
Fast Image Processing with Fully-Convolutional Networks

Qifeng Chen∗ Jia Xu∗ Vladlen Koltun

Intel Labs

In
p

u
t

O
u

r
re

su
lt

L0 smoothing Multiscale tone Photographic style Nonlocal dehazing Pencil drawing

Figure 1. We present an approach to approximating image processing operators. This figure shows the results for five operators: L0

gradient minimization, multiscale tone manipulation, photographic style transfer, nonlocal dehazing, and pencil drawing. All operators are

approximated by the same model, with the same set of parameters and the same flow of computation.

Abstract

We present an approach to accelerating a wide variety

of image processing operators. Our approach uses a fully-

convolutional network that is trained on input-output pairs

that demonstrate the operator’s action. After training, the

original operator need not be run at all. The trained net-

work operates at full resolution and runs in constant time.

We investigate the effect of network architecture on approxi-

mation accuracy, runtime, and memory footprint, and iden-

tify a specific architecture that balances these considera-

tions. We evaluate the presented approach on ten advanced

image processing operators, including multiple variational

∗Joint first authors

models, multiscale tone and detail manipulation, photo-

graphic style transfer, nonlocal dehazing, and nonphoto-

realistic stylization. All operators are approximated by

the same model. Experiments demonstrate that the pre-

sented approach is significantly more accurate than prior

approximation schemes. It increases approximation accu-

racy as measured by PSNR across the evaluated operators

by 8.5 dB on the MIT-Adobe dataset (from 27.5 to 36 dB)

and reduces DSSIM by a multiplicative factor of 3 com-

pared to the most accurate prior approximation scheme,

while being the fastest. We show that our models general-

ize across datasets and across resolutions, and investigate

a number of extensions of the presented approach.

12497



1. Introduction

Research in image processing has yielded a variety of

advanced operators that produce visually striking effects.

Techniques developed in the last decade can dramatically

enhance detail [24, 69, 26, 28, 60], transform the image

by applying a master photographer’s style [7, 5], smooth

the image for the purpose of abstraction [73, 76, 79], and

eliminate the effects of atmospheric scattering [25, 35, 27,

9]. This is accomplished by a variety of algorithmic ap-

proaches, including variational methods, gradient-domain

processing, high-dimensional filtering, and manipulation of

multiscale representations.

The computational demands and running times of ex-

isting operators vary greatly. Some operators, such as bi-

lateral filtering, have benefitted from more than a decade

of concerted investment in their acceleration. Others still

take seconds or even minutes for high-resolution images.

While most existing techniques can be accelerated by ex-

perts given sufficient research and development time, such

acceleration schemes often require significant expertise and

may not generalize across operators.

One general approach to accelerating a broad range of

image processing operators is well-known: downsample the

image, execute the operator at low resolution, and upsam-

ple [45, 34, 14]. This approach suffers from two signifi-

cant drawbacks. First, the original operator must still be

evaluated on a lower-resolution image. This can be a se-

vere handicap because some operators are slow and exist-

ing implementations cannot be executed at interactive rates

even at low resolution. Second, since the operator is never

evaluated at the original resolution, its effects on the high-

frequency content of the image may not be modeled prop-

erly. This can limit the accuracy of the approximation.

In this paper, we investigate an alternative approach

to accelerating image processing operators. Like the

downsample-evaluate-upsample approach, the presented

method approximates the original operator. Unlike the

downsampling approach, the method operates on full-

resolution images, is trained end-to-end to maximize accu-

racy, and does not require running the original operator at

all. To approximate the operator, we use a convolutional

network that is trained on input-output pairs that demon-

strate the action of the operator. After training, the network

is used in place of the original operator, which need not be

run at all.

We investigate the effects of different network architec-

tures in terms of three properties that are important for ac-

celerating image processing operators: approximation ac-

curacy, runtime, and compactness. We identify a specific

architecture that satisfies all three criteria and show that

it approximates a wide variety of standard image process-

ing operators extremely accurately. We evaluate the pre-

sented approach on ten advanced image processing opera-

tors, including multiple forms of variational image smooth-

ing, adaptive detail enhancement, photographic style trans-

fer, and dehazing. All operators are approximated using an

identical architecture with no hyperparameter tuning. Five

of the trained approximators are demonstrated in Figure 1,

which shows their action on images from the MIT-Adobe

5K test set (not seen during training).

For all evaluated operators, the presented approximation

scheme outperforms the downsampling approach. For ex-

ample, the PSNR of our approximators across the ten con-

sidered operators on the MIT-Adobe test set is 36 dB, com-

pared to 25 dB for the high-accuracy variant of bilateral

guided upsampling [14]. At the same time, our approxima-

tors are faster than the fastest variant of that scheme. Our

approximators run in constant time, independent of the run-

time of the original operator.

