required for successful localization.

Examples of this problem are shown in Fig. 3.

Results reported in Table 2 show that by removing 1× 1
convolutions, performance over the baseline is increased by

more than 8%. Even more interestingly, the newly intro-

duced block outperforms the one of Subsection 4.2, while

having less parameters, which shows that the presence of

1× 1 filters limits the performance of binarized CNNs.

Conclusion: The use of 1 × 1 convolutional filters on bi-

narized CNNs has a detrimental effect on performance and

should be avoided.

4.5. On Hierarchical, Parallel & Multi­Scale

Binary networks are even more sensitive to the problem

of fading gradients [7, 24], and for our network we found

that the gradients are up to 10 times smaller than those cor-

responding to its real-valued counterpart. To alleviate this,

we design a new module which has the form of a hierarchi-

cal, parallel multi-scale structure allowing, for each resolu-
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Figure 3: Examples of features before and after an 1×1 con-

volutional layer. Often the features are copied over with lit-

tle modifications, usually consisting in the details’ removal.

The contrast was altered for better visualization.

tion, the gradients to have 2 different paths to follow, the

shortest of them being always 1. The proposed block is de-

picted in Fig. 4e. Note that, in addition to better gradient

flow, our design encompasses all the findings from the pre-

vious Subsections: (a) no convolutional layers with 1×1 fil-

ters should be used, (b) the block should preserve its width

as much as possible (avoiding large drops in the number of

channels), and (c) multi-scale filters should be used.

Contrary to the blocks described in Subsections 4.2 - 4.4,

where the gradients may need to pass through two more lay-

ers before reaching the output of the block, in the newly pro-

posed module, each convolutional layer has a direct path

that links it to the output, so that at any given time and

for all the layers within the module the shortest possible

path is equal to 1. The presence of a hierarchical struc-

ture inside the module efficiently accommodates larger fil-

ters (up to 7 × 7), decomposed into convolutional layers

with 3 × 3 filters. Furthermore, our design avoids the us-

age of an element-wise summation layer as for example in

[33, 27], further improving the gradient flow and keeping

the complexity under control.

As we can see in Table 2, the proposed block matches

and even outperforms the block proposed in Section 4.3

having far less parameters.

Block type # params PCKh

Bottleneck (original) (Fig. 4a) 3.5M 67.2%

Wider (Fig. 4b) 11.3M 70.7%

Multi-Scale (MS) (Fig. 4c) 4.0M 69.3%

MS without 1x1 filters (Fig. 4d) 9.3M 75.5%

Hierarchical, Parallel & MS

(Ours, Final) (Fig. 4e)
6.2M 76%

Table 2: PCKh-based comparison of different blocks on

MPII validation set. # params refers to the number of pa-

rameters of the whole network.

Conclusion: Good gradient flow and hierarchical multi-

scale filtering are crucial for high performance without ex-

cessive increase in the parameters of the binarized network.

5. Proposed vs Bottleneck

In this Section, we attempt to make a fair comparison be-

tween the performance of the proposed block (Ours, Final,

as in Fig. 4e) against that of the original bottleneck module

(Fig. 4a) by taking two important factors into account:

• Both blocks should have the same number of parameters.

• The two blocks should be compared for the case of binary

but also real-valued networks.

With this in mind, in the following Sections, we show that:

• The proposed block largely outperforms a bottleneck with

the same number of parameters for the binary case.

• The proposed block also outperforms a bottleneck with

the same number of parameters for the real case but in

this case the performance difference is smaller.

We conclude that, for the real case, increasing the number

of parameters (by increasing width) results in performance

increase; however this is not the case for binary networks

where a tailored design as the one proposed here is needed.

Layer type # parameters PCKh

Bottleneck (Original) (Fig. 4a) 3.5M 67.2%

Wider (Fig. 4b) 11.3M 70.7%

Bottleneck (wider) + no 1× 1 5.8M 69.5%

(Ours, Final) (Fig. 4e) 6.2M 76%

Table 3: PCKh-based performance on MPII validation set

for binary blocks: the # parameters of the original bottle-

neck are increased to match the # parameters of the pro-

posed block. This firstly gives rise to the Wider block and

its variant without the 1× 1 Convolutions.

