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Abstract

Image clustering is a crucial but challenging task in ma-

chine learning and computer vision. Existing methods often

ignore the combination between feature learning and clus-

tering. To tackle this problem, we propose Deep Adaptive

Clustering (DAC) that recasts the clustering problem into a

binary pairwise-classification framework to judge whether

pairs of images belong to the same clusters. In DAC, the

similarities are calculated as the cosine distance between

label features of images which are generated by a deep con-

volutional network (ConvNet). By introducing a constraint

into DAC, the learned label features tend to be one-hot vec-

tors that can be utilized for clustering images. The main

challenge is that the ground-truth similarities are unknown

in image clustering. We handle this issue by presenting

an alternating iterative Adaptive Learning algorithm where

each iteration alternately selects labeled samples and trains

the ConvNet. Conclusively, images are automatically clus-

tered based on the label features. Experimental results show

that DAC achieves state-of-the-art performance on five pop-

ular datasets, e.g., yielding 97.75% clustering accuracy on

MNIST, 52.18% on CIFAR-10 and 46.99% on STL-10.

1. Introduction

Image clustering is an essential data analysis tool in ma-

chine learning and computer vision. Many applications

such as content-based image annotation [19, 20, 22, 23] and

image retrieval [12, 24, 34] can be viewed as different in-

stances of image clustering. Technically, image clustering

is the process of grouping images into clusters such that the

images within the same clusters are similar to each other,

while those in different clusters are dissimilar.

In the literature, much research has been dedicated to

image clustering [9, 29, 32, 37, 38]. Traditionally, various

clustering methods have been explored, including Kmeans

[32], agglomerative clustering [9], and so on. In spite of

their success in data clustering, traditional methods depend

on predefined distance metrics which are difficult to identify

Initial stage Intermediate stage Final stage

Figure 1. Clustering results on the MNIST [16] test set. Differ-

ent colors represent different clusters, respectively. For clarity, we

map the learned label features to the regular decagon in the two-

dimensional space. The ten vertexes correspond to the ten one-hot

vectors in the ten-dimensional space, respectively. The details of

the mapping function can be found in the supplementary material.

on image datasets. Recently, efforts have focused on deep

unsupervised feature learning methods, such as the auto-

encoder [1] and the auto-encoding variational bayes [13],

for learning the representations of images which are used

for clustering images. Technically, they adopt a multi-stage

pipeline that pre-trains deep neural networks with unsuper-

vised methods firstly and employs traditional methods for

clustering images as post processing. While the advances

are observable, these representation-based approaches also

have some intrinsic limitations. First, multi-stage image

clustering paradigms are obviously cumbersome in practice.

Second, the learned representations are fixed after the unsu-

pervised feature learning. Consequently, in the clustering

process, the representations can not be further improved to

obtain better performance.

In this paper, we introduce Deep Adaptive Clustering, a

single-stage ConvNet-based method to cluster images. To

this end, we consider the image clustering task as a binary

pairwise-classification problem to judge whether pairs of

images belong to the same clusters. Specifically, the image

are represented by label features generated by a deep Con-

vNet, and similarities are measured by the cosine distance

between label features. Furthermore, the learned label fea-

tures tend to be one-hot vectors by introducing a constraint

into DAC. Since the ground-truth similarities are unknown,

we also develop an Adaptive Learning algorithm, an alter-

nating iterative method, to optimize our model. During each

iteration, pairwise images with the estimated similarities are
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first selected based on the fixed ConvNet. Subsequently,

DAC employs the selected labeled samples to train the Con-

vNet in a supervised way. The algorithm converges when all

the samples are included for training and the objective func-

tion of the binary pairwise-classification problem can not be

improved further. Finally, images are clustered by locating

the largest response of label features. The visual results of

DAC on the MNIST test set [16] are illustrated in Figure 1.

To sum up, the main contributions of this work are:

• The proposed DAC model adopts a binary pairwise-

classification framework for image clustering, which

benefits the feature learning in a “supervised” manner.

• The learned label features tend to be one-hot vectors

by introducing a constraint into DAC. Thus we can per-

form clustering by locating the largest response of the

learned label features, which can dramatically simplify

the image clustering process.

• We introduce a single-stage method named Adaptive

Learning algorithm to optimize our model, which can

streamline the learning procedure for image clustering.