We conduct extensive experiments that demonstrate that

our simple approach outperforms a large number of recent

and contemporary baselines, and that trained approximators

generalize across datasets and to image resolutions not seen

during training. We also investigate a number of extensions

and show that the presented approach can be used to cre-

ate parameterized networks that expose parameters that can

be used to interactively control the effect of the image pro-

cessing operator at test time; to train a single network that

can emulate many diverse image processing operators and

combine their effects; and to process video.

2. Related Work

Many schemes have been developed for accelerating im-

age processing operators. The bilateral filter in particu-

lar has benefitted from long-term investment in its accel-

eration [21, 72, 15, 59, 2, 1, 29, 8]. Another family of

dedicated acceleration schemes addresses the median filter

and its variants [72, 61, 54, 80]. Other work has exam-

ined the acceleration of variational methods [6, 62, 13, 17],

gradient-domain techniques [46], convolutions with large

spatial support [23], and local Laplacian filters [5]. (Deep

mathematical connections between these families of opera-

tors exist [57].) While many of these schemes successfully

accelerate their intended families of operators, they do not

have the generality we seek.

A general approach to accelerating image processing op-

erators is to downsample the image, evaluate the operator at

low resolution, and upsample [45, 34, 14]. This approach

accelerates a broad range of operators by approximating

them. It is largely agnostic to the operator but requires that

the operator avoid spatial transformation so that the original

image can be used to guide the upsampling. (E.g., no spa-

tial warping such as perspective correction.) Our method

shares a number of characteristics with the downsampling

approach: it targets a broad range of operators, uses an ap-

proximation, and assumes that the spatial layout of the im-

2498



age is preserved. However, our approximation has a much

richer parameterization that can model the operator’s effect

on the high-frequency content of the image. Once trained,

the approximator does not need to execute the original op-

erator at all. We will show that our method is more accurate

than the downsampling approach on a wide range of tasks,

while being faster.

Other work on accelerating image processing consid-

ers the system infrastructure and programming language.

Given a powerful cloud backend and a bandwidth-limited

network connection, high-resolution processing can be of-

floaded to the cloud [32]. Domain-specific languages can be

used to schedule image processing pipelines to better utilize

available hardware resources [63, 36]. Our work is comple-

mentary and provides an approach to approximating a wide

variety of operators with a uniform parameterization. Such

uniform parameterization and predictable flow of compu-

tation can assist further acceleration using dedicated hard-

ware.

The closest works to ours are due to Xu et al. [75], Liu

et al. [51], and Yan et al. [77]. We review each in turn. Xu

et al. [75] used deep networks to approximate a variety of

edge-preserving filters. Our work also uses deep networks,

but differs in key technical decisions, leading to substan-

tially broader scope and better performance. Specifically,

the approach of Xu et al. operates in the gradient domain

and requires reconstructing the output image by integrating

the gradient field produced by the network. Since their net-

works produce non-integrable gradient fields, the authors

had to constrain the final image reconstruction by introduc-

ing an additional data term that forces the output to be sim-

ilar to the input. For this and other reasons, the approach

of Xu et al. only applies to edge-preserving smoothing,

has limited approximation accuracy, exhibits high running

times (seconds for 1 MP images), and requires operator-

specific hyperparameter tuning. In comparison, we train an

approximator end-to-end, pixels to pixels, using a parame-

terization that is deeper and more context-aware while being

more compact. We will demonstrate experimentally that the

presented approach yields higher accuracy and lower run-

times while fitting a much bigger family of operators.

Liu et al. [51] combined a convolutional network and a

set of recurrent networks to approximate a variety of im-

age filters. This approach is quite flexible and outperforms

the approach of Xu et al. on some operators, but does not

achieve the approximation accuracy and speed we seek. We

will show that a single convolutional network can achieve

higher accuracy, while being faster and more compact.

Yan et al. [77] also applied deep networks to image ad-

justment. This work is also related to ours in its idea of

approximating image transformations by deep networks.

However, our work differs substantially in scope, techni-

cal approach, and results. Yan et al. use a fully-connected

network that operates on each pixel separately. The net-

work itself has a receptive field of a single pixel. Contex-

tual information is only provided by hand-crafted input fea-

tures, instead of being collected adaptively by the network.

This places a substantial burden on manual feature design.

In contrast, our approximator is a single convolutional net-

work that is trained end-to-end, aggregates spatial context

from the image as needed, and does not rely on extraneous

modules or preprocessing. This leads to much greater gen-

erality, higher accuracy, and faster runtimes.