5.1. Binary

To match the number of parameters between the pro-

posed and bottleneck block, we follow two paths. Firstly,

we increase the number of parameters of the bottleneck: (a)

a first way to do this is to make the block wider as described

in Section 4.2. Note that in order to keep the number or

input-output channels equal to 256, the resulting block of

Fig. 4b has a far higher number of parameters than the

proposed block. Despite this, the performance gain is only

moderate (see Section 4.2 and Table 3). (b) Because we

found that the 1×1 convolutional layers have detrimental ef-

fect to the performance of the Multi-Scale block of Fig. 4c,

we opted to remove them from the bottleneck block, too.

To this end, we modified the Wider module by (a) remov-

ing the 1 × 1 convolutions and (b) halving the number of

parameters in order to match the number of parameters of

the proposed block. The results in Table 3 clearly show that

this modification is helpful but far from being close to the

performance achieved by the proposed block.
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1x1, 256 -> 128

3x3, 128 -> 128

1x1, 128 -> 256

+

BN, Binary

BN, Binary

BN, Binary

(a) The Original Bottleneck block with

pre-activation, as defined in [9]. Its bina-

rized version is described in Section 4.1.

1x1, 256 -> 256

3x3, 256 -> 256

1x1, 256 -> 256

+

BN, Binary

BN, Binary

BN, Binary

(b) The Wider version of (a) produced by

increasing the number of filters in the sec-

ond layer. See Subsection 4.2.

1x1, 256 -> 64

3x3, 64 -> 64

POOL

3x3, 256 -> 323x3, 256 -> 32

3x3, 32-> 32

UP

C

C

1x1, 128 -> 256

+

BN, Binary

BN, Binary

BN, Binary

BN, Binary

BN, Binary

BN, Binary

(c) Largely departing from (b), this block

consists of Multi-Scale (MS) filters for

analyzing the input at multiple scales. See

Subsection 4.3.

3x3, 256 -> 192

POOL

3x3, 256 -> 323x3, 256 -> 32

3x3, 32-> 32

UP

C

C

+

BN, Binary

BN, Binary

BN, Binary

BN, Binary

(d) A variant of the MS block introduced in (c) after removing

all convolutional layers with 1× 1 filters (MS Without 1× 1

filters). See Subsection 4.3.

3x3, 256 -> 128

3x3, 128 -> 64

3x3, 64 -> 64

C

+

BN, Binary

BN, Binary

BN, Binary

(e) The proposed Hierarchical, Parallel & MS (denoted in

the paper as Ours, final) block incorporates all ideas from (b),

(c) and (d) with an improved gradient flow. See Subsection 4.5

Figure 4: Different types of blocks described and evaluated. Our best performing block is shown in figure (e). A layer is

depicted as a rectangular block containing: its filter size, number of input channels and the number of output channels). “C”

- denotes concatenation operation and “+” an element-wise sum.

Layer type # parameters PCKh

Bottleneck (original) 3.5M 67.2%

(Ours, Final) (Fig. 1b) 4.0M 72.7%

Table 4: PCKh-based performance on MPII validation set

for binary blocks: the # parameters of the proposed block

are decreased to match the # parameters of the bottleneck.

Secondly, we decrease the number of parameters in the

proposed block to match the number of parameters of the

original bottleneck. This block is shown in Fig. 1b. To this

end, we reduced the number of input-output channels of the

proposed block from 256 to 192 so that the number of chan-

nels in the first layer are modified from [256 → 128, 3×3] to

[192→96, 3×3], in the second layer from [128→64, 3×3]

to [96→48, 3×3] and in the third layer from [64→64, 3×3]

to [48→48, 3 × 3]. Notice, that even in this case, the pro-

posed binarized module outperforms the original bottleneck

block by more than 5% (in absolute terms) while both have

very similar number of parameters (see Table 4).

5.2. Real

While the proposed block was derived from a binary per-

spective, Table 5 shows that a significant performance gain

is also observed for the case of real-valued networks. In or-

der to quantify this performance improvement and to allow

for a fair comparison, we increase the number of channels

inside the original bottleneck block so that both networks

have the same depth and a similar number of parameters.

Even in this case, our block outperforms the original block

although the gain is smaller than that observed for the

binary case. We conclude that for real-valued networks
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performance increase can be more easily obtained by

simply increasing the number of parameters, but for the bi-

nary case a better design is needed as proposed in this work.

