
Makeup-Go: Blind Reversion of Portrait Edit∗

Ying-Cong Chen1 Xiaoyong Shen2 Jiaya Jia1,2

1The Chinese University of Hong Kong 2Tencent Youtu Lab

ycchen@cse.cuhk.edu.hk dylanshen@tencent.com leojia9@gmail.com

Abstract

Virtual face beautification (or markup) becomes common

operations in camera or image processing Apps, which is

actually deceiving. In this paper, we propose the task of

restoring a portrait image from this process. As the first

attempt along this line, we assume unknown global opera-

tions on human faces and aim to tackle the two issues of skin

smoothing and skin color change. These two tasks, intrigu-

ingly, impose very different difficulties to estimate subtle de-

tails and major color variation. We propose a Component

Regression Network (CRN) and address the limitation of us-

ing Euclidean loss in blind reversion. CRN maps the edited

portrait images back to the original ones without knowing

beautification operation details. Our experiments demon-

strate effectiveness of the system for this novel task.

1. Introduction

Popularity of social networks of Facebook, Snapchat,

and Instagram, and the fast development of smart phones

make it fun to share portraits and selfies online. This trend

also motivates the development of widely used procedures

to automatically beautify faces. The consequence is that

many portraits found online are good looking, but not real.

In this paper, we propose the task of blind reverse of this

unknown beautification process and restore faces similar to

what are captured by cameras. We call this task portrait

beautification reversion, or makeup-go for short.

Scope of Application Virtual beautification is performed

quite differently in software, which makes it impossible to

learn all operations that can be performed to smooth skin,

suppress wrinkle and freckle, adjust tone, to name a few.

To make the problem trackable in a well-constrained space,

we learn from data the automatic process for particular soft-

ware and then restore images output from it without know-

ing the exact algorithms. Also, we assume subtle cues still

exists after virtual beutification, even if they are largely sup-

∗This work is in part supported by a grant from the Research Grants

Council of the Hong Kong SAR (project No. 413113).

pressed. Also, at this moment, we do not handle geometric

transformation for face-lift.

Difficulty of Existing Solutions Existing restoration

work [36, 32, 28, 30] only handles reversion of known

and/or linear operations. There is no mature study yet

what if several unknown nonlinear operations are coupled

for restoration. The strategy of [11] is to infer the sequence

of operations and then each of them. We however note this

scheme does not work in our task for complicated beautifi-

cation without knowing candidate operations.

In addition, directly learning reversion by deep neu-

ral networks is not trivial. Previous CNN frameworks

only address particular tasks of super-resolution [7, 8, 13],

noise/artifact removal [6], image filtering [18], etc. Learn-

ing in these tasks are with some priors, such as the upsam-

pling factors, noise patterns, and filter parameters. Our task

may not give such information and needs to be general.

In terms of network structures, most low-level vision

frameworks stack layers of convolution and nonlinear rec-

tification for regression of the Euclidean loss. This type of

loss is useful for previous tasks such as denoise [6]. But

they are surprisingly not applicable to our problem because

levels of complex changes make it hard to train a network.

We analyze this difficulty below.

Challenge in Our Blind Reversion To show the limita-

tion of existing CNN in our task, we apply state-of-the-

art VDSR [14], FSRCNN [8] and PSPNet [8], to directly

regress the data after edit. VDSR performs the best among

the three. It is an image-to-image regression network with

L2 loss that achieves high PSNRs in super-resolution. It

successfully learns large-scale information such as skin

color and illumination, as shown in Figure 1.

It is however intriguing to note that many details, espe-

cially the region that contains small freckles and wrinkles,

are not well recovered in the final output. In fact, VDSR is

already a deep model with 20 layers – stacking more lay-

ers in our experiments does not help regress these subtle

information. This manifests that the network capacity is not

the bottleneck. The main problem, actually, is on employ-

ment of the Euclidean loss that makes detailed changes be

14501

(a) Edited Image (b) CNN (c) Output (d) Groundtruth (e) Close-up

Figure 1. Illustration of using existing CNNs for portrait beautification reversion. (a) is the image edited by Photoshop Express; (b)

represents a CNN network for image regression; (c) is the output of the network; (d) is the ground truth image; (e) is the close-up patches

cropped from the edited image, output and ground truth image. It cannot achieve good performance on face detail recovery.

ignored. This is not desirable to our task since the main ob-

jective is exactly to restore these small details on faces. Ig-

noring them would completely fail operation reversal. We

provide more analysis in Section 3, which gives the idea of

constructing our Component Regression Network (CRN).