Deep networks have been used for denoising [39, 11,

3], super-resolution [10, 19, 40, 42, 41, 48, 50], de-

blurring [74], restoration of images corrupted by dirt or

rain [22], example-based non-photorealistic stylization [30,

70, 40], joint image filtering [49], dehazing [64], and demo-

saicking [31]. None of the approaches described in these

works were intended as broadly applicable replacements

for the standard downsample-evaluate-upsample approach

to image processing acceleration. Indeed, our experiments

have shown that many approaches lack in either speed, ac-

curacy, or compactness when applied across a broad range

of operators. These criteria will be explored further in the

next section.

3. Method

3.1. Preliminaries

Let I be an image, represented in the RGB color space.

Let f be an operator that transforms the content of an im-

age without modifying its dimensions: that is, I and f(I)
have the same resolution. We will consider a variety of op-

erators f that use a broad range of algorithmic techniques.

Our goal is to approximate f with another operator f̂ , such

that f̂(I) ≈ f(I) for all images I. Note that the resolution

of I is not restricted: both the operator f and its approxi-

mation f̂ are assumed to operate on variable-resolution im-

ages. Furthermore, we will consider many operators {fi}

but require that our corresponding approximations {f̂i} all

share the same parameterization: same set of parameters,

same flow of computation. The approximations will differ

only in their parameters, which will be fit for each operator

during training.

Our goal is to find a broadly applicable approach to ac-

celerating image processing operators. We have identified

three desirable criteria for such an approach. Accuracy: We

seek an approach that provides high approximation accu-

racy across a broad range of popular image processing oper-

ators. Speed: The approach must be fast, ideally achieving

interactive rates on HD images. Compactness: We seek an

approach that can potentially be deployed within the con-

straints of mobile devices. An ideal network would have

a very compact parameterization that can fit into on-chip

SRAM, and a small memory footprint [33].

2499



Our basic approach is to approximate the operator using

a convolutional network [47]. The network must operate on

variable-resolution images and must produce an output im-

age at the same resolution as the input. This is known as

dense prediction [52]. In principle, any fully-convolutional

network architecture can be used for this purpose. Specifi-

cally, any network that has been used for a pixelwise clas-

sification problem such as semantic segmentation can in-

stead be trained with a regression loss to produce contin-

uous color rather than a discrete label per pixel. However,

not all network architectures will yield high accuracy in this

regime and most are not compact.

We have experimented with a large number of network

architectures derived from prior work in high-level vision,

specifically on semantic segmentation. We found that when

some of these high-level networks are applied to low-level

image processing problems, they generally outperform ded-

icated architectures previously designed for these image

processing problems. The key advantage of architectures

designed for high-level vision is their large receptive field.

Many image processing operators are based on global op-

timization over the entire image, analysis of global image

properties, or nonlocal information aggregation. To model

such operators faithfully, the network must collect data from

spatially distributed locations, aggregating information at

multiple scales that are ultimately large enough to provide

a global view of the image.

In Section 3.2 we describe an architecture that strikes

the best balance between the different desiderata according

to our experiments. Three alternative fully-convolutional

architectures are described in the supplement.

3.2. Context aggregation networks

Our primary architecture is the multi-scale context ag-

gregation network (CAN), developed in the context of se-

mantic image analysis [78]. Its intermediate representa-

tions and its output have the same resolution as the input.

Contextual information is gradually aggregated at increas-

ingly larger scales, such that the computation of each output

pixel takes into account all input pixels within a window of

size exponential in the network’s depth. This accomplishes

global information aggregation for high-resolution images

with a very compact parameterization. We will see that this

architecture fulfills all of the desiderata outlined above.

We now describe the parameterization in detail. The data

is laid out over multiple consecutive layers: {L0, . . . ,Ld}.

The first and last layers L
0,Ld have dimensionality

m×n×3. These represent the input and output images. The

resolution m×n varies and is not given in advance.

Each intermediate layer Ls (1 ≤ s ≤ d− 1) has dimen-

sionality m×n×w, where w is the width of (i.e., the num-

ber of feature maps in) each layer. The content of interme-

diate layer Ls is computed from the content of the previous

layer Ls−1 as follows:

L
s
i = Φ



Ψs



bsi +
∑

j

L
s−1

j ∗rs K
s
i,j







 . (1)

Here L
s
i is the ith feature map of layer Ls, Ls−1

j is the jth

feature map of layer Ls−1, bsi is a scalar bias, and K
s
i,j is a

3×3 convolution kernel. The operator ∗rs is a dilated convo-

lution with dilation rs. The dilated convolution operator is

the means by which the network aggregates long-range con-

textual information without losing resolution. Specifically,

for image coordinates x:

(

L
s−1

j ∗rs K
s
i,j

)

(x) =
∑

a+rsb=x

L
s−1

j (a)Ks
i,j(b). (2)

The effect of dilation is that the filter is tapped not at

adjacent locations in the feature map, but at locations sep-

arated by the factor rs. The dilation is increased exponen-

tially with depth: rs = 2s−1 for 1 ≤ s ≤ d− 2. For Ld−1,

we do not use dilation. For the output layer Ld we use a lin-

ear transformation (1×1 convolution with no nonlinearity)

that projects the final layer into the RGB color space.