2. Related Work

Data Clustering. Much research has been devoted to

data clustering methods [9, 29, 32, 37, 38]. Generally,

existing methods can be roughly divided into three cat-

egories: distance-based, density-based and connectivity-

based methods. Distance-based methods, such as the K-

means [31, 32] and the agglomerative clustering (AC) [9],

seek to find the relationship between data points based on

various distance metrics. Density-based methods attempt

to cluster data points via a proper density function, in-

cluding the density-based spatial clustering of applications

with noise [33]. Compared with the previous methods,

connectivity-based methods cluster data points into a cluster

if they are highly connected. The frequently used method

is the spectral clustering (SC) [40]. The aforementioned

ideas form the basis of a number of methods, such as the

ensemble clustering [11], the non-negative matrix factoriza-

tion (NMF) based clustering [3], and so on.

Image Representation. Image representation is one of

the most important issues in image clustering. In the litera-

ture, several methods have been proposed. Clustering meth-

ods traditionally encode images according to low-level fea-

tures, such as HOG [6], SIFT [17], and so on. While these

feature descriptors may loose representations from messy

variables (e.g., rotation, luminance), they often suffer from

appearance variations of scenes and objects.

Over the last decade, deep unsupervised feature learn-

ing has been explored to learn the informative represen-

tations of images. Technically, most deep unsupervised

learning methods aim to learn the feature representations

that are able to reconstruct the inputs themselves, such as

the auto-encoder (AE) [1], the sparse auto-encoder (SAE)

[18], the denoising auto-encoder (DAE) [30], the decon-

volutional network (DeCNN) [39], the stacked what-where

auto-encoder (SWWAE) [41], and so on. Additionally, deep

generative models, including the auto-encoding variational

bayes (AEVB) [13] and the generative adversarial network

(GAN) [21], have been provided to encode visual informa-

tion recently. However, clustering results can not be ob-

tained immediately based on the generated representations

by the aforementioned methods.

Combination. Recently, several methods have been pro-

posed to combine feature learning with clustering into a sin-

gle model. Inspired by the parametric t-SNE [28], Xie et al.

[35] proposed deep embedded clustering (DEC), which can

be used to learn cluster centers. There is a nuisance fact that

the utilized deep networks require pre-training in advance.

However, how to effectively pre-train deep networks is an

open problem. Unlike DEC, the joint unsupervised learn-

ing (JULE) [36] guides agglomerative clustering and fea-

ture learning jointly based on the over-clustering initialized

by KNN. Since the distances between different images are

difficult to define, beginning with the over-clustering may

degrade the performance of JULE, especially when image

datasets are observably complicated.

Sample Selection. In machine learning, how to select

training samples to learn more effective models is an ac-

tive research topic. Primitively, boosting algorithm [8] ran-

domly selects partial samples from training set to train a set

of diverse models. And a single strong learner is created by

integrating these models. Furthermore, by mimicking the

cognitive process of humans, curriculum learning [2] uses

the easy samples first and gradually provides the learning

algorithm with more complex ones. To voluntarily select

samples in training, Kumar et al. [15] presented self-paced

learning that incorporates curriculum choosing into model

training. Although such achievements are notable, these

methods are purely working with the labeled data.

3. Deep Adaptive Clustering Model

To begin with, we assume that the relationship of pair-

wise images is binary. That is, each pair of images belong

to either the same clusters or different clusters. Based on

this assumption, we recast the image clustering task into a

binary pairwise-classification model. Since the similarities

between images are unknown, we adaptively select pairwise

images to train the model by investigating the similarities.

The flowchart of DAC is illustrated in Figure 2. More de-

tails are given in the following subsections.

3.1. Binary PairwiseClassification for Clustering

Given the unlabeled image dataset X = {xi}
n
i=1 and

the predefined number of clusters k, where xi indicates i-th
images, we formulate the image clustering task as a binary

pairwise-classification problem. Denote the training data
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Figure 2. The flowchart of DAC. The input is a set of unlabeled images. Step 1 generates the label features (as shown in the pink box) of

the images by using a ConvNet. Step 2 calculates the cosine similarities between images based on the label features. Step 3 selects training

samples according to the cosine similarities, and the samples depicted in the red boxes represent the omitted samples in training procedure.

