
Editable Parametric Dense Foliage from 3D Capture

Gaurav Chaurasia

Disney Research Zurich

gaurav.chaurasia@disneyresearch.com

Paul Beardsley

Disney Research Zurich

pab@disneyresearch.com

Abstract

We present an algorithm to compute parametric mod-

els of dense foliage. The guiding principles of our work

are automatic reconstruction and compact artist friendly

representation. We use Bézier patches to model leaf sur-

face, which we compute from images and point clouds of

dense foliage. We present an algorithm to segment individ-

ual leaves from colour and depth data. We then reconstruct

the Bézier representation from segmented leaf points clouds

using non-linear optimisation. Unlike previous work, we

do not require laboratory scanned exemplars or user inter-

vention. We also demonstrate intuitive manipulators to edit

the reconstructed parametric models. We believe our work

is a step towards making captured data more accessible to

artists for foliage modelling.

1. Introduction

Foliage is a commonly occurring element in synthesised

imagery. Production quality foliage is usually modelled us-

ing polygon meshes that are attached to procedurally gener-

ated branches [29]. This entails two main challenges: quan-

tity and variety. Foliage requirements rapidly rise to hun-

dreds of thousands of leaves, at which point polygon meshes

become prohibitively expensive to create, store and render.

Curve-based parametric models can alleviate this problem,

but current models lack expressiveness. Foliage variety is

limited because of the high cost of modelling individual

leaves. Generating foliage from 3D capture is a possible

solution, as shown by recent work on high quality 3D recon-

struction of flowers [18, 53, 19, 55, 38]. For dense foliage

however, 3D reconstruction algorithms lack robustness due

to self-similarity and non-rigidity. They generate noisy un-

ordered point clouds with no semantic structure which are

hard to mesh and edit. These challenges have so far re-

stricted virtual foliage to simple shapes created manually.

We address these challenges by capturing parametric

models of foliage from imagery. We are guided by the

principles of automation and editability. We use Bézier

curves, the simplest non-linear parametric primitives. We

identify salient components of a leaf, namely midrib, sil-

houettes, and cross-section, and model each with a Bézier

curve. This semantically aware model can express a wide

variety of single-lobed leaves including silhouette, symme-

try and curvature variations. Reconstructing and manipulat-

ing the leaf amounts to estimating and editing the control

points of 4 Bézier curves. It is more compact than poly-

gon meshes and more expressive than 2D silhouette based

leaf models. It also aids editability compared to meshes and

generic parametric representations like NURBS. Our model

has a canonical NURBS representation and inherits all ex-

isting NURBS editing techniques. Howsoever powerful,

editing interfaces can be improved if the underlying model

has semantics. We add semantics by modelling salient leaf

components with dedicated Béziers. We demonstrate that

semantics allow editing leaves with a very simple UI. These

edits are also feasible on meshes or NURBS, but would re-

quire a more complex UI for vertex or segment selection.

We choose Béziers for simplicity; other semantically aware

parametric models may be equally effective.

We compute this model from colour and depth data of

dense foliage, obtained using multi-view stereo or RGB-D

sensors. We propose an automatic leaf segmentation algo-

rithm that first extracts the most prominently visible leaves

using colour and geometric heuristics, and then extracts par-

tially occluded leaves in subsequent passes. This is a signif-

icant departure from semantic segmentation which focuses

on large salient objects [4, 50]. Our segmentation is de-

signed for small, repeating, partially visible elements. The

Bézier model gives a closed-form expression for every point

on the leaf surface. This underpins a non-linear optimisa-

tion to reconstruct the parametric model. We demonstrate

robustness to occlusions, outliers and missing data.

In this work, we focus on a simple model for the sim-

ple yet dominant class of single-lobed leaves like beech,

holly, cherry etc. We do not handle multi-lobed species like

maple1. Single-lobed leaves are most common in nature: of

the 203 species found in northeastern US and Canada, 99

were single-lobed, 59 multi-lobed, and 45 grasses or nee-

dle shaped which do not require modelling [25]. Thus,

1http://leafsnap.com/species/

5305

http://leafsnap.com/species/


we cover 99 of 158 species that need modelling, which

is almost two-thirds. Simple shapes seem the most com-

monly modelled by artists. We therefore simplify a ma-

jority of modelling requirements. We also focus on dense

foliage and ignore branches or twigs. Our work comple-

ments branch reconstruction techniques [32] for complete

3D reconstruction of vegetation.

Within the above scope, our main contributions are:

• a semantically aware parametric model for leaves us-

ing Bézier curves that is more compact than polygon

meshes, and more robust and expressive than previous

parametric models [51, 34],

• a segmentation algorithm to extract individual point

clouds of small, repeating, partially visible elements

like leaves without user intervention [44] or pre-

scanned leaf exemplars [8],

• a non-linear optimisation for fitting the parametric

model to point clouds, and

• intuitive handles for free form collective manipulation,

instead of being restricted to axes of variation [8].

Overall, our work is a step towards usage of captured foliage

in graphics applications.

2. Previous work

Image-based methods have investigated rendering [45,

11] and relighting [9] of trees. These are generally not used

in visual effects because the lack of accurate geometry de-

grades rendering quality.

Interactive methods create 3D models of flora, either by

interpreting freehand sketches [37, 3], or using sophisti-

cated user interfaces [30, 12, 5]. These are drawing tools

and not meant for large scale foliage synthesis.