For the pointwise nonlinearity Φ, we use the leaky recti-

fied linear unit (LReLU) [55]: Φ(x) = max(αx, x), where

α = 0.2. Ψs is an adaptive normalization function, de-

scribed in Section 3.3. Additional specification of the CAN

architecture is provided in the supplement.

The network aggregates global context via full-

resolution intermediate layers. It has a large receptive field

while being extremely compact. It also has a small memory

footprint during the forward pass. Since no skip connec-

tions across non-consecutive layers are employed, only two

layers need to be kept in memory at any one time. Since

the layers are all structurally identical, two fixed memory

buffers are sufficient, with data flowing back and forth be-

tween them.

3.3. Adaptive normalization

We have found that using batch normalization improves

approximation accuracy on challenging image processing

operators such as style transfer and pencil drawing, but de-

grades performance on other image processing operators.

We thus employ adaptive normalization that combines batch

normalization and the identity mapping:

Ψs(x) = λsx+ µsBN(x), (3)

where λs, µs ∈ R are learned scalar weights and BN is the

batch normalization operator [37]. The weights {λs, µs}
are learned by backpropagation alongside all other parame-

ters of the network [67]. Learning these weights allows the

model to adapt to the characteristics of the approximated

operator, adjusting the strengths of the identity branch and

the batch normalization branch as needed.

2500



3.4. Training

The network is trained on a set of input-output pairs that

contain images before and after the application of the orig-

inal operator: D = {Ii, f(Ii)}. The parameters of the net-

work are the kernel weights K = {Ks
i,j}s,i,j and the biases

B = {bsi}s,i. These parameters are optimized to fit the ac-

tion of the operator f across all images in the training set.

We train with an image-space regression loss:

ℓ(K,B) =
∑

i

1

Ni

∥

∥f̂(Ii;K,B)− f(Ii)
∥

∥

2
, (4)

where Ni is the number of pixels in image Ii. This loss

minimizes the mean-squared error (MSE) in the RGB color

space across the training set. Although MSE is known to

have limited correlation with perceptual image fidelity [71],

experiments will demonstrate that training an approximator

to minimize MSE will also yield high accuracy in terms of

other measures such as PSNR and SSIM.

We have also experimented with more sophisticated

losses, including perceptual losses that match feature activa-

tions in a visual perception network [10, 20, 40, 48, 16] and

adversarial training [20, 38, 48]. We found that the higher-

level feature matching losses did not increase approxima-

tion accuracy in our tasks; the image processing operators

we target are not semantic in nature and can be approxi-

mated well by directly fitting the operator’s action on the

photographic content of the image. Adversarial training is

known to be unstable [4, 56, 16] and we found that it also

did not increase the already excellent results that we were

able to obtain with an appropriate network architecture and

a direct image-space loss.

Creating the training set D only requires running the

original operator f on a set of images. Training can thus

be conducted on extremely large datasets that can be gen-

erated automatically without human intervention, although

we found that training on a few thousand images already

produces approximators that generalize well.

In order to expose the training to the effects of the op-

erator f on images of different resolutions, we use images

of varying resolution for training. Specifically, given a set

of high-resolution images, each is automatically resized to

a random resolution between 320p and 1440p (e.g., 517p)

while preserving its aspect ratio. These resized images are

used for training. Training uses the Adam solver [43] and

proceeds for 500K iterations (one randomly sampled image

per iteration). This takes roughly one day on our test work-

station.

4. Experiments

Experimental setup. We evaluate the presented ap-

proach on ten image processing operators: Rudin-Osher-

Fatemi [66], TV-L1 image restoration [58], L0 smooth-

ing [73], relative total variation [76], image enhancement

by multiscale tone manipulation [24], multiscale detail ma-

nipulation based on local Laplacian filtering [5, 60], pho-

tographic style transfer from a reference image [5], dark-

channel dehazing [35], nonlocal dehazing [9], and pencil

drawing [53]. The operators, their effect on images, and our

reference implementations are described in the supplement.

We use two image processing datasets: MIT-Adobe 5K

and RAISE [12, 18]. MIT-Adobe 5K contains 5,000 high-

resolution photographs covering a broad range of scenes,

subjects, and lighting conditions. We use the default

2.5K/2.5K training/test split. The RAISE dataset contains

8,156 high-resolution RAW images captured by four pho-

tographers over a period of three years, depicting different

scenes and moments across Europe. We use 2.5K randomly

sampled images for training and 1K other randomly sam-

pled images for testing.