Our Contributions We design a new network structure

to address above elaborated detail diminishing issues and

handle both coarse and subtle components reliably. Instead

of directly regressing the images towards the unedited ver-

sion, our network regresses levels of principal components

of the edited parts separately. As a result, subtle detail in-

formation would not be ignored. It can now be similarly

important as strong patterns in final image reconstruction,

and thus is guaranteed to get lifted in regression. Our con-

tribution in this paper is threefold.

• We propose the task of general blind reversion for por-

trait edit or other inverse problems.

• We discover and analyze the component domination

effect in blind reversion and ameliorate it with a new

component-based network architecture.

• Extensive analysis and experiments prove the effec-

tiveness of our model.

2. Related Work

We in this section review related image editing tech-

niques and the convolutional neural networks (CNNs) for

image processing.

Image Editing Image editing is a big area. Useful tools

include those for image filtering [19, 3, 9, 29, 35, 10], retar-

geting [23, 1], composition [21], completion [2, 5], noise re-

moval [22, 27], and image enhancement [33]. Most of these

operations are not studied for their reversibility. Only the

work of [11] recovers image editing history assuming that

candidate editing operations are known in advance, which

is not applicable to our case where unknown edit comes out

from commercial software.

CNNs for Image Regression Convolutional neural net-

works are effective now to solve the regression problem in

image processing [8, 14, 7, 30, 17, 31]. In these methods,

the Euclidean loss is usually employed. In [31], Euclidean

loss in gradient domain is used to capture strong edge in-

formation for filter learning. This strategy does not fit our

problem since many details do not contain strong edges.

Our method is also related to the perception loss based

CNNs [13, 16], which are recently proposed for style trans-

fer and super-resolution. In [13], perception loss is defined

as the Euclidean distance between features extracted by dif-

ferent layers of an ImageNet [15] pretrained VGG network

[25]. The insight is that layers of the pretrained network

capture levels of information in edges, texture or even ob-

ject parts [34]. In [16], an additional adversarial part is in-

corporated to encourage the output to reside on the manifold

of target dataset. However, as explained in [13, 16], percep-

tional loss produces lower PSNR results than the Euclidean

one. Since the perception loss is complex, it is difficult to

know what component is not regressed well. Our approach

does not use this loss accordingly.

3. Elaboration of Challenges

As shown in Figure 1, our blind reversion system needs

to restore several levels of details. When directly applying

the methods of [14], many details are still missing even if

PSNRs are already reasonable, as shown in Figure 1(c,e).

We intriguingly found that the main reason is on the choice

of Euclidean loss function [8, 14, 7, 30, 17] for this regres-

sion task, which is used to measure the difference between

the network output and target. Perception loss [13, 16], al-

ternatively, is used for remedying details at the cost of sac-

rificing PSNRs, i.e., overall fidelity to the target images.

In this section, we explain our finding that Euclidean loss

4502

(a) Edited Image

(b) Relative Improvement

(c) Close-up (d) Original Image

10 20 30 40 50 60 70 80 90 100 110 120

0

0.2

0.4

0.6

0.8

1 Ours

VDSR

Groundtruth

R
el

at
iv

e
Im

p
ro

v
em

en
t

Component

Figure 2. Relative improvement of different principal components. (a) and (d) are the edited and ground truth images respectively. (b)

shows the relative similarity improvement of different principal components regarding network output. (c) shows close-up patches with

appearance change using only the top 1, 2, 3, 5, 10, 20, 50 and 100 components. Best viewed in color.

cannot let network learn details well due to the component

domination effect. We take the VDSR network [14] as an

example, which uses Euclidean loss and achieves state-of-

the-art results in super-resolution. So it already has the good

ability for detail regression. When applied to our task, it

does not produces many details, as illustrated in Figure 1.

Improvement Measure Regarding Levels of Details To

understand this process, we analyze the difference between

the network output and the ground truth image regarding

different principal components, which is shown in Figure 2.