Procedural methods like L-systems [29, 43, 42, 39] and

statistical methods [14, 48] use fractals controlled by bio-

logical or aesthetic parameters to generate trees. These are

used in commercial software [1]. These are well suited to

artists’ work flow because they allow control even though

significant effort may be needed to model specific types of

flora. Our parametric approach addresses this problem by

allowing more realism at reduced modelling effort.

Tree reconstruction techniques create the skeletal branch

structure using multi-view stereo [49] or laser scans [52, 32,

31]. Recent extensions include animated branch structures

[27], branch growth simulations [40, 41], and guided proce-

dural synthesis [47, 48]. These techniques create a branch

structure and populate it with rudimentary leaves. They do

not model foliage explicitly.

Foliage reconstruction has been attempted by meshing

point clouds of leaves using multi-view stereo [44], struc-

tured light [36] or laser scans [10]. Non-planar or complex

leaf surfaces have been reconstructed from point clouds us-

ing finite element methods [33, 22]. Yin et al. [54] propose

a complete foliage and branch modelling method but re-

quire disassembling the entire plant in the process and scan-

ning each component separately. This approach is neither

practical, nor scalable to large plants. Biologically-inspired

methods focus on the venation pattern [35, 16, 46, 10, 21].

These only handle a single leaf under ideal conditions.

There is almost no scope for variation within or across

species. They produce polygon meshes which can be chal-

lenging to store, manipulate and render for scenes with large

amounts of foliage.

Most relevant to our work is Bradley et al. [8], who use

a morphable model [7] and encode leaf variation within a

given flora species. Their most important limitation is that

they require leaf exemplars scanned in a controlled setting,

thus introducing manual intervention. There are additional

limitations from an artist’s perspective. Firstly, there is no

scope for explicit artistic manipulation outside the modes of

variation of the morphable model, and these parameters are

arbitrary from an artist’s perspective. For example, there

might not be a mode that corresponds to a physical manip-

ulation like changing the curvature of the leaf. Secondly,

the modes of variation may vary between foliage datasets

introducing unwanted randomness into the artistic pipeline.

The lack of consistent and meaningful editing methodology

makes this approach less useful for artists.

Parametric methods We define parametric methods as

those which describe complex shapes using simple geomet-

ric primitives such as planes, lines, curves etc. Such rep-

resentations are compact, readily editable, and suitable for

large scale modelling. B-splines have been used to repre-

sent silhouettes or veins [34, 51, 24] of 2D leaves. These

are restricted to singleton leaves captured in laboratory con-

ditions, making them unsuitable for dense foliage. Their B-

spline models involve a large number of connected curves.

This makes them unsuitable for graphics applications be-

cause they do not offer a concise model for an entire species

and are also not artist-friendly.

In contrast, we propose a parametric model which can

represent non-planar leaves. We reconstruct it directly from

3D data accounting for complex occlusions. Each leaf is fit-

ted independently without any pre-scanned exemplars; we

can therefore handle a wider variety of shape and size vari-

ations within the same dataset. The reconstructions can be

edited easily and used to initialise foliage modelling.

3. Parametric model for foliage

Our choice of parametric representation is guided by two

principles: compact representation and intuitive control.

NURBS and subdivision surfaces are the standard paramet-

ric tools. They however do not offer any advantages over

polygon meshes from an editing perspective because they

are not specialised for leaves. B-splines involve a lot of

5306



apex

base

left

silhouette

midrib

right

silhouette

cross

section

(a)

u

v

x

y

a
1

a
2

A

(b)

A(v2)

A(v3)

A(v1)

xs2

xs3

xs1

s2

s1

s3

S

(c)

F

G

S

A

(d)

cv,1

cv,2
cv,0

cv,3Cv

(e)

Figure 1. Parametric leaf model. (a) Semantically meaningful

components of leaf geometry that we model as Bézier curves. (b)

uv coordinate frame attached to the central axis Bézier A (red)

along with its control points ai. (c) Control points si of silhouette

Bézier (green), computed using displacement v̄i along the axis and

x̄si perpendicular to the axis. (d) Longitudinal Béziers F and G at
1

3
and 2

3
of silhouette Bézier’s control points. These afford control

over leaf curvature. (e) Cubic Bézier to describe leaf surface, with

control points cv,i on longitudinal Béziers at v. All Béziers have

independent displacements along z axis which (not shown here).

connected splines [51, 34] which complicate the parameter

space and may not be artist friendly. In contrast, our insight

is to separate leaf shape into salient components and model

each with the simplest possible parametric representation.

We identify three defining features of leaf geometry:

midrib, left/right silhouette and cross-section or the curve

that connects points on the midrib to silhouette (Fig. 1(a)).

We model each of these using non-linear curves. Separation

into functional components allows fitting each component

separately to 3D point cloud data, and editing the shape in

semantically meaningful ways. We use the simplest non-

linear representation: Bézier curves. We use Béziers for the

midrib (Fig. 1(b)), hereafter referred as axis of the leaf, and

the silhouettes (Fig. 1(c)). These curves share their first and

last control points which coincide with the tips of the leaf.

In order to model the cross-section, we create extra Béziers

along the length of the leaf between the axis and silhouette

curves (Fig. 1(d)). The cross-section is a Bézier whose con-

trol points lie on the axis, silhouette and the extra Béziers

(Fig. 1(e)). Additionally, we model silhouette and longitu-

dinal Bézier control points relative to the axis. The con-

trol points of Bézier in the left half are same as their coun-

terparts in the right half. This symmetric axis-dependent

model reduces the number of parameters, allows easy fit-

ting to 3D data and intuitive manipulators for editing the

shape, and somewhat restricts the model to plausible leaf

shapes instead of diverging to arbitrary shapes. We model

asymmetric leaves by changing the shape of the central axis

(Fig. 7(b)).