We ran all ten operators on all images from the training

and test sets of both datasets. For each operator, the input-

output pairs from the MIT-Adobe training set were used for

training. The same models and training procedures were

used for all operators. The only difference between the ten

approximators is in the output images that were provided

in the training set. For each architecture, this procedure

yielded ten identically parameterized models, trained to ap-

proximate the respective operators. These approximators

are used for most of the experiments, which are conducted

on the MIT-Adobe test set.

The same procedure was performed using the RAISE

training set. This yielded models trained to approximate the

same operators on the RAISE dataset. These models will be

used to test cross-dataset generalization.

Main results. Our primary baseline is bilateral guided

upsampling (BGU) [14], the state-of-the-art form of the

downsample-evaluate-upsample scheme for accelerating

image processing operators. There are two variants of the

BGU approach, both with publicly available implementa-

tions. The first uses global optimization and is designed

to approximate the original operator as closely as possible.

The second is an approximation scheme designed to max-

imize speed, which was implemented in Halide [63] with

specific attention to parallelization, vectorization, and data

locality. We will compare to both variants of BGU, referred

to respectively as BGU-opt and BGU-fast. We use the pub-

lic implementations with the default parameters.

We also compare to a large number of baseline ap-

proaches that have used deep networks for related problems.

The closest of these are the deep edge-aware filters of Xu et

al. [75] and the recursive filters of Liu et al. [51]. Beyond

this, we also evaluate the image transformation approach of

Johnson et al. [40], which was developed for style transfer

and superresolution but can be applied more broadly. Fi-

nally, we compare to the contemporaneous work of Isola

2501



2502



(a) Input (b) Ours (c) BGU-opt [14] (d) Xu et al. [75] (e) Liu et al. [51]

D
ar

k
-c

h
an

n
el

d
eh

az
in

g

100

50

0

(f) Reference (g) Error map of (b) (h) Error map of (c) (i) Error map of (d) (j) Error map of (e)

P
h

o
to

g
ra

p
h

ic
st

y
le

tr
an

sf
er

100

50

0

Figure 3. Qualitative results on images from the MIT-Adobe test set. For each operator, we show the input image, the result of the original

reference operator, the result produced by our approximator, and results produced by BGU-opt [14], Xu et al. [75], and Liu et al. [51]. The

error maps show per-pixel error, measured by Euclidean distance in 0-255 RGB space. Black indicates error of 100 or higher. Additional

visualizations are provided in the supplement.

plement for detailed results. The runtime of our approach is

constant. It is 40 ms (25 fps) for 480p images, 190 ms for

1080p images, and scales linearly in the number of pixels.

We used a standard deep learning library (TensorFlow) with

no additional performance tuning.

Of the prior approaches that use deep networks, Liu et

al. [51] and Johnson et al. [40] achieve the best approxima-

tion accuracy. Our approach outperforms these baselines

by 8.5 dB in PNSR, and reduces DSSIM by a multiplicative

factor of 3. Our approach is also the fastest and has the most

compact parameterization. Qualitative results are shown in

Figure 3 and in the supplement.

Additional experiments. We now compare a num-

ber of different CAN configurations to alternative fully-

convolutional architectures. These alternative architec-

tures – Plain, Encoder-decoder [65], and FCN-8s [52, 68] –

are described in detail in the supplement. All these models

are trained by the same procedure as the CAN.

The results are summarized in Table 2. Here

CAN24+AN is our primary model, referred to as ‘Ours’

in Table 1 (d = 9, w = 24, adaptive normalization).

CAN32+AN is a more accurate but slower configuration

(d = 10, w = 32, adaptive normalization). This config-

uration benefits from a receptive field of 513×513 versus

the 257× 257 receptive field of CAN24. We also evalu-

ate two other variants of CAN32, controlling for the effect

of adaptive normalization: CAN32 (no normalization) and

CAN32+BN (BatchNorm). Finally, Table 2 also reports the

performance of a single network (CAN32+AN) that repre-

sents all ten operators; this network is described in Sec-

tion 5.

Method MSE PSNR SSIM
Time # of

(ms) param

FCN-8s 344.1 26.36 0.808 150 30,510K

Encoder-decoder 177.9 34.90 0.950 139 7,760K

Plain 369.7 32.05 0.920 118 75K

CAN32 133.4 35.52 0.956 162 75K

CAN32+BN 129.9 28.64 0.929 243 75K

CAN24+AN 59.1 36.04 0.960 190 37K

CAN32+AN 36.0 37.59 0.966 277 75K

Single network 110.3 29.86 0.931 385 78K

Table 2. Average accuracy, running time, and number of param-

eters of different network architectures over all ten operators on

the MIT-Adobe test set. Running time is measured on images at

1080p resolution (∼1.75 MP).