Our computation is explained below.

We denote the edited input and unedited ground truth

image as IX and IY , and the network output as IZ . We

compute the discrepancy maps as Ie = IY − IX and

Iê = IY − IZ on collected 107 patches where each patch

is with size 11 × 11. These patches are vectorized where

PCA coefficients U = {u1, u2, · · · , um2} are extracted

from them in a descending order. Then eij = uT
i vj and

êij = uT
i v̂j denote the ith components of the jth discrep-

ancy patches, where vj and v̂j are the vectorized patches.

The final improvement measure of the ith PCA component

between the network output and the ground truth image is

expressed as

di =

∑
j(e

2
ij − ê2ij)∑
j e

2
ij

. (1)

When the network output is exactly the ground truth, di = 1
for all i, which is the red dash line in Figure 2(b). A large di
indicates that the network regresses the ith component well.

Relative Improvement Analysis As shown in Figure 2

(the cyan curve), VDSR achieves high di for the top-ranking

components. Intriguingly the performance drops dramati-

cally for other smaller ones. As shown in Figure 2(c), the

lower-ranking components mostly correspond to details of

faces, such as freckles. Their unsuccessful reconstruction

greatly affects our blind reversion task where details are the

vital visual factors.

The main reason that VDSR fails to regress low-ranking

components is the deployment of the Euclidean loss, which

is mainly controlled by the largest principal components.

This loss is expressed as

J =
1

2m2
||F (vX)− vY ||

2, (2)

where vX ∈ R
m2×1 is the input edited image patch, F (·) ∈

R
m2×1 is mapping function defined by the network, and

vY ∈ R
m2×1 is the target image patch.

Note that the PCA base matrix U satisfies UUT = I ,

where I is an identity matrix. Thus projecting F (vX) and

vY to U does not change the loss J , i.e.,

J =
1

2m2
||UTF (vX)− UT vY ||

2

=
1

2m2

m2∑

i=1

||fi(vX)− uivY ||
2,

(3)

where fi(vX) = uT
i F (vX). In this regard, J can be viewed

as a sum of different objectives that regress components of

the target image patches. Since these components are ex-

tracted by PCA, there is limited information shared among

different principal components.

Note that the variance of those components differs

greatly. As shown in Figure 3, the eigenvalues for the first a

few components are much larger than others and the top

5 components contribute more than 99% variance. This

makes the Euclidean loss function dominated by the major

ones, while other components can be safely ignored during

regression, causing the component domination effect.

4503

In the following, we describe our model to remedy this

problem. As shown in Figure 8, it can yield much better per-

formance in reconstructing face details, such as wrinkles.

4. Our Framework

The pipeline of our network is shown in Figure 4. To

recover details on faces, first, we learn the discrepancy map

Ie = IY − IX . It makes final image reversion achieved as

IY = Ie + IX . It is similar to the residual learning defined

in [14], which originally aimed to address the gradient van-

ishing/explosion problem. We note that our network does

not suffer greatly from such gradient problems. Instead it is

vital to mitigate the component domination effect.

The reason to learn the discrepancy map Ie instead of

the image revision IY directly is illustrated in Figure 3. The

first principal component of IY is more dominating than

that of Ie, while other components are much less significant.

This indicates that subtle details in IY are more difficult to

learn than those in Ie. Our choice to work on Ie makes the

system run more reliably.

(a) Original Image

(b) Discrepancy Map

Component

N
o

rm
al

iz
ed

 E
ig

en
v

al
u

e

(c) Normalized Eigenvalue Distribution

Figure 3. Illustration of normalized eigenvalues regarding princi-

pal components. (a) and (b) illustrate an example of original image

and discrepancy map respectively. (c) compares the distributions

between the ground truth image and the discrepancy map. For

fair comparison, we normalize eigenvalues by their L1-norm, and

show only the top 10 eigenvalues.

4.1. Component Decomposition

Our component decomposition is conducted in the vector

space where the ith component is represented as

vy
(i) = uiu

T
i vy. (4)

This operation can be further transformed into a simple con-

volution operation [4] in the image space, allowing to input

a whole image without any cropping and vectorization op-

erations. This profits computation since both the input and

target are in the image space instead of the vector one.