Step 4 utilizes the selected samples to train the ConvNet based on the formulated binary pairwise-classification model. Iterate step 1 to step

4 until all the samples are considered for training. Conclusively, images are clustered by locating the largest response of label features.

as D = {(xi,xj , rij)}
n

i=1,j=1, where xi, xj ∈ X are the

unlabeled images (which refer to the input) and rij ∈ Y is

the unknown binary variable (which refer to the output). In

this work, rij = 1 indicates that xi, xj belong to the same

cluster and rij = 0 otherwise. Accordingly, the objective

function of DAC is defined as follows:

min
w

E(w) =
∑

i,j

L(rij , g(xi,xj ;w)), (1)

where L(rij , g(xi,xj ;w)) is the loss between rij and the

estimated similarity g(xi,xj ;w), w represents the model

parameters in function g. Formally,

L(rij , g(xi,xj ;w)) = (2)

−rij log(g(xi,xj ;w))− (1− rij) log(1− g(xi,xj ;w)).

Generally, two issues in Eq. (1) need to be addressed, i.e.,

the clusters of xi and xj are unacquirable by only accessing

to the estimated similarity g(xi,xj ;w) and Y is unknown

in the image clustering process. Section 3.2 and 3.3 focus

on addressing these two issues, respectively.

3.2. Label Features under Clustering Constraint

To measure the similarities of image pairs, we introduce

label features L = {li ∈ R
k}ni=1 , where li represents the

k-dimensional label feature of the image xi [10]. The simi-

larity g(xi,xj ;w) is defined as the cosine distance between

two label features. Further, we impose a clustering con-

straint on the label features to learn more beneficial feature

representations for clustering images, i.e.,

∀ i, ‖ li ‖2= 1, and lih ≥ 0, h = 1, · · · , k, (3)

where ‖ · ‖2 represents L2-norm of a vector and lih is the

h-th element of label feature li. Due to ∀ i, ‖ li ‖2= 1, the

cosine similarity g(xi,xj ;w) can be formulated as:

g(xi,xj ;w) = f(xi;w) · f(xj ;w) = li · lj , (4)

where fw is a mapping function that maps input images to

label features and the operator “·” represents dot product

between two label features. By introducing the clustering

constraint, the DAC model can be reformulated as:

min
w

E(w) =
∑

i,j

L(rij , li · lj),

s.t. ∀ i, ‖ li ‖2= 1, and lih ≥ 0, h = 1, · · · , k.

(5)

The clustering constraint in Eq. (3) brings an interesting

property for data clustering. Let Ek denote the standard

basis of the k-dimensional Euclidean space, we have the

following theorem (the proof of this theorem is reported in

the supplementary material):

THEOREM 1. If the optimal value of Eq. (5) is attained, for

∀ i, j, li ∈ E
k, li 6= lj ⇔ rij = 0 and li = lj ⇔ rij = 1.

Theorem 1 indicates that the learned label features are k
diverse one-hot vectors ideally. That is, images can be au-

tomatically clustered based on the learned label features.

3.3. Labeled Training Samples Selection

In practice, a strategy for selecting labeled training sam-

ples is needed, since Y is unknown in image clustering. For

ConvNets, specifically, we have two observations. First,

if ConvNets are already trained, the high-level features of

images can be generated. Second, for randomly initialized

ConvNets, they can also capture the low-level features of

images, since the randomly initialized filters act as edge de-

tectors [27]. Based on these observations, we employ ALL-

ConvNets [25] to implement fw and select labeled training
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samples based on the generated label features, i.e.,

rij :=







1, if li · lj ≥ u(λ),
0, if li · lj < l(λ),
None, otherwise,

i, j = 1, · · · , n, (6)

where λ is an adaptive parameter for controlling the selec-

tion, u(λ) and l(λ) are the thresholds for selecting similar

and dissimilar labeled samples, respectively. And “None”

implies that the sample (xi,xj , rij) is omitted for training.

Inspired by curriculum learning [2], we attempt to con-

trol the clustering procedure such that the samples are in-

creasingly selected. That is, “easy” samples with high like-

lihood are first selected as training samples to find rough

cluster patterns. Then, as the clustering procedure pro-

gresses, the trained ALL-ConvNets can be utilized for ex-

tracting more effective label features and more samples will

be gradually appended to find more refined cluster pat-

terns. For this purpose, we control the parameter λ, u(λ)
and l(λ) as follows. In the clustering process, λ is gradu-

ally increased. Furthermore, u(λ) ∝ −λ, l(λ) ∝ λ and

l(λ) ≤ u(λ) are permanently satisfied. And u(λ) = l(λ) is

satisfied if and only if all the samples are used for training.