Cross-resolution generalization. We now test how the

trained approximators generalize across resolutions. To

2503



keep the time of the experiment manageable, we focus on

the L0 smoothing operator for this purpose. Recall that our

approximator was trained on images resized to random res-

olutions between 320p and 1440p. We now compare the

trained model to baselines on a set of specific resolutions:

320p, 480p, 720p, 1080p, 1440p, and 2160p. For this pur-

pose, the MIT-Adobe test set was resized to each of these

resolutions, the reference operator was executed on these

images, and all methods were evaluated at each resolution.

The results are shown in the supplement. They indicate that

the accuracy of our approximator is stable and outperforms

the other approaches across resolutions. Note that the 2160p

condition (∼7 MP) tests the generalization of our model to

resolutions never seen during training. (The maximal reso-

lution used during training was 1440p.)

Cross-dataset generalization. We have also evaluated how

the trained operators generalize across datasets. To this

end, for each operator, we tested two models on the MIT-

Adobe test set: one trained on the MIT-Adobe training set

and one trained on the RAISE training set. Similarly, for

each operator, we tested two models on the RAISE test set:

one trained on the RAISE training set and one trained on

the MIT-Adobe training set. The detailed results are given

in the supplement. They indicate that the trained approxi-

mators generalize extremely well and effectively represent

the underlying action of the reference operators. The ac-

curacy in corresponding conditions (e.g., MIT → MIT and

RAISE → MIT) is virtually identical.

Ablation studies. Additional controlled experiments on

network depth and width are reported in the supplement.

5. Extensions

We now describe three extensions of the presented ap-

proach: representing parameterized operators, representing

multiple operators by a single network, and video process-

ing.

Parameterized operators. An image processing opera-

tor can have parameters that control its action. For ex-

ample, variational image smoothing operators [66, 58, 73]

commonly have a parameter λ that controls the relative

strength of the regularizer: higher λ leads to more aggres-

sive smoothing. Other operators, such as multiscale tone

manipulation, have multiple meaningful parameters that can

be used to control the operator’s effect [24]. Our approach

extends naturally to creating parameterized approximators

that expose these degrees of freedom at test time. To this

end, we add channels to the input layer. For each parameter

we wish to expose, we add an input channel that is used to

communicate the parameter’s value to the network. During

training, we apply the operator with randomly sampled pa-

rameter values, thus showing the network the effect of the

parameter on the operator. Quantitative results are reported

in the supplement and qualitative results are shown in the

video.

One network to represent them all. So far, we have

trained separate networks for different operators, albeit with

identical parameterizations. We now show that all 10 op-

erators can be represented by a single network, which can

emulate any of the individual operators at test time. This

shows that a single compact network can execute a large

number of advanced image processing effects at high accu-

racy. To this end, we augment the input layer by adding

10 additional channels, where each channel is a binary in-

dicator that corresponds to one of the 10 operators. During

training, we randomly sample an operator and an input im-

age in each iteration. Training proceeds for 500K iterations

total, as in the other experiments. For this experiment we

use the CAN32 configuration with adaptive normalization.

The approximation accuracy achieved by the trained net-

work across the 10 operators is reported in Table 2. The

accuracy on each individual operator is given in the sup-

plement. Remarkably, a single compact network that rep-

resents all 10 operators achieves high accuracy, well above

the most accurate prior approximation scheme (compare to

the results in Table 1). The trained network is demonstrated

in the supplementary video. As shown in the video, the

network can also smoothly transition between the operators

when it is given continuous values in the auxiliary input

channels, even though it was trained with one-hot vectors

only.

Video processing. We also apply the trained models to

videos from the Tanks and Temples dataset [44]. This fur-

ther demonstrates cross-dataset generalization. (The mod-

els were trained on the MIT-Adobe dataset.) We simply

apply the approximator to each frame. Although no pro-

visions are made for temporal coherence, the results are as

coherent as the original operators. The results are shown in

the supplementary video.

6. Conclusion

We have presented an approach to approximating a

wide range of image processing operators. All operators

are approximated with the same parameterization and the

same flow of computation. We have shown that the pre-

sented approach significantly outperforms prior approxima-

tion schemes.

We see the uniform and regular flow of computation in

the presented model as a strong advantage. While the model

is already faster than baselines using a generic implementa-

tion, we expect that significant further acceleration can be

achieved.

2504



References

[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. Computer Graphics

Forum, 29(2), 2010. 2

[2] A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaussian

KD-trees for fast high-dimensional filtering. ACM Transac-

tions on Graphics, 28(3), 2009. 2

[3] F. Agostinelli, M. R. Anderson, and H. Lee. Adaptive multi-

column deep neural networks with application to robust im-

age denoising. In NIPS, 2013. 3

[4] M. Arjovsky and L. Bottou. Towards principled methods for

training generative adversarial networks. In ICLR, 2017. 5

[5] M. Aubry, S. Paris, S. W. Hasinoff, J. Kautz, and F. Durand.