Notation We denote any point on a Bézier curve B of

degree n by B(u) for u ∈ [0, 1].

B(u) =





1
· · ·
un





T 

 Z









b0

· · ·
bn



 (1)

where bi are the control points of the curve and Z is the

(n+1)×(n+1) matrix of Bernstein polynomial coefficients

of n degree Bézier. The unit vector along the tangent to the

curve is the normalised first derivative B̂′(u) with respect

to u. The unit vector B̂n(u) along the normal to the curve

in the xy plane is obtained by rotating the tangent by 90◦ in

the xy plane.

B̂n(u) =





0 −1 0
1 0 0
0 0 0



 B̂′(u) (2)

Coordinate frames We model 3D leaves such that the

length is aligned with Cartesian y axis, width with x axis

and curvature with z axis. The world space position of the

leaf is encoded by a rigid transformation that is kept sepa-

rate from the parametric formulation. We use a normalised

coordinate frame uv attached to the central axis of the leaf

to measure displacements along and perpendicular to the

axis (Fig. 1(b)) such that u = 0 corresponds to the central

axis, u = ±1 correspond to the two silhouettes, v corre-

sponds to longitudinal displacement along the axis from the

base vertex of the leaf. Both xy and uv coordinate frames

are in the same plane; uv is attached to the axis of the leaf

and xy is attached to Cartesian coordinates. The coordi-

nates for the central axis are in Cartesian space while those

of all other components of the leaf are relative to the axis,

i.e. uv coordinates. Displacement above or below the leaf

surface is encoded by z coordinate which is shared by xy

and uv systems. We fix the base and apex at (0, 0, 0) and

(0, 1, 0) for simplicity.

We parameterise the surface of the leaf in the uv coordi-

nate system such that (u, v) ∈ [−1, 1]×[0, 1]. The paramet-

ric leaf model maps (u, v) coordinates to 3D vertices. We

describe formulae for the right half of the leaf; formulae for

the left half are analogous.

Bézier curves for leaves We model the central axis

and silhouette as two Bézier curves A and S of degrees m

and n. The base and apex are the first and last control points

of both these curves. The m− 1 intermediate control points

of the axis are in Cartesian coordinates, and the n− 1 con-

trol points of S are in the uv coordinates, computed using

displacement along the axis v̄i, perpendicular to the axis x̄si

in the plane of the leaf and normal to the plane of the leaf

z̄si (Fig. 1(c)).

si = A(v̄i) + x̄siÂn(v̄i) + z̄si ẑ (3)

where Ân is the unit vector along the normal to the central

axis (Eq. 2) in the leaf plane and ẑ is the z axis.

In order to model surface curvature, we generate leaf ver-

tices on a cross-section cubic Bézier Cv whose end points

lie on the axis A(v) and silhouette S(v). The two interme-

diate control points of Cv lie on two additional longitudinal

5307



Béziers F and G at 1
3 and 2

3 the width of the leaf (Fig. 1(d)).

We reuse the parameters of the silhouette to compute their

control points and introduce new displacements above the

plane of the leaf z̄fi and z̄gi . This reduces the total number

of parameters and suffices because F and G are only useful

for modelling displacements away from the leaf plane.

fi = A(v̄i) +
1

3
x̄siÂn(v̄i) + z̄fi ẑ (4a)

gi = A(v̄i) +
2

3
x̄siÂn(v̄i) + z̄gi ẑ (4b)

where Ân is the unit vector along the normal to the central

axis (Eq. 2) and ẑ is a unit vector along the z axis. Curves

for the left half of the leaf use −x̄si in the above formulae.

The surface of the leaf is described by a cross-section

cubic Bézier Cv whose control points lie on the above

four Béziers (Fig. 1(e)). The control points of this curve

{cv,0 · · · cv,3} are given by:

cv,0 = A(v), cv,1 = F(v)

cv,2 = G(v), cv,3 = S(v) (5)

The leaf model LΩ computes 3D points by sampling the

cross-section Bézier Cv at u using Eq. 1.

LΩ(u, v) =







1
u

u2

u3







T 





1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1







︸ ︷︷ ︸

Bernstein coefficients of cubic Bézier







cv,0
cv,1
cv,2
cv,3







(6)

To summarise, the set of leaf parameters Ω, given base and

apex fixed at (0, 0, 0) and (0, 1, 0) respectively, consists of:

• control points {a1 · · · am−1} of A,

• {x̄si , v̄i, z̄si} for control points of S (Eq. 3),

• {z̄fi} for control points of F (Eq. 4a), and

• {z̄gi} for control points of G (Eq. 4b).

We used 3rd degree Béziers for the central axis (m = 4),
and 4th degree curves for all other longitudinal Béziers

(n = 5), resulting in 21-D parameter space.

4. Automatic leaf segmentation

We describe computation of individual leaf point clouds

from colour and depth data which are later used to com-

pute the parametric model (Sec. 5). There is little research

in automatic extraction of unordered fine-scale structures

like leaves. Semantic segmentation from images [4], depth

scans [50] and RGB-D superpixels [20] is suitable only for

salient objects. As discussed in Sec. 2, previous tree recon-

struction techniques did not handle foliage. Cheng et al.

