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Abstract

Modeling instance-level context and object-object rela-
tionships is extremely challenging. It requires reasoning
about bounding boxes of different classes, locations etc.
Above all, instance-level spatial reasoning inherently re-
quires modeling conditional distributions on previous de-
tections. Unfortunately, our current object detection sys-
tems do not have any memory to remember what to con-
dition on! The state-of-the-art object detectors still detect
all object in parallel followed by non-maximal suppression
(NMS). While memory has been used for tasks such as cap-
tioning, they mostly use image-level memory cells without
capturing the spatial layout. On the other hand, model-
ing object-object relationships requires spatial reasoning —
not only do we need a memory to store the spatial layout,
but also a effective reasoning module to extract spatial pat-
terns. This paper presents a conceptually simple yet power-
ful solution — Spatial Memory Network (SMN), to model the
instance-level context efficiently and effectively. Our spatial
memory essentially assembles object instances back into a
pseudo “image” representation that is easy to be fed into
another ConvNet for object-object context reasoning. This
leads to a new sequential reasoning architecture where im-
age and memory are processed in parallel to obtain detec-
tions which update the memory again. We show our SMN
direction is promising as it provides 2.2% improvement over
baseline Faster RCNN on the COCO dataset with VGG16".

1. Introduction

Context helps image understanding! Apart from strong
psychological evidence [4, 37, 