Layer type # parameters PCKh

Bottleneck (wider) 7.0M 83.1%

(Ours, Final) 6.2M 85.5%

Table 5: PCKh-based performance on MPII validation set

for real-valued blocks: Our block is compared with a wider

version of the original bottleneck so that both blocks have

similar # parameters.

6. Ablation studies

In this Section, we present a series of other architectural

variations and their effect on the performance of our binary

network. All reported results are obtained using the pro-

posed block of Fig. 4e coined Ours, Final. We focus on the

effect of augmentation and different losses which are novel

experiments not reported in [24], and then comment on the

effect of pooling, ReLUs and performance speed-up provid-

ing more details in the supplementary material.

Is Augmentation required? Recent works have sug-

gested that binarization is an extreme case of regularization

[6, 7, 19]. In light of this, one might wonder whether data

augmentation is still required. Table 6 shows that in order to

accommodate the presence of new poses and/or scale vari-

ations, data augmentation is very helpful providing a large

increase (4%) in performance.

Layer type # parameters PCKh

(Ours, Final) (No Aug.) 6.2M 72.1%

(Ours, Final) + Aug. 6.M 76%

Table 6: The effect of using augmentation when training

our binary network in terms of PCKh-based performance

on MPII validation set.

The effect of loss. We trained our binary network to pre-

dict a set of heatmaps, one for each landmark [30]. To this

end, we experimented with two types of losses: the first

one places a Gaussian around the correct location of each

landmark and trains using a pixel-wise L2 loss [30]. How-

ever, the gradients generated by this loss are usually small

even for the case of a real-valued network. Because bina-

rized networks tend to amplify this problem, as an alterna-

tive, we also experimented with the Sigmoid cross-entropy

pixel-wise loss typically used for detection tasks [35]. We

found that the use of the Sigmoid cross-entropy pixel-wise

loss increased the gradients by 10-15x (when compared to

the L2 loss), offering a 2% improvement (see Table 7), after

being trained for the same number of epochs.

Layer type # parameters PCKh

(Ours, Final) + L2 6.2M 73.8%

(Ours, Final) + Sigmoid 6.2M 76%

Table 7: The effect of using different losses (Sigmoid vs L2)

when training our binary network in terms of PCKh-based

performance on MPII validation set.

Pooling type. In line with [24], we found that max-pooling

outperforms average pooling, resulting in 4% performance

increase. See also supplementary material.

ReLUs. In line with [24], we found that by adding a ReLU

activation after each convolutional layer performance is in-

creased, observing a 2% performance improvement. See

also supplementary material.

Performance. In line with [24], we observed speedups of

up to 3.5x when compared against cuBLAS. We did not

conduct experiments on CPUs. However, since we used

the same method for binarization as in [24], speed improve-

ments of the order of 58x, are to be expected allowing the

system to run in real-time on a CPU using a single core. In

terms of memory compression, we can achieve a compres-

sion rate of 39x when compared against its single precision

counterpart from Torch. See also supplementary material.

7. Comparison with state-of-the-art

In this Section, we compare our method against the cur-

rent state-of-the-art for human pose estimation and 3D face

alignment. Our final system comprises a single HG net-

work but replaces the real-valued bottleneck block used in

[20] with the proposed binary, parallel, multi-scale block

trained with the improvements detailed in Section 6. More-

over, to show that the proposed block generalizes well pro-

ducing consistent results across various datasets and tasks,

our supplementary material provides the results of a facial

part segmentation experiment.

Human Pose Estimation. As in all previous experiments,

we used the standard training-validation partition of MPII

[2, 20]. In Table 8, we report the performance of (a) the

proposed binary block, (b) the proposed block when im-

plemented and trained with real values, (c) the real-valued

stacked HG network consisting of 8 stacked single real-

valued HG networks trained with intermediate supervision

(state-of-the-art on MPII [20]) and, finally, (d) the same

real-valued network as in (c) where the bottleneck block is

replaced by our proposed block.