[13] extract repeated patterns using user intervention. Oth-

ers can separate an image into foliage and background but

cannot extract individual leaves [28, 17]. Our goal is to

extract point clouds for each leaf separately. To this end,

we segment the image into potential leaves, then assign a

confidence metric to each leaf and retain the highest ranked

leaves. We use these to refine the remaining leaves.

4.1. Initial segmentation of candidate leaves from
each image independently

We start by oversegmenting the input images to create

superpixels [2]. Superpixels provide fairly accurate colour

segmentation (Fig. 2(b)). We collect the 3D points in each

superpixel. We then fit a plane using RANSAC and user-

provided threshold δplane (typically 2 cm), to the 3D points

in each superpixel i and obtain a normal n̂i. We also remove

any 3D points that are far away from the mean of the 3D

points in the superpixel after plane fitting. Superpixels that

contain very few 3D points, or those that do not admit a

valid plane fit are removed completely (Fig. 2(c)).

The remaining superpixels that contain 3D points and a

valid plane fit are used as nodes of a superpixel graph. We

add edges between superpixels that share a common bound-

ary (Fig. 2(d)). We use planarity and 3D distance to assign

an edge weight between two superpixels i and j. We mea-

sure planarity dnij
by the cosine of angle between normals

n̂i and n̂j to the fitted planes. We measure 3D distance as

the minimum 3D distance between points in one superpixel

to the other as a fraction of the plane fitting threshold δplane.

dnij
= 1− n̂i · n̂j , dpij

=

min
a,b

‖v
(a)
i − v

(b)
j ‖

δplane
(7)

where v
(a)
i is the a-th 3D point in i-th superpixel. We com-

bine these terms into the affinity matrix D using a steep

Gaussian kernel (σ = 0.2) to encourage isolated clusters.

Dij = e
−

(

d2nij
+d2pij

2σ2

)

(8)

We extract connected components from this graph after

thresholding the affinity values at 0.85. We found affinity

threshold more intuitive than the number or size of leaves

required by most clustering techniques. We refer to the ex-

tracted segments as candidate leaves (Fig. 2(e)).

Leaf confidence Candidate leaves thus extracted often

have spurious geometry from neighbouring regions in the

image (Fig. 2(e), 4). We compute a leaf confidence met-

ric to distinguish between well-segmented and conjoined

leaves. We compute the minimum volume enclosing ellipse

of candidate point clouds [23, 26] and use the percentage of

enclosing ellipse occupied by the leaf mesh as confidence

metric. Well-segmented meshes occupy most of the area

while conjoined leaves have vacant space in the enclosing

ellipse (Fig. 3).

5308



(g) refinement of conjoined

leaves using ICP matching

with representative ellipse

(b) input image segmented

into superpixels

(c) superpixels with valid

fitted planes

(h) final segmentated leaves across all images

(e) initial segmentation of 

candidate leaves from each image

(may have conjoined leaves)

(d) superpixel graph

(f) representative ellipse

approximating point clouds

of best segmented leaves

(a) input image

and its depth map

oversegment
RANSAC

plane fit

cl
u
st

er
in

g

best segmented

leavesICP matching

Figure 2. Leaf segmentation steps. Please refer to text for explanation of each step. Best appreciated on a computer screen.

Figure 3. Percentage of enclosing ellipse (purple) occupied by leaf

mesh as confidence. Well-segmented leaves have close to 100%

confidence (left) while conjoined leaves, leaves with large missing

or spurious chunks have low confidence score (right).

Figure 4. Leaf segmentation. Left: candidate leaves extracted from

each image independently after initial segmentation may have con-

joined leaves (annotated), and right: refining the segmentation

across all images resolves duplicate and conjoined leaves.

4.2. Scale-invariant refinement across whole scene

We refine all candidate leaves by computing their simi-

larity with a scale-invariant template. We retain 50 candi-

date leaves with highest confidence values across all im-

ages, scale them to unit length and compute an ellipse

whose major-minor axis ratio is the same as the median

length-width ratio of the high confidence leaves (Fig. 2(f)).

This ellipse is the simplest scale-invariant representation of

leaves in the dataset.

We then perform ICP matching [6] between the repre-

sentative ellipse and candidate leaves, retaining matching

subsets. We initialise ICP by aligning the template ellipse,

shown in cyan in Fig. 2(g), along the major axis (shown in

red) of the conjoined point cloud (shown in pink). ICP com-

putes a rigid transform that best aligns the template to the

candidate point cloud. We extract the set of points in the full

scene within a δplane distance of the transformed template

(δplane is the plane fitting threshold). This subset is free

of spurious geometry (Fig. 4). While candidate leaves are

extracted from each image independently, refinement is per-

formed across the across points and leaves from all views,

as highlighted in Fig. 4. As a result, this step also partially

fills missing or occluded regions by extracting points vis-

ible in views other than the one from which the candidate

point cloud was extracted. We use 300 iterations and δplane
as the maximum correspondence distance for ICP. We re-

peat this process for each candidate leaf in decreasing order

of confidence and size: we bin the confidence metric of all

candidate leaves into 25 bins, and process the bins in de-

creasing order of confidence and leaves within each bin in

decreasing order of size.

Bradley et al. [8] used non-rigid ICP to deform a pre-

scanned exemplar leaf mesh to match the 3D scan. They had

to prune a leaf and scan it in controlled conditions to obtain

the exemplar leaf mesh. In contrast, our template ellipse

is computed automatically. We use rigid ICP to match the

template ellipse to the candidate point cloud and reject the

non-matching points from the candidate. Our approach is

automatic, simpler and extracts more leaves (Fig. 9).