So far we have addressed the two issues in Section 3.1.

The DAC model can be rewritten as:

min
w,λ

E(w, λ) =
∑

i,j

vijL(rij , li · lj) + u(λ)− l(λ),

s.t. l(λ) ≤ u(λ),

vij ∈ {0, 1}, i, j = 1, · · · , n,

∀ i, ‖ li ‖2= 1, and lih ≥ 0, h = 1, · · · , k,

rij :=







1, if li · lj ≥ u(λ),
0, if li · lj < l(λ),
None, otherwise,

i, j = 1, · · · , n,

(7)

where v is an indicator coefficient, i.e.,

vij :=

{

1, if rij ∈ {0, 1},
0, otherwise,

i, j = 1, · · · , n, (8)

where vij = 1 indicates that the sample (xi,xj , rij) is se-

lected for training, and vij = 0 otherwise. Notice that

u(λ)−l(λ) is a penalty term for the number of training sam-

ples. By decreasing the penalty term, more samples will be

selected for training until all the samples are included.

4. Deep Adaptive Clustering Algorithm

In this section, we present an optimization algorithm for

the DAC model in Eq. (7) and a label inference method for

image clustering.

4.1. Adaptive Learning

To optimize the model in Eq. (7), Adaptive Learning al-

gorithm, an alternating iterative optimization scheme, is de-

Algorithm 1 Deep Adaptive Clustering

Input: Dataset X = {xi}
n
i=1, fw, λ, u(λ), l(λ), η, m.

Output: Cluster label ci of xi ∈ X .

1: Randomly initialize w;

2: repeat

3: for all k ∈ {1, 2, · · · ,
⌊

n
m

⌋

} do

4: Sample batch Xk from X ; // m images per batch

5: Select training samples from Xk; // Eq. (6)

6: Calculate the indicator parameter v; // Eq. (8)

7: Update w by minimizing Eq. (10);

8: end for

9: Update λ according to Eq. (12);

10: until l(λ) > u(λ)
11: for all xi ∈ X do

12: li := f(xi;w);
13: ci := argmaxh(lih);
14: end for

veloped. The algorithm focuses on two issues, namely the

clustering constraint and the iterative optimization.

We establish a restraint layer to implement the clustering

constraint in Eq. (3). The mapping functions of the restraint

layer are formulated as:

Lout
h := exp

Lin

h
−max

h
(Lin

h )
, h = 1, · · · , k, (9a)

Lout
h :=

Lout
h

‖ Lout ‖2
, h = 1, · · · , k, (9b)

where L
in, L

out ∈ R
k are the input and output of the re-

straint layer, respectively. Lin
h and Lout

h represent the h-th

element of Lin and L
out, respectively. Note that all the ele-

ments of the output Lout are mapped into [0, 1] by Eq. (9a)

and the output Lout is simultaneously limited to unit vector

by Eq. (9b). In our model, the ALL-ConvNets are always

followed by the restraint layer. That is, ∀ i, li invariably

satisfies the clustering constraint in Eq. (3).

The optimization of w and λ is performed alternately.

Once r and v are obtained and λ is fixed, the DAC model

degenerates as follows:

min
w

E(w) =
∑

i,j

vijL(rij , f(xi;w) · f(xj ;w)). (10)

Since r and v are available, Eq. (10) is a supervised learning

problem that the back-propagation learning algorithm can

be utilized to update w. Specifically, the storage complexity

of r and v is O(n2) because the similarities of pairwise

images need to be calculated. It is too high to deal with large

datasets. To handle this issue, we randomly sample image

batches from the original datasets and update w on each

batch, as illustrated in the line 3 to line 8 of the Algorithm 1.

Similarly, our DAC model can be simplified as follows
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when w is fixed,

min
λ

E(λ) = u(λ)− l(λ). (11)

According to the gradient descent algorithm, in each itera-

tion, the update rule of λ can be written as:

λ := λ− η ·
∂E(λ)

∂λ
, (12)

where η is the learning rate of λ. Since u(λ) ∝ −λ and

l(λ) ∝ λ, ∂E
∂λ

= ∂u(λ)
∂λ

− ∂l(λ)
∂λ

≤ 0 is always satisfied. This

corresponds to our target scenario that all the samples are

gradually added for training with the increasing of λ.