More specifically, each basis ui ∈ R
m2

can be rear-

ranged into κi ∈ R
m×m, so that uT

i vy (vy ∈ R
m2

) is equiv-

alent to κi ∗y (y ∈ R
m×m) where ∗ is a convolutional oper-

ation, and y is the image patch. Similarly, uiu
T
i vy is equiv-

alent to κ′
i ∗ κi ∗ y, where κ′

i is 180◦ rotation of κi. This

convolution implementation makes decomposition extensi-

ble to the whole image. Given an image I ∈ R
h×w where h

and w are the height and width respectively, decomposition

is implemented as

I(i) = κ′
i ∗ κi ∗ I, (5)

where I(i) is the ith component. Note that this decomposi-

tion is invertible – that is, we can recover I as

I =

n∑

i=1

I(i). (6)

4.2. Component­Specific Learning

Once the target image is decomposed, subnetworks can

be used for regressing components respectively. This proce-

dure makes the major components not dominate optimiza-

tion during learning. Therefore, our framework is to give

each subnetwork a specific loss function that drives regres-

sion only in the corresponding component rather than the

whole image mixing all of them. The final image can be

reconstructed by summing all outputs of subnetworks, ac-

cording to Eq. (6). This framework is called Component

Regression Network (CRN).

The implementation detail is as follows. Given an input

image IX , we first process it with 3 convolutional layers

(3 × 3 kernel size and 56 channels) with PReLU rectifica-

tion, which aims for extracting common features among all

components. We pad zeros for all convolution layers to pre-

serve the image size. Then the common features are fed

into each component-specific network. The architecture of

the subnetworks, like [8], contains the following parts.

Shrinking We use 1 convolution kernel for reducing the

number of feature maps from 56 to 12 for accelerating the

mapping process. This reduces network parameters and ac-

celerates both training and testing.

Nonlinear mapping We stack 3 convolution layers with

PReLU rectification for nonlinear mapping. Each convolu-

tional layer contains 12 3× 3 kernels.

Expending Reconstruction is the reverse of dimension re-

duction. We use the 1 convolution kernel to expand the

shrunk feature maps back to 64 channels for final process.

4.3. Other Design Details

In addition to addressing the component domination

problem, we incorporate a few other techniques to further

improve the performance and efficiency.

4504

1
 !
subnetwork

2
"#
subnetwork

shared subnetwork

Common network

PCA

Component Decomposition

$%

$Z

…

… SUM

supervise

$& ' $%

Figure 4. Our CRN Pipeline. CRN learns the discrepancy map Ie = IY −IX . It is further decomposed into different components according

to Eq. (5) to supervise each subnetwork. During testing, we feed the network with an edited image where each subnetwork outputs the

corresponding component. We sum network output to obtain the final result.

(a) Portrait samples (b) Effect of edit

Figure 5. Examples in our dataset. (a) shows a few samples in our dataset. (b) shows the effect of edit. The 4 images are the original image,

and images edited by MT, PS and INS respectively.

Subnetwork Sharing One critical factor that influences

performance is the number of subnetworks. Ideally, it

should equal to the number of pixels of an image patch.

However, allocating one subnetwork to each component is

not affordable considering the computation cost. As illus-

trated in Figure 3, very low-ranking components are with

similar variance. This finding inspires us to empirically use

only 7 subnetworks to regress the top 7 components. There

is one last shared subnetwork to regress all remaining com-

ponents. This strategy works quite well in our task. It saves

a lot of computation while not much affecting result quality.

Scale Normalization Practically, the lower-ranked com-

ponents have small variance, making gradients easily domi-

nated by higher-ranked ones in the shared network. To solve

this problem, each component is divided by its correspond-

ing standard deviation, i.e., I
(i)
norm = 1√

λi

I(i) where I(i) is

defined in Eq. (5) and λi is the ith eigenvalue. With this op-

eration, all components have similar scales. During testing,

we scale the subnetwork output back to the required quan-

tity by multiplying corresponding standard deviation before

summing them up.