5. Parametric model computation

We now describe the computation of parametric leaves

(Sec. 3) from segmented point clouds (Sec. 4). We estimate

model parameters Ω by matching the parametric leaf LΩ

to the segmented point cloud given its UV mapping PA.

The UV mapping PA is a latent variable estimated using

the current estimate of parameters Ω. We alternate between

computing Ω and PA in an iterative optimisation.

Axis alignment and base/apex estimation We com-

pute our leaf model in the xy plane such that z coor-

5309



dinate represents displacement out of leaf plane (Sec 3).

We first transform the leaf point cloud from world

space coordinates to axis-aligned coordinates using SVD.

base

apexWe then identify the base and apex of the leaf

as the extremities of the transformed point cloud

along the y axis. We compute a rigid transfor-

mation that maps the base and apex to (0, 0, 0)
and (0, 1, 0) respectively. The inverse of the

combination of this transformation and the axis-

alignment matrix give the transformation of the

leaf model to world space. We initialise the central axis as

a straight line joining the base and apex.

UV mapping In order to optimise for the leaf

model LΩ, we compute a UV mapping PA that as-

signs (u, v) coordinates to each vertex in the point cloud

with respect to the current estimate of axis A, These

(u, v) coordinates can be used to index into the point

cloud and also leaf model LΩ (Eq. 6). We draw

(0,0)

(0,1)

(1,vj)(-1,vj)

(0,vj)

A

scanlines (shown in black in the adjoining fig-

ure) at regular intervals {v0, v1 · · ·} ∈ [0, 1]
perpendicular to the axis. For the scanline at

vj , we find all points that lie on or within δ

distance (grey) of the the scanline, where δ

is half the distance between successive scan-

lines. We use vj as the v coordinate for each

of these points, and normalised distance from

axis A as u coordinate. The normalisation factor is the max-

imum distance from the axis across all scanlines. We use

negative u coordinates for the left half.

Given the current estimate of PA, we compute the ideal

parameters Ω̂ by minimising the distance between vertices

with same (u, v) coordinates and the parametric model LΩ:

Ω̂ = argmin
Ω

∑

∀(u,v)∈PA

‖LΩ(u, v)− PA(u, v)‖2 (9)

5.1. Occlusion handling

Leaf point clouds may have missing sections because of

occlusions or segmentation failing to capture the full leaf.

Occluded extremities lead to incorrect base and apex, and

occluded silhouettes confuse the UV mapping. These cause

the optimisation in Eq. 9 to give incorrect results in the form

of narrow or stunted leaves. We alleviate this by using the

minimum volume enclosing ellipse [23, 26]. The enclos-

ing ellipse extrapolates occluded sections of the point cloud

towards the true silhouettes (Fig. 5(a)). We use the (x, y)
coordinates of the major axis extremities of this ellipse as

the (x, y) coordinates of the base and apex, since the ex-

tremities must lie on the enclosing ellipse.

We also use the ellipse to compute a confidence weight

wv for any scanline at v during UV mapping (Fig. 5(a)):

wv =
xv,s

xv,s + xv,e

(10)

correct base

apex

incorrect base

axis

xv,sxv,e

(a) UV mapping (b) Model fitting

Figure 5. Occlusion handling. (a) Point clouds with missing re-

gions and their enclosing ellipse [23] (cyan). Missing top/bottom

sections can cause incorrect base/apex estimation, while missing

sides can lead to incorrect silhouettes. We use the extremities of

the enclosing ellipse as base/apex and penalise scanlines whose

left/right ends are far away from the ellipse (red arrows). (b)

Model fitting with occlusions on synthetic test case. First shows

ground truth fit with point cloud (grey), enclosing ellipse (red) and

reconstructed leaf shape (purple), second shows that the enclosing

ellipse guides the fit in regions with missing points and remains

close to ground truth, and third shows that the result does not over-

fit to ellipse if the point cloud is from a narrow leaf.

where, xv,s is the distance of the farthest sample in the point

cloud from the central axis on the same scanline as shown

in Fig. 5(a), and xv,e is the distance of this point from the

ellipse. This penalises samples on a scanline that fall signif-

icantly short of the enclosing ellipse. The visible sections of

the leaf dominate the optimisation. For narrow leaves, both

halves get equally penalised and the resulting shape follows

the point cloud boundary. Therefore, the optimisation does

not overfit to the enclosing ellipse for narrow leaves, and

only intervenes for occluded sections (Fig. 5(b)). We incor-

porate the confidence weight wv in Eq. 9.

Ω̂ = argmin
Ω

∑

∀(u,v)∈PA

wv‖LΩ(u, v)− PA(u, v)‖2 (11)

We use iterative Levenberg-Marquardt optimisation to solve

this non-linear energy function. Each iteration computes a

new Ω, which we use to update the current UV mapping

PA. We initialise the axis to a straight line joining the base

and apex, and Ω to the enclosing ellipse. The optimisation

converges within 4–15 iterations to produce a physically-

based parametric leaf.

6. Artistic manipulation

We demonstrate semantically meaningful manipulation

of leaves via intuitive handles. Morphable models [8] do

not allow direct edits (Sec. 2), and NURBS or subdivision

surfaces do not allow separation of editing tasks.

For all operations, we keep the base and apex fixed and

manipulate Bézier control points. For the axis, we manip-

ulate the control points directly. For other curves, we ma-

5310



Figure 6. Leaf point clouds segmented from dense foliage and fit-

ted parametric leaves. The fitting algorithm accounts for occlu-

sions, and gracefully adapts to silhouettes and curvature. Best ap-

preciated in the accompanying video.