4.2. Label Inference for Image Clustering

The label features are ideally one-hot vectors according

to Theorem 1. As a result, images can be clustered via:

ci := argmax
h

(lih), h = 1, · · · , k, (13)

where ci is the cluster label of image xi. In practice, how-

ever, the label features may not be one-hot vectors strictly

due to the following two reasons. First, it is hard to reach

the global optima for training a ConvNet due to its strong

non-convex property. Second, even it achieves a global op-

timum on the training data, it is almost impossible for it to

achieve a global optimum for all data (including the unseen

testing data). To address this issue, we label images by lo-

cating the largest response of label features, i.e., Eq. (13) is

implemented to cluster.

In summary, we illustrate the DAC algorithm in Algo-

rithm 1. The Adaptive Learning algorithm optimize the

DAC model iteratively. During each iteration, the algorithm

alternately selects samples via the fixed ConvNet and trains

the ConvNet based on the selected samples. When all the

samples are considered for training and the objective func-

tion in Eq. (10) can not be improved further, the algorithm

converges. Conclusively, images are clustered by locating

the largest response of the label features.

5. Experiments

In this section, we apply the proposed DAC model to im-

age clustering and evaluate the performance on several pop-

ular datasets with three frequently-used measures. Specif-

ically, our core code 1 is released at https://github.

com/vector-1127/DAC.

5.1. Datasets

We perform experiments on five popular image datasets,

including MNIST [16], CIFAR-10 [14], CIFAR-100 [14],

STL-10 [5] and ILSVRC2012 1K [7]. The number of im-

ages and clusters, and image size are listed in Table 1. As

1Relies on Keras [4] with the Theano [26] backend.

Table 1. The image datasets used in our experiments.

Dataset Images Clusters Image size

MNIST [16] 70000 10 28× 28

CIFAR-10 [14] 60000 10 32× 32× 3

CIFAR-100 [14] 60000 20 32× 32× 3

STL-10 [5] 13000 10 96× 96× 3

ImageNet-10 [7] 13000 10 96× 96× 3

ImageNet-Dog [7] 19500 15 96× 96× 3

described in [35, 36], the training and testing images of

each dataset are jointly utilized in our experiments. For the

CIFAR-100 dataset, the 20 superclasses are considered in

our experiments. Specifically, we randomly choose 10 sub-

jects from the ILSVRC2012 1K dataset [7] and resize these

images to 96× 96× 3 to construct the ImageNet-10 dataset

for our experiments. Furthermore, to compare the cluster-

ing methods on more complex dataset, we randomly select

15 kinds of dog images from ILSVRC2012 1K to establish

the fine-grained ImageNet-Dog dataset.

5.2. Evaluation Metrics

In our experiments, three popular measures in the liter-

ature are employed to evaluate the performance of cluster-

ing methods, including Adjusted Rand Index (ARI), Nor-

malized Mutual Information (NMI) and clustering Accu-

racy (ACC). Specifically, these measures range in [0, 1], and

higher scores imply more accurate clustering results.

5.3. Compared methods

Several clustering algorithms are employed for compar-

ison. Specifically, the traditional methods, including K-

means [32], SC [40], AC [9] and the NMF based cluster-

ing [3], are adopted to compare with our model. For the

representation-based clustering approaches, as described

in [35], we employ some unsupervised learning methods,

including AE [1], SAE [18], DAE [30], DeCNN [39],

SWWAE [41], AEVB [13] and GAN [21], to learn feature

representations of images and use K-means [32] to clus-

ter images as post processing. We also compare DAC with

DEC [35] and JULE [36] for a comprehensive comparison.

To evaluate the capability of Adaptive Learning algorithm,

we consider all the samples for training during each itera-

tion, and this training strategy denoted by DAC*.

5.4. Experimental Settings

For the traditional clustering methods, following the pre-

vious work [35], we concatenate HOG feature [6] and a

8 × 8 color map as input when we experiment on STL-

10, ImageNet-10 and ImageNet-Dog. For the remaining

datasets and methods, the pixel intensities serve as inputs.