Fast local Laplacian filters: Theory and applications. ACM

Transactions on Graphics, 33(5), 2014. 2, 5, 6

[6] J. Aujol, G. Gilboa, T. F. Chan, and S. Osher. Structure-

texture image decomposition – modeling, algorithms, and

parameter selection. IJCV, 67(1), 2006. 2

[7] S. Bae, S. Paris, and F. Durand. Two-scale tone manage-

ment for photographic look. ACM Transactions on Graphics,

25(3), 2006. 2

[8] J. T. Barron and B. Poole. The fast bilateral solver. In ECCV,

2016. 2

[9] D. Berman, T. Treibitz, and S. Avidan. Non-local image de-

hazing. In CVPR, 2016. 2, 5, 6

[10] J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution

with deep convolutional sufficient statistics. In ICLR, 2016.

3, 5

[11] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-

noising: Can plain neural networks compete with BM3D? In

CVPR, 2012. 3

[12] V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learn-

ing photographic global tonal adjustment with a database of

input / output image pairs. In CVPR, 2011. 5

[13] A. Chambolle and T. Pock. A first-order primal-dual al-

gorithm for convex problems with applications to imaging.

Journal of Mathematical Imaging and Vision, 40, 2011. 2

[14] J. Chen, A. Adams, N. Wadhwa, and S. W. Hasinoff. Bi-

lateral guided upsampling. ACM Transactions on Graphics,

35(6), 2016. 2, 5, 6, 7

[15] J. Chen, S. Paris, and F. Durand. Real-time edge-aware im-

age processing with the bilateral grid. ACM Transactions on

Graphics, 26(3), 2007. 2

[16] Q. Chen and V. Koltun. Photographic image synthesis with

cascaded refinement networks. In ICCV, 2017. 5

[17] Y. Chen, W. Yu, and T. Pock. On learning optimized reaction

diffusion processes for effective image restoration. In CVPR,

2015. 2

[18] D. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato.

RAISE: A raw images dataset for digital image forensics. In

Proc. ACM Multimedia Systems Conference, 2015. 5

[19] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. PAMI, 38(2),

2016. 3

[20] A. Dosovitskiy and T. Brox. Generating images with per-

ceptual similarity metrics based on deep networks. In NIPS,

2016. 5

[21] F. Durand and J. Dorsey. Fast bilateral filtering for the dis-

play of high-dynamic-range images. ACM Transactions on

Graphics, 21(3), 2002. 2

[22] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image

taken through a window covered with dirt or rain. In ICCV,

2013. 3

[23] Z. Farbman, R. Fattal, and D. Lischinski. Convolution pyra-

mids. ACM Transactions on Graphics, 30(6), 2011. 2

[24] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-

preserving decompositions for multi-scale tone and detail

manipulation. ACM Transactions on Graphics, 27(3), 2008.

2, 5, 6, 8

[25] R. Fattal. Single image dehazing. ACM Transactions on

Graphics, 27(3), 2008. 2

[26] R. Fattal. Edge-avoiding wavelets and their applications.

ACM Transactions on Graphics, 28(3), 2009. 2

[27] R. Fattal. Dehazing using color-lines. ACM Transactions on

Graphics, 34(1), 2014. 2

[28] E. S. L. Gastal and M. M. Oliveira. Domain transform for

edge-aware image and video processing. ACM Transactions

on Graphics, 30(4), 2011. 2

[29] E. S. L. Gastal and M. M. Oliveira. Adaptive manifolds for

real-time high-dimensional filtering. ACM Transactions on

Graphics, 31(4), 2012. 2

[30] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016. 3

[31] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint

demosaicking and denoising. ACM Transactions on Graph-

ics, 35(6), 2016. 3

[32] M. Gharbi, Y. Shih, G. Chaurasia, J. Ragan-Kelley, S. Paris,

and F. Durand. Transform recipes for efficient cloud photo

enhancement. ACM Transactions on Graphics, 34(6), 2015.

3

[33] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and Huffman coding. In ICLR, 2016. 3

[34] K. He and J. Sun. Fast guided filter. arXiv:1505.00996, 2015.

2

[35] K. He, J. Sun, and X. Tang. Single image haze removal using

dark channel prior. PAMI, 33(12), 2011. 2, 5, 6

[36] J. Hegarty, R. Daly, Z. DeVito, M. Horowitz, P. Hanrahan,

and J. Ragan-Kelley. Rigel: Flexible multi-rate image pro-

cessing hardware. ACM Transactions on Graphics, 35(4),

2016. 3

[37] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 4

[38] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

2017. 5, 6

[39] V. Jain and H. S. Seung. Natural image denoising with con-

volutional networks. In NIPS, 2008. 3

[40] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

3, 5, 6, 7

2505



[41] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2016. 3

[42] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolu-

tional network for image super-resolution. In CVPR, 2016.