5. Experimental Settings

Implementation setting All CRN models have the same

network architecture described in Section 4. Unless other-

wise stated, our models use 7 subnetworks to regress the

top 7 components, and take a shared subnetwork to regress

others. Our models are implemented in Caffe [12]. During

training, the initial learning rate is 0.01. It decreases follow-

ing a polynomial policy with 40,000 iterations. Gradient

clipping [20, 14] is also used to avoid gradient explosion,

so that large learning rates are allowed.

Dataset We utilized the portrait dataset [24] for evalua-

tion. This dataset contains 2,000 images with various age,

color, clothing, hair style, etc. We manually select images

that contain many details and are not likely to have been

edited before. They form our final dataset. A few examples

are shown in Figure 5(a). These images are referred to as

the ground truth data (not edited) in our experiments. Then

we use three most popular image editing systems, i.e., Pho-

toshop Express (PS), Meitu (MT) and Instagram (INS), to

process the images. PS and MT are stand-alone software,

while INS is photo sharing application that contains built-in

editing functions. These systems have many users. Figure

5(b) shows editing results of different systems. We trained

our models to reverse edit for each of the three systems.

Evaluation metrics The Peak Signal-to-Noise ratio

(PSNR) and structural similarity (SSIM) [26] index are used

for quantifying the performance of our approach. How-

ever, these measures are not sensitive to the details in hu-

4505

(a) Edited Image (b) 2 Component (c) 4 Component (d) 7 Component (e) Ground truth

Figure 6. Visualization of contribution of each branch. (a) is the edited image; (b)-(d) show results using different numbers of branches;

(e) is the original image (best viewed in color).

man faces. We thus utilize the relative improvement defined

in Eq. (1) to form the Accumulated Relative Improvement

(ARI) measure. ARI is set as

ARI =
∑

i

di, (7)

where di is introduced in Eq. (1). ARI measures the rel-

ative improvement over all components. They contribute

similarly to the final result disregarding their initial weights

in eigenvalues.

6. Evaluation of Our Approach

The critical issue for the blind reversion task is the com-

ponent domination effect. In the following, we explain the

effectiveness of different steps in our approach.

6.1. Contribution of Component­specific Learning

Statistical evaluation As the main contribution, the

component-specific learning mitigates the component dom-

ination effect effectively. Table 1 shows PSNR, SSIM and

ARI for different numbers of branches. When the num-

ber of branches is 1, all components are mixed, which be-

comes the baseline approach of our model. As the num-

ber of branches increases, the performance betters consis-

tently, which means the domination effect is gradually sup-

pressed. Note that the improvement is large in the beginning

(e.g., 76.8% improvement for 2 branches in terms of ARI),

and slows down with more branches (e.g., 4.32% with 7

branches in terms of ARI). This indicates that component

domination effect is more severe in high-ranking principal

components than low-ranking ones. Thus it is reasonable to

use respective branches for major components, and a shared

branch to regress the rest.

Branch 1 2 3 4 5 6 7

PSNR 36.7 39.9 39.0 41.4 41.5 41.6 41.9

SSIM 0.96 0.97 0.97 0.98 0.98 0.98 0.98

ARI 12.5 22.1 32.4 50.1 53.7 56.1 60.5

Table 1. Evaluation of effectiveness of component-specific learn-

ing.

PSNR SSIM ARI

MT

Full Model 40.9 0.98 60.5

w/o DisMap 39.8 0.98 49.7

w/o ScaleNorm 37.4 0.97 -6.0

PS

Full Model 33.3 0.95 28.9

w/o DisMap 32.9 0.95 20.8

w/o ScaleNorm 31.2 0.95 -15.2

INS

Full Model 35.9 0.94 12.9

w/o DisMap 34.7 0.94 3.5

w/o ScaleNorm 32.1 0.93 -25.7

Table 2. Evaluation of effectiveness of discrepancy map learning

and scale normalization.

Visualization We further visualize the information that

different branches contribute in Figure 6. As shown in Fig-

ure 6(a), face details are largely smoothed by the editing

system. Then we use our 7-branch CRN model to process

it. We block some branch output to understand what each

branch learns. The result is shown in Figure 6(b-d). The

smoothed wrinkle becomes more noticeable as the number

of component increases. When all 7 branches are used, even

a very subtle freckle can be recovered.