In our experiments, the ALL-ConvNet described in [25]

is utilized in our model (the details of the devised ConvNets

are listed in the supplementary material). Since the prior

probability of image pairs belonging to different clusters is
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Table 2. The clustering results of various methods on six datasets. The best three results are highlighted in bold. DAC* represents that all

the samples are considered for training in each iteration.

Dataset MNIST [16] CIFAR-10 [14] CIFAR-100 [14] STL-10 [5] ImageNet-10 [7] ImageNet-Dog [7]

Metric NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

K-means [32] 0.4997 0.3652 0.5723 0.0871 0.0487 0.2289 0.0839 0.0280 0.1297 0.1245 0.0608 0.1920 0.1186 0.0571 0.2409 0.0548 0.0204 0.1054

SC [40] 0.6626 0.5214 0.6958 0.1028 0.0853 0.2467 0.0901 0.0218 0.1360 0.0978 0.0479 0.1588 0.1511 0.0757 0.2740 0.0383 0.0133 0.1111

AC [9] 0.6094 0.4807 0.6953 0.1046 0.0646 0.2275 0.0979 0.0344 0.1378 0.2386 0.1402 0.3322 0.1383 0.0674 0.2420 0.0368 0.0207 0.1385

NMF [3] 0.6082 0.4298 0.5447 0.0814 0.0338 0.1895 0.0791 0.0263 0.1175 0.0962 0.0458 0.1804 0.1316 0.0652 0.2302 0.0442 0.0155 0.1184

AE [1] 0.7257 0.6139 0.8123 0.2393 0.1689 0.3135 0.1004 0.0476 0.1645 0.2496 0.1610 0.3030 0.2099 0.1516 0.3170 0.1039 0.0728 0.1851

SAE [18] 0.7565 0.6393 0.8271 0.2468 0.1555 0.2973 0.1090 0.0436 0.1567 0.2520 0.1605 0.3203 0.2122 0.1740 0.3254 0.1129 0.0729 0.1830

DAE [30] 0.7563 0.6467 0.8316 0.2506 0.1627 0.2971 0.1105 0.0460 0.1505 0.2242 0.1519 0.3022 0.2064 0.1376 0.3044 0.1043 0.0779 0.1903

DeCNN [39] 0.7577 0.6691 0.8179 0.2395 0.1736 0.2820 0.0923 0.0378 0.1327 0.2267 0.1621 0.2988 0.1856 0.1421 0.3130 0.0983 0.0732 0.1747

SWWAE [41] 0.7360 0.6518 0.8251 0.2330 0.1638 0.2840 0.1034 0.0391 0.1472 0.1962 0.1358 0.2704 0.1761 0.1603 0.3238 0.0936 0.0760 0.1585

AEVB [13] 0.7364 0.7129 0.8317 0.2451 0.1674 0.2908 0.1079 0.0403 0.1517 0.2004 0.1464 0.2815 0.1934 0.1683 0.3344 0.1074 0.0786 0.1788

GAN [21] 0.7637 0.7360 0.8279 0.2646 0.1757 0.3152 0.1200 0.0453 0.1510 0.2100 0.1390 0.2984 0.2250 0.1571 0.3459 0.1213 0.0776 0.1738

JULE [36] 0.9130 0.9270 0.9640 0.1923 0.1377 0.2715 0.1026 0.0327 0.1367 0.1815 0.1643 0.2769 0.1752 0.1382 0.3004 0.0537 0.0284 0.1377

DEC [35] 0.7716 0.7414 0.8430 0.2568 0.1607 0.3010 0.1358 0.0495 0.1852 0.2760 0.1861 0.3590 0.2819 0.2031 0.3809 0.1216 0.0788 0.1949

DAC* 0.9246 0.9406 0.9660 0.3793 0.2802 0.4982 0.1623 0.0776 0.2189 0.3474 0.2351 0.4337 0.3693 0.2837 0.5026 0.1815 0.0953 0.2455

DAC 0.9351 0.9486 0.9775 0.3959 0.3059 0.5218 0.1852 0.0876 0.2375 0.3656 0.2565 0.4699 0.3944 0.3019 0.5272 0.2185 0.1105 0.2748

Table 3. The results of the traditional methods based on the DAC learned label features. The best results are indicated in bold.