(a
)

w
id

th
(b

)
as

y
m

m
et

ry
(c

)
si

lh
o

u
et

te
(d

)
si

lh
o

u
et

te
(e

)
cu

rv
at

u
re

(c
ro

ss
-s

ec
ti

o
n

)

(f
)

cu
rv

at
u

re

(a
lo

n
g

ax
is

)
(g

)
se

rr
at

io
n

Figure 7. Different editing operations supported by our leaf model.

Control polygon of the modified Béziers is also shown.

nipulate displacements with respect to axis. Our interface

shows the average leaf of a dataset; these edits are applied

identically to all leaves.

Width scaling We use a single slider to scale the

lateral displacement of all control points of longitudinal

Béziers to change the width uniformly (Fig. 7(a)).

Asymmetry The leaf model is parameterised relative

to the central axis and symmetric if the axis is a straight

line. We simulate asymmetric shapes by skewing the axis

Bézier: we allow the artist to drag the control points of the

axis in xy plane while keeping all other parameters fixed

(Fig. 7(b)).

Silhouette shape We simulate a wide variety of leaf

outlines by displacing control points relative to axis in the

xy plane. This updates the all longitudinal Béziers in either

half (Fig. 7(c),(d)).

Curvature Leaf curvature allows artists to express in-

teresting variations and effects such as ageing. We use sep-

arate handles for editing curvature along the cross-section

and the axis. Cross-section curvature refers to rolling the

leaf about an axis parallel to the x axis. To this end, we dis-

place axis control points outside the plane of the leaf. This

deforms the whole surface of the leaf since it is parame-

terised relative to the axis (Fig. 7(e)). We can also roll each

half of the leaf about an axis parallel to y axis by displac-

ing control points of longitudinal Béziers outside the leaf

plane. We provide three sliders: one for each of the three

longitudinal Béziers (Fig. 7(f)). This gives sufficient con-

trol; providing a separate handle for each point did not add

to the expressive ability and complicated the user interface.

Jittered silhouettes We can simulate serrated or noisy

edges by jittering silhouette vertices (Fig. 7(g)). We store

jitter values in a 1D texture or array. While evaluating leaf

vertices from (u, v) using Eq. 6, we displace silhouette ver-

tices (u = ±1) by looking up the amount of jitter using the

v coordinate. The jitter is evaluated in OpenGL shaders dur-

ing rendering; consequently there is not need to bake them

as is the case with traditional representations like polygon

meshes, NURBS etc. We can modify the density and degree

of jitter in real-time, facilitating artistic usage.

7. Results

We tested our C++ implementation on a 12-core 3.5 Ghz

CPU with 32 GB RAM. Processing times vary from 18 to

52 minutes for datasets with 475 to 845 reconstructed leaves

respectively. During rendering, we compute Bézier curves

(Eq. 6) in an OpenGL vertex shader. This allows real-time

rendering without storing tessellated meshes.

Parametric foliage We show reconstructed foliage for

different datasets in Fig. 8. All datasets have 1–15 meters

of foliage, captured by 30-40 images and point clouds ex-

tracted using multi-view stereo [15]. Foliage density makes

segmentation ambiguous and frequent occlusions compli-

cate model fitting. Our approach handles these challenges

gracefully and produces visually plausible results.

Comparisons Most previous tree reconstruction tech-

niques only extract branch structures [49, 52, 32, 31, 27, 40,

41], while others focus on singleton leaves [35, 16, 46, 10,

5311



sa
m

p
le

im
ag

e
fr

o
m

d
at

as
et

sn
ap

sh
o

t
fr

o
m

re
co

n
st

ru
ct

ed
fo

li
ag

e

Figure 8. Parametric foliage reconstruction results. Please see accompanying video for more results.

(a) Ours (475 leaves) (b) Bradley et al. (418 leaves)

Figure 9. Comparison with Bradley et al. [8]: our result is denser

and accounts for different leaf sizes.

Figure 10. Artistic edits. Each row is a separate dataset showing

edited versions of the same leaves. Please see accompanying video

for real-time editing.

21, 51, 34, 24]. We compare our results to Bradley et al.

[8], the only dense foliage reconstruction, on their dataset.

Our results are noticeably denser as shown in Fig. 9. Our

results are also more realistic because we account for dif-

ferent leaf sizes while they are restricted to the shape and

size of a pre-scanned leaf exemplar leaf.

Artistic manipulation A key motivation for the work

is to provide artistic control over the captured foliage.

Fig. 10 shows a variety of artistic manipulations applied to

the leaves viewed from the same viewpoint. The possibil-

ities for styling and artistic control over curvature, silhou-

ette and width, as demonstrated in the accompanying video,

improves the ability to reach a desired appearance. These

advantages facilitate adoption by artists.

8. Discussion

Our main limitation is that we model only single-lobed

leaves. We consider multi-lobed leaves as future work.

Compositing multiple single lobes is a promising next step

which will also require extending the segmentation and

model fitting algorithms. Nonetheless, our approach has

the potential to generalise and is of significant value in its

current form. Dense foliage has so many occlusions that al-

most half the leaves are not sufficiently visible and deemed

unreliable during segmentation. This can be alleviated by

densifying the reconstruction [8]. In the future, we will tar-

get quantitative evaluation using synthetically generated fo-

liage, given that real ground truth foliage data is hard to

acquire.