6.2. Contribution of Other Components

In addition to the component-specific learning, scale nor-

malization and discrepancy map learning are also very im-

4506

0 20 40 60 80 100 120

Component

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Im

p
ro

v
em

en
t

Ours

VDSR

Perception

Groundtruth

(a) Meitu

0 20 40 60 80 100 120

Component

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Im

p
ro

v
em

en
t

Ours

VDSR

Perception

Groundtruth

(b) Photoshop

0 20 40 60 80 100 120

Component

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Im

p
ro

v
em

en
t

Ours

VDSR

Perception

Groundtruth

(c) Instagram

Figure 7. Results of different methods in the three different datasets.

PSNR SSIM ARI

MT

Ours 40.9 0.98 60.5

VDSR [14] 39.5 0.96 12.8

Perception [16] 28.1 0.96 -83.7

PS

Ours 33.3 0.95 28.9

VDSR [14] 32.2 0.94 4.2

Perception [16] 22.4 0.91 -89.2

INS

Ours 35.9 0.94 12.9

VDSR [14] 33.4 0.93 4.8

Perception [16] 18.7 0.89 -44.2

Table 3. Comparison with VDSR and perception loss on MT, PS

and INS.

portant to our model. To evaluate them, in Table 2, we

compare our full model with models that 1) directly regress

the ground truth image (denoted as w/o DisMap); 2) do not

perform scale normalization (denoted as w/o ScaleNorm).

The quantities in tables indicate that the performance drops

without discrepancy map learning. This is because directly

learning the original image suffers more severely from the

component domination effect. Note that if scale normal-

ization is not used, our model fails because the small-scale

components are not learned successfully.

6.3. Comparison with Other Methods

There is no exact work addressing blind reversion of un-

known image edit. But in a broader context, our model

is related to image-to-image FCN regression. VDSR [14]

is an FCN model that achieves state-of-the-art results in

super-resolution where high-frequency information needs

to be restored. Our problem is different on the fact that im-

age edit can change all levels of information regarding all

coarser and subtle structures, while super-resolution gener-

ally keeps the coarse level of edges.

Perception loss [16] is another regression loss function.

It is combination of VGG-based content loss and adversar-

ial loss. Compared to Euclidean loss, perception loss is

performed in the feature level. As indicated in [13, 16],

it yields better performance on details than Euclidean loss,

but achieves lower PSNR.

Real-world Examples Figure 8 compares VDSR [14],

perception loss [16], and our model in real-world cases. It

shows that VDSR can regress color and illumination well,

and yet fail to learn details. On the contrary, by combining

VGG loss and adversarial loss, perception loss learns de-

tails better. But it does not handle color similarly well. This

is because perception loss utilizes layers of VGG network,

which is trained for classification. It requires robust fea-

tures invariant to color or small texture change. Our model

handles both problems for satisfying detail regression.

Statistical Comparison To prove the generality, we fur-

ther show PSNR, SSIM and ARI (Eq (7)) over all testing

images edited by MT, PS and INS in Table 3. Statistics in-

dicate that our model yields better performance than VDSR

and perception loss. It means our model can regress por-

traits more accurately.

In addition, benefitted from component-specific learn-

ing, our model outperforms other methods in terms of ARI

by a large margin. It is a bit surprising that perception loss

does not perform that well regarding these statistical met-

rics, especially the ARI. It actually is because perception

loss relies on the VGG network [13, 25], which is trained for

classification and may discard information that is not dis-

criminative. Thus these components would be completely

ignored by the network. The adversarial part does not help

find them since it does not impose similarity between the

network output and the target. As will be shown later, per-

ception loss works well on certain components, but not all

of them.

Component Level Comparison In addition to the statis-

tic metrics, it is also interesting to see relative improvement

in the component level. Figure 7 shows the relative im-

provement curve for each method. As discussed in Section

3, because of the component domination problem, VDSR

achieves large improvement only in the top-ranking compo-

4507

(a) Edited Image (e) Ground truth(b) VDSR (c) Perception (d) Ours

Figure 8. Reverting different editing systems. The 1
st, 2nd and 3

rd rows correspond to MT, PS and INS respectively.

nents. Our model tackles this problem by using component-

specific learning. Also, it is clear that the perception loss

helps accomplish better result than VDSR only on median-

ranking components. This finding complies with the obser-

vation in [13, 16] that perception loss yields better visual

quality. But PSNRs may be lower.