Dataset MNIST [16] CIFAR-10 [14] CIFAR-100 [14] STL-10 [5] ImageNet-10 [7] ImageNet-Dog [7]

Metric NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

K-means [32] 0.9358 0.9481 0.9761 0.3943 0.2993 0.5106 0.1850 0.0811 0.2251 0.3689 0.2542 0.4692 0.3937 0.3023 0.5224 0.2164 0.1074 0.2709

SC [40] 0.8830 0.8532 0.9348 0.3935 0.2991 0.5193 0.1843 0.0880 0.2361 0.3667 0.2524 0.4674 0.3913 0.3004 0.5212 0.2149 0.1101 0.2702

AC [9] 0.9347 0.9465 0.9753 0.3881 0.2601 0.5030 0.1824 0.0876 0.2302 0.3586 0.2340 0.4524 0.3874 0.2976 0.5102 0.2052 0.1038 0.2697

NMF [3] 0.9077 0.9153 0.9347 0.3761 0.2615 0.4993 0.1801 0.0726 0.2136 0.3498 0.2278 0.4454 0.3856 0.2934 0.5045 0.2007 0.0984 0.2631

DAC 0.9351 0.9486 0.9775 0.3959 0.3059 0.5218 0.1852 0.0876 0.2375 0.3656 0.2565 0.4699 0.3944 0.3019 0.5272 0.2185 0.1105 0.2748

higher than to the same clusters, we set u(λ) = 0.95 − λ
and l(λ) = 0.455 + 0.1 · λ for selecting similar and dis-

similar samples, respectively. The adaptive parameter λ is

initialized to 0 with the learning rate η = 0.009. In each

iteration, we randomly select m = 1000 images to select

training samples. In DAC*, we set u(λ) = l(λ) = 0.95
for the beginning, followed by an annealing phase which

decreases linearly to u(λ) = l(λ) = 0.5. More details of

training settings are reported in the supplementary material.

5.5. Image Clustering

In Table 2, we report the quantitative clustering results of

these clustering methods. Note that DAC dramatically out-

performs the others methods with significant margins on all

the three clustering quality measures. Further observation,

several tendencies can be observed in Table 2. First, the per-

formance of representation-based clustering methods (e.g.,

AE [1], AEVB [13]) is superior to the traditional methods

(e.g., K-means [32], SC [40]). This indicates that clustering

methods have only a minor impact on performance, while

representations are more important. It means that the rep-

resentation learning plays a crucial role in image cluster-

ing. Second, although the effective representations can be

learned by these unsupervised methods, the improvement is

limited compared against our approach. This demonstrates

that the end-to-end clustering scheme can observably im-

prove the performance of image clustering. The reason is

that our single-stage method can learn more excellent rep-

resentations for image clustering. Thirdly, more distinct su-

periority is achieved by DAC on CIFAR-10, CIFAR-100,

STL-10 and ImageNet. This verifies that DAC has enough

capability to handle complex large-scale image datasets.

In Figure 3, we qualitatively analysis the label features

learned by DAC on MNIST, STL-10 and a randomly cho-

sen ImageNet-10. We observe that the same neurons will be

distinctly activated in the label features if the images belong

to the same clusters. That is, our method learns high-level

features, rather than the simple combination of visual fea-

tures. This is the reason why more complicated images,

such as the airliner and airship images in ILSVRC2012 1K,

can be distinguished by DAC. Furthermore, most of the la-

bel features of the failure modes appear reasonable. For

example, in terms of car, only the other types of vehicle

(e.g., truck) might be considered as plausible labels, rather

than the clusters beyond vehicle. It implies that more inter-

pretable features are leaned by DAC for image clustering.

5.6. Empirical Analysis

Effect of Adaptive Learning Algorithm. We compare

the performance of DAC* with DAC to investigate the ef-

fect of the Adaptive Learning algorithm. From Table 2, we

observe that DAC achieves better performance than DAC*.

Further analysis, since ConvNets are initialized randomly,

more noisy samples will be utilized for training in DAC*.

Contrary to DAC*, DAC can select highly confident train-

ing data based on the Adaptive Learning algorithm. By

using these selected samples, DAC can begin with more

refined cluster patterns and improve the clustering perfor-

mance consequently.