Conclusion Our goal is not just 3D reconstruction of

the widest gamut of leaves. We seek to address artist re-

quirements, which necessitate lightweight editable repre-

sentation and automatic reconstruction. Within this con-

text, we presented a parametric foliage model designed for

easy rendering and artistic control. We proposed novel al-

gorithms for segmenting leaves, and computing the model

from colour and depth data. We envision real applications

will use tree reconstruction [32] to compute branch struc-

tures and our work to provide controllable foliage. We ad-

dressed single-lobed leaves which constitute a majority of

species found in nature and used in graphics applications.

This work provides a robust platform for generalising to a

broader class of vegetation in the future.

5312



References

[1] Plant generation software packages. http://vterrain.

org/Plants/plantsw.html. Last accessed: 2017-03-

17. 2

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. SLIC superpixels compared to state-of-the-art

superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell.,

34(11):2274–2282, Nov 2012. 4

[3] F. Anastacio, M. C. Sousa, F. Samavati, and J. A. Jorge.

Modeling plant structures using concept sketches. In NPAR,

pages 105–113, 2006. 2

[4] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell., 33(5):898–916, May 2011. 1, 4

[5] B. Benes, N. Andrysco, and O. Stava. Interactive modeling

of virtual ecosystems. In Eurographics Workshop on Natural

Phenomena, pages 9–16, 2009. 2

[6] P. J. Besl and H. D. McKay. A method for registration of 3-D

shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–

256, Feb 1992. 5

[7] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3D faces. In SIGGRAPH, pages 187–194, 1999. 2

[8] D. Bradley, D. Nowrouzezahrai, and P. Beardsley. Image-

based reconstruction and synthesis of dense foliage. ACM

Trans. Graph., 32(4):74:1–74:10, July 2013. 2, 5, 6, 8

[9] M. Cabral, N. Bonneel, S. Lefebvre, and G. Drettakis. Re-

lighting photographs of tree canopies. IEEE Trans. Vis. Com-

put. Graph., 17(10):1459–1474, Oct 2011. 2

[10] J. Chambelland, M. Dassot, B. Adam, N. Dons, P. Balandier,

A. Marquier, M. Saudreau, G. Sonohat, and H. Sinoquet. A

double-digitising method for building 3D virtual trees with

non-planar leaves: application to the morphology and light-

capture properties of young beech trees (Fagus sylvatica).

Functional Plant Biology, 35(10):1059–1069, 2008. 2, 8

[11] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and

G. Drettakis. Depth synthesis and local warps for plausible

image-based navigation. ACM Trans. Graph., 32(3):30:1–

30:12, July 2013. 2

[12] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B.

Kang. Sketch-based tree modeling using markov random

field. ACM Trans. Graph., 27(5):109:1–109:9, Dec. 2008.

2

[13] M.-M. Cheng, F.-L. Zhang, N. J. Mitra, X. Huang, and S.-

M. Hu. RepFinder: Finding approximately repeated scene

elements for image editing. ACM Trans. Graph., 29(4):83:1–

83:8, July 2010. 4

[14] O. Deussen and B. Lintermann. Digital Design of Nature:

Computer Generated Plants and Organics. Springer-Verlag,

2005. 2

[15] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-

tiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell.,

32(8):1362–1376, Aug 2010. 7

[16] S. M. Hong, B. Simpson, and G. V. G. Baranoski. Interactive

venation-based leaf shape modeling. Computer Animation

and Virtual Worlds, 16(3-4):415–427, 2005. 2, 8

[17] H. Huang, L. Zhang, and H.-C. Zhang. RepSnapping: Ef-

ficient image cutout for repeated scene elements. Comput.

Graph. Forum, 30(7):2059–2066, 2011. 4

[18] T. Ijiri, S. Owada, M. Okabe, and T. Igarashi. Floral dia-

grams and inflorescences: Interactive flower modeling us-

ing botanical structural constraints. ACM Trans. Graph.,

24(3):720–726, July 2005. 1

[19] T. Ijiri, S. Yoshizawa, H. Yokota, and T. Igarashi. Flower

modeling via X-ray computed tomography. ACM Trans.

Graph., 33(4):48:1–48:10, July 2014. 1

[20] I. Jebari and D. Filliat. Color and depth-based superpixels for

background and object segmentation. Procedia Engineering

(International Symposium on Robotics and Intelligent Sen-

sors), 41:1307–1315, 2012. 4

[21] S. Jeong, S.-H. Park, and C.-H. Kim. Simulation of mor-

phology changes in drying leaves. Comput. Graph. Forum,

32(1):204–215, 2013. 2, 8

[22] D. M. Kempthorne, I. W. Turner, and J. A. Belward. A com-

parison of techniques for the reconstruction of leaf surfaces

from scanned data. SIAM Journal on Scientific Computing,

36(6):B969–B988, 2014. 2

[23] L. G. Khachiyan. Rounding of polytopes in the real number

model of computation. Math. Oper. Res., 21(2):307–320,

May 1996. 4, 6

[24] D. Kim and J. Kim. Procedural modeling and visualization

of multiple leaves. Multimedia Systems, pages 1–15, 2016.

2, 8

[25] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J.

Kress, I. C. Lopez, and J. a. V. Soares. Leafsnap: A computer

vision system for automatic plant species identification. In

ECCV, pages 502–516, 2012. 1

[26] P. Kumar and E. A. Yildirim. Minimum-volume enclosing

ellipsoids and core sets. Journal of Optimization Theory and

Applications, 126(1):1–21, 2005. 4, 6

[27] C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. Mod-

eling and generating moving trees from video. ACM Trans.

Graph., 30(6):127:1–127:12, Dec. 2011. 2, 7

[28] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping.