7. Concluding Remarks

In this paper, we have proposed a blind image reversion

task for virtual portrait beautification. We have addressed

the component domination effect, and proposed a multi-

branch network to tackle this problem. The relative im-

provement is used to quantify the overall performance of

each component. Extensive experiments verified the effec-

tiveness of our method.

There are inevitably limitations. First, we do not handle

geometric transformation yet. Second, if details are pro-

cessed quite differently in image regions, the system may

need many data to learn this pattern. Third, our method

is regression-based. Thus it cannot handle edit that totally

removes details in stylization or strong makeup. We will

address these challenges in our future work.

4508

.

References

[1] S. Avidan and A. Shamir. Seam carving for content-aware

image resizing. ACM Trans. Graph., 26(3):10, 2007.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: A randomized correspondence algorithm for

structural image editing. ACM Trans. Graph., 28(3):24,

2009.

[3] T. Carlo and M. Roberto. Bilateral filtering for gray and color

images. In ICCV, 1998.

[4] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet:

A simple deep learning baseline for image classification?

IEEE Transactions on Image Processing, 2015.

[5] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman. The

patch transform and its applications to image editing. In

CVPR, 2008.

[6] C. Dong, Y. Deng, C. Change Loy, and X. Tang. Compres-

sion artifacts reduction by a deep convolutional network. In

ICCV, 2015.

[7] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. IEEE Trans.

Pattern Anal. Mach. Intell., 2016.

[8] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In ECCV, 2016.

[9] E. S. Gastal and M. M. Oliveira. Domain transform for edge-

aware image and video processing. ACM Trans. Graph.,

30(4):69, 2011.

[10] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV,

2010.

[11] S.-M. Hu, K. Xu, L.-Q. Ma, B. Liu, B.-Y. Jiang, and J. Wang.

Inverse image editing: Recovering a semantic editing his-

tory from a before-and-after image pair. ACM Trans. Graph.,

2013.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[13] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

[14] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[16] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,

A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.

Photo-realistic single image super-resolution using a gener-

ative adversarial network. arXiv preprint arXiv:1609.04802,

2016.

[17] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint

image filtering. In ECCV, 2016.

[18] S. Liu, J. Pan, and M.-H. Yang. Learning recursive filters

for low-level vision via a hybrid neural network. In ECCV,

2016.

[19] S. Paris and F. Durand. A fast approximation of the bilateral

filter using a signal processing approach. In ECCV, 2006.

[20] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of

training recurrent neural networks. ICML, 2013.

[21] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.

ACM Trans. Graph., 22(3):313–318, 2003.

[22] J. S. Ren, L. Xu, Q. Yan, and W. Sun. Shepard convolutional

neural networks. In NIPS, 2015.

[23] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir. A

comparative study of image retargeting. In ACM transactions

on graphics, 2010.

[24] X. Shen, X. Tao, H. Gao, C. Zhou, and J. Jia. Deep automatic

portrait matting. In ECCV, 2016.

[25] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to structural

similarity. IEEE Transactions on Image Processing, 2004.

[27] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting

with deep neural networks. In NIPS, 2012.

[28] L. Xu and J. Jia. Two-phase kernel estimation for robust

motion deblurring. In ECCV, 2010.

[29] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l 0 gra-

dient minimization. ACM Trans. Graph., 30(6):174, 2011.

[30] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural

network for image deconvolution. In NIPS, 2014.

[31] L. Xu, J. S. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-

aware filters. In ICML, 2015.

[32] L. Xu, S. Zheng, and J. Jia. Unnatural l0 sparse representa-

tion for natural image deblurring. In CVPR, 2013.

[33] Z. Yan, H. Zhang, B. Wang, S. Paris, and Y. Yu. Automatic

photo adjustment using deep neural networks. ACM Trans.

Graph., 35(2):11:1–11:15, 2016.

[34] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, 2014.

[35] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted

median filter. In CVPR, 2014.

[36] S. Zheng, L. Xu, and J. Jia. Forward motion deblurring. In

ECCV, 2013.

4509