Effect of Clustering Tactics. In order to evaluate the

effect of our clustering tactics in Eq. (13), we employ the

traditional methods (e.g., K-means [32]) to cluster images
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Figure 3. The label features learned by DAC on MNIST, STL-10 and a randomly chosen ImageNet-10. For each dataset, the correct labels

are written on the upward side, the label features are shown on the right side of images and the bottom line shows some failure modes.
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Figure 4. The distribution of elements in all label features.

based on the label features learned by DAC. The results are

listed in Table 3. Note that our clustering tactics achieves

better performance than the traditional methods. Further-

more, compared with these traditional methods, the cluster-

ing tactics is more terse since DAC just needs to locate the

largest response of label features to cluster images.

Contribution of Clustering Constraint. To investigate

the effect of the clustering constraint in Eq. (3), we re-

port the distribution of the learned label features on MNIST

and ImageNet-10 in different clustering stages in Figure 4.

We count the elements of the learned label features in the

four disjoint intervals, i.e., [0, 1), [0.1, 0.5), [0.5, 0.9) and

[0.9, 1]. For the initial stage, the major elements of the la-

bel features locate in [0, 1) and [0.1, 0.5). By training our

model, most elements move to [0, 1) and [0.9, 1] in the final
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Figure 5. Clustering accuracy on imbalanced subset of MNIST.

stage. This implies that the learned label features are sparse

and the non-zero elements in the label features tend to be

1. It corresponds to our target that DAC attempts to learn

one-hot vectors to represent and cluster images.

Performance on Imbalanced Datasets. We perform

additional experiments to study the performance of DAC

on imbalanced datasets. Following the previous work [35],

we randomly sample subsets of MNIST with various mini-

mum retention rates. For the minimum retention rate r, data

points of class 0 will be kept with probability r and class

9 with probability 1, with the other classes linearly in be-

tween. From Figure 5 we observe that DAC is more robust

than the others methods on the various imbalanced datasets.

A possible reason is that DAC executes image clustering
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Figure 6. Comparison of clustering performance with increasing number of clusters on ILSVRC2012 1K (1300 images per cluster).
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Figure 7. Comparison of clustering performance with increasing

number of samples on MNIST (left) and CIFAR-10 (right).

based on similarities between images only, which can re-

duce the influence of the unbalancedness of datasets.

Performance on Various Number of Clusters. We also

conduct experiment on the ILSVRC2012 1K dataset [7] to

study the stabilities of these methods by varying the num-

ber of clusters. Intuitively, Figure 6 shows the clustering

results when the number of clusters various between 10 and

50 with an interval 5. In summary, as the number of clus-

ters increases, all the methods are generally degraded. This

is because more uncertainty is triggered as the number of

clusters increases. However, contrary to other methods, the

superiority of DAC still holds with the various number of

clusters. The results demonstrate that DAC possesses ade-

quate capability to tackle various clusters.

Performance on Various Number of Samples. To ob-

serve the effect of the number of samples to these methods,

we vary it between 10000 and 60000 with an interval 10000
on MNIST and CIFAR-10. Figure 7 visually shows that the

performance of most methods improves with more samples.

This indicates that more samples are beneficial for these

methods. For the CIFAR-10 dataset, we observe that the

performance of DAC increases rapidly when more samples

are considered. Contrary to CIFAR-10, DAC reaches an sat-

uration status by using less samples on MNIST. This is to

be expected, since sufficient samples are essential for map-

ping more intricate images from the visual features to the

label features. In particular, the performance of the JULE

method [36] approximates to our method on the MNIST

dataset. However, there is a conspicuous margin on CIFAR-

10. This is because the initialization strategy of the JULE

method is invalidated on intricate image datasets, which de-

generates the performance of JULE. Compared with JULE,

DAC alleviates the dependence on additional techniques by

introducing the Adaptive Learning algorithm, which ele-

vates the dependability of DAC.

6. Conclusion

We proposed a single-stage ConvNet-based method to

cluster images. Our method is motivated from a basic as-

sumption that the relationship between pairwise images is

binary. Based on this assumption, a binary constrained

pairwise-classification model is proposed by investigating

the similarities between image pairs. We theoretically ver-

ified that our model can be guided to represent images via

one-hot vectors that can be utilized for clustering images.

In comparison with the existing approaches, the proposed

method achieves superior performance on five challenging

datasets. It shows that our method can deal with large-scale

images, not merely limited to some simple image datasets.
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