3

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015. 5

[44] A. Knapitsch, J. Park, Q. Zhou, and V. Koltun. Tanks

and temples: Benchmarking large-scale scene reconstruc-

tion. ACM Transactions on Graphics, 36(4), 2017. 8

[45] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele.

Joint bilateral upsampling. ACM Transactions on Graphics,

26(3), 2007. 2

[46] D. Krishnan, R. Fattal, and R. Szeliski. Efficient precondi-

tioning of Laplacian matrices for computer graphics. ACM

Transactions on Graphics, 32(4), 2013. 2

[47] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu-

tation, 1(4), 1989. 4

[48] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken,

A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic

single image super-resolution using a generative adversarial

network. In CVPR, 2017. 3, 5

[49] Y. Li, J. Huang, N. Ahuja, and M. Yang. Deep joint image

filtering. In ECCV, 2016. 3

[50] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video super-

resolution via deep draft-ensemble learning. In ICCV, 2015.

3

[51] S. Liu, J. Pan, and M. Yang. Learning recursive filters for

low-level vision via a hybrid neural network. In ECCV, 2016.

3, 5, 6, 7

[52] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 4, 7

[53] C. Lu, L. Xu, and J. Jia. Combining sketch and tone for

pencil drawing production. In Non-Photorealistic Animation

and Rendering, 2012. 5, 6

[54] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu. Constant time

weighted median filtering for stereo matching and beyond.

In ICCV, 2013. 2

[55] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In ICML,

2013. 4

[56] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled

generative adversarial networks. In ICLR, 2017. 5

[57] P. Milanfar. A tour of modern image filtering: New insights

and methods, both practical and theoretical. IEEE Signal

Processing Magazine, 30(1), 2013. 2

[58] M. Nikolova. A variational approach to remove outliers and

impulse noise. Journal of Mathematical Imaging and Vision,

20, 2004. 5, 6, 8

[59] S. Paris and F. Durand. A fast approximation of the bilateral

filter using a signal processing approach. IJCV, 81(1), 2009.

2

[60] S. Paris, S. W. Hasinoff, and J. Kautz. Local Laplacian fil-

ters: Edge-aware image processing with a Laplacian pyra-

mid. ACM Transactions on Graphics, 30(4), 2011. 2, 5, 6

[61] S. Perreault and P. Hébert. Median filtering in constant time.

IEEE Transactions on Image Processing, 16(9), 2007. 2

[62] T. Pock, M. Unger, D. Cremers, and H. Bischof. Fast and

exact solution of total variation models on the GPU. In CVPR

Workshops, 2008. 2

[63] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Ama-

rasinghe, and F. Durand. Decoupling algorithms from sched-

ules for easy optimization of image processing pipelines.

ACM Transactions on Graphics, 31(4), 2012. 3, 5

[64] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M. Yang.

Single image dehazing via multi-scale convolutional neural

networks. In ECCV, 2016. 3

[65] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-

tional networks for biomedical image segmentation. In MIC-

CAI, 2015. 7

[66] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-

tion based noise removal algorithms. Physica D, 60(1), 1992.

5, 6, 8

[67] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-

ing representations by back-propagating errors. Nature, 323,

1986. 4

[68] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

7

[69] K. Subr, C. Soler, and F. Durand. Edge-preserving multi-

scale image decomposition based on local extrema. ACM

Transactions on Graphics, 28(5), 2009. 2

[70] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.

Texture networks: Feed-forward synthesis of textures and

stylized images. In ICML, 2016. 3

[71] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to structural

similarity. IEEE Transactions on Image Processing, 13(4),

2004. 5, 6

[72] B. Weiss. Fast median and bilateral filtering. ACM Transac-

tions on Graphics, 25(3), 2006. 2

[73] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via L0 gra-

dient minimization. ACM Transactions on Graphics, 30(6),

2011. 2, 5, 6, 8

[74] L. Xu, J. S. J. Ren, C. Liu, and J. Jia. Deep convolutional

neural network for image deconvolution. In NIPS, 2014. 3

[75] L. Xu, J. S. J. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-

aware filters. In ICML, 2015. 3, 5, 6, 7

[76] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from

texture via relative total variation. ACM Transactions on

Graphics, 31(6), 2012. 2, 5, 6

[77] Z. Yan, H. Zhang, B. Wang, S. Paris, and Y. Yu. Automatic

photo adjustment using deep neural networks. ACM Trans-

actions on Graphics, 35(2), 2016. 3

[78] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. In ICLR, 2016. 4

[79] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter.

In ECCV, 2014. 2

[80] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted

median filter (WMF). In CVPR, 2014. 2

2506