ACM Trans. Graph., 23(3):303–308, Aug. 2004. 4

[29] A. Lindenmayer. Mathematical models for cellular interac-

tions in development. J. Theoretical Biology, 18(3):280–315,

1968. 1, 2

[30] B. Lintermann and O. Deussen. Interactive modeling of

plants. IEEE Comput. Graph. Appl., 19(1):56–65, Jan 1999.

2

[31] Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-

Or, and B. Chen. Texture-lobes for tree modelling. ACM

Trans. Graph., 30(4):53:1–53:10, Aug. 2011. 2, 7

[32] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-

Sana. Automatic reconstruction of tree skeletal structures

from point clouds. ACM Trans. Graph., 29(6):151:1–151:8,

Dec. 2010. 2, 7, 8

[33] B. I. Loch, J. A. Belward, and J. S. Hanan. Application of

surface fitting techniques for the representation of leaf sur-

faces. In MODSIM05: International Congress on Modelling

and Simulation: Advances and Applications for Manage-

ment and Decision Making, pages 1272–1278, Dec. 2005.

2

5313

http://vterrain.org/Plants/plantsw.html
http://vterrain.org/Plants/plantsw.html


[34] T. Miao, C. Zhao, X. Guo, and S. Lu. A framework for

plant leaf modeling and shading. Mathematical and Com-

puter Modelling, 58(34):710–718, 2013. 2, 3, 8

[35] L. Mundermann, P. MacMurchy, J. Pivovarov, and

P. Prusinkiewicz. Modeling lobed leaves. In Computer

Graphics International, pages 60–65, July 2003. 2, 8

[36] T. T. Nguyen, D. C. Slaughter, N. Max, J. N. Maloof, and

N. Sinha. Structured light-based 3D reconstruction system

for plants. Sensors, 15(8):18587–18612, 2015. 2

[37] M. Okabe, S. Owada, and T. Igarash. Interactive design of

botanical trees using freehand sketches and example-based

editing. Comput. Graph. Forum, 24(3):487–496, 2005. 2

[38] A. Owens, M. Cieslak, J. Hart, R. Classen-Bockhoff, and

P. Prusinkiewicz. Modeling dense inflorescences. ACM

Trans. Graph., 35(4):136:1–136:14, July 2016. 1

[39] A. Peyrat, O. Terraz, S. Merillou, and E. Galin. Generating

vast varieties of realistic leaves with parametric 2Gmap L-

systems. The Visual Computer, 24(7-9):807–816, 2008. 2

[40] S. Pirk, T. Niese, O. Deussen, and B. Neubert. Capturing

and animating the morphogenesis of polygonal tree models.

ACM Trans. Graph., 31(6):169:1–169:10, Nov. 2012. 2, 7

[41] S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert,

R. Mch, B. Benes, and O. Deussen. Plastic trees: Interac-

tive self-adapting botanical tree models. ACM Trans. Graph.,

31(4):50:1–50:10, July 2012. 2, 7

[42] P. Prusinkiewicz, M. James, and R. Měch. Synthetic topiary.

In SIGGRAPH, pages 351–358, 1994. 2

[43] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic

Beauty of Plants. Springer-Verlag, 1990. 2

[44] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B.

Kang. Image-based plant modeling. ACM Trans. Graph.,

25(3):599–604, July 2006. 2

[45] A. Reche-Martinez, I. Martin, and G. Drettakis. Volumetric

reconstruction and interactive rendering of trees from pho-

tographs. ACM Trans. Graph., 23(3):720–727, Aug. 2004.

2

[46] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-

Lagan, and P. Prusinkiewicz. Modeling and visualization of

leaf venation patterns. ACM Trans. Graph., 24(3):702–711,

July 2005. 2, 8

[47] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mech, O. Deussen,

and B. Benes. Inverse procedural modelling of trees. Com-

put. Graph. Forum, 2014. 2

[48] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and

V. Koltun. Metropolis procedural modeling. ACM Trans.

Graph., 30(2):11:1–11:14, Apr. 2011. 2

[49] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-

based tree modeling. ACM Trans. Graph., 26(3), July 2007.

2, 7

[50] J. Valentin, V. Vineet, M.-M. Cheng, D. Kim, J. Shotton,

P. Kohli, M. Nießner, A. Criminisi, S. Izadi, and P. Torr.

SemanticPaint: Interactive 3D labeling and learning at your

fingertips. ACM Trans. Graph., 34(5):154:1–154:17, Nov.

2015. 1, 4

[51] X. Wang, L. Li, and W. Chai. Geometric modeling of broad-

leaf plants leaf based on B-spline. Mathematical and Com-

puter Modelling, 58(34):564–572, 2013. 2, 3, 8

[52] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-

based modeling of laser-scanned trees. ACM Trans. Graph.,

26(4), Oct. 2007. 2, 7

[53] F. Yan, M. Gong, D. Cohen-Or, O. Deussen, and B. Chen.

Flower reconstruction from a single photo. Comput. Graph.

Forum, 33(2):439–447, 2014. 1

[54] K. Yin, H. Huang, P. Long, A. Gaissinski, M. Gong, and

A. Sharf. Full 3D plant reconstruction via intrusive acquisi-

tion. Comput. Graph. Forum, 35(1):272–284, 2016. 2

[55] Q. Zheng, X. Fan, M. Gong, A. Sharf, O. Deussen, and

H. Huang. 4D reconstruction of blooming flowers. Comput.

Graph. Forum, 2016. 1

5314