The results are shown in Table 8. We observe that when

a single HG network with the proposed block is trained with

real weights, its performance reaches that of [20]. This re-

sult clearly illustrates the enhanced learning capacity of the

proposed block. Moreover, there is still a gap between the

binary and real-valued version of the proposed block indi-
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cating that margin for further improvement is possible. We

also observe that a full-sized model (with 8 HG networks)

based on the proposed block performs slightly better than

the original network from [20], indicating that, for the real-

valued case, the new block is more effective than the origi-

nal one when a smaller computational budget is used.

Crit. [20] Ours, bin. Ours[1x], real Ours[8x], real

Head 97.3 94.7 96.8 97.4

Shld 96.0 89.6 93.8 96.0

Elbow 90.2 78.8 86.4 90.7

Wrist 85.2 71.5 80.3 86.2

Hip 89.1 79.1 87.0 89.6

Knee 85.1 70.5 80.4 86.1

Ankle 82.0 64.0 75.7 83.2

PCKh 89.3 78.1 85.5 89.8

# par. 25M 6M 6M 25M

Table 8: PCKh-based comparison on MPII validation set.

Face alignment. We used three very challenging

datasets for large pose face alignment, namely AFLW [15],

AFLW-PIFA [13], and AFLW2000-3D [37]. The evaluation

metric is the Normalized Mean Error (NME) [13].

AFLW is a large-scale face alignment dataset consisting

of 25993 faces annotated with up to 21 landmarks. The im-

ages are captured in arbitrary conditions exhibiting a large

variety of poses and expressions. As Table 9 shows, our

binarized network outperforms the current state-of-the-art

methods, all of which use large real-valued CNNs.

Method [0,30] [30,60] [60,90] mean

HyperFace [22] 3.93 4.14 4.71 4.26

AIO [23] 2.84 2.94 3.09 2.96

Ours 2.77 2.86 2.90 2.85

Table 9: NME-based (%) comparison on AFLW test set.

The evaluation is done on the test set used in [23].

AFLW-PIFA [13] is a grey-scale subset of AFLW [15],

consisting of 5200 images (3901 for training and 1299 for

testing) selected so that there is a balanced number of im-

ages for yaw angle in [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦].
All images are annotated with 34 points from a 3D perspec-

tive. Fig. 5a shows our results on AFLW-PIFA. When eval-

uated on both visible and occluded points, our method im-

proves upon the current best result of [1] (which uses real

weights) by more than 10%. For additional numerical re-

sults on AFLW-PIFA, see also our supplementary material.

AFLW2000-3D is a subset of AFLW re-annotated by

[37] from a 3D perspective with 68 points. We used this

dataset only for evaluation. The training was done using the

first 40000 images from 300W-LP [37]. As Fig. 5b shows,

on AFLW2000-3D, the improvement over the state-of-the-

art method of [37] (real-valued) is even larger. As further re-

sults in our supplementary material show, while our method

improves over the entire range of poses, the gain is notice-

ably higher for large poses ([60◦ − 90◦]) where we outper-

form [37] by more than 40%.

(a) (b)

Figure 5: Cumulative error curves (a) on AFLW-PIFA,

evaluated on all 34 points (CALE is the method of

[1]), (b) on AFLW2000-3D on all points computed on

a random subset of 696 images equally represented in

[0◦, 30◦], [30◦, 60◦], [60◦, 90◦] (see also [37]).

Training. All models were trained from scratch follow-

ing the algorithm described in [24] and using rmsprop [29].

The initialization was done as in [8]. For human pose es-

timation, we randomly augmented the data with rotation

(between -40o and 40o degrees), flipping and scale jitter-

ing (between 0.7 and 1.3). We trained the network for 100

epochs, dropping the learning rate four times, from 2.5e-4

to 5e-5. A similar procedure was applied to the models for

3D face alignment, with the difference that the training was

done for 55 epochs only. The input was normalized between

0 and 1 and all described networks were trained using the

binary cross-entropy loss. The models were implemented

with Torch7 [4].

8. Conclusion

We proposed a novel block architecture, particularly tai-

lored for binarized CNNs for the tasks of human pose esti-

mation and face alignment. During the process, we exhaus-

tively evaluated various design choices, identified perfor-

mance bottlenecks and proposed solutions. We showed that

our hierarchical, parallel and multi-scale block enhances

representational power, allowing for stronger relations to be

learned without excessively increasing the number of net-

work parameters. The proposed architecture is efficient and

can run on limited resources.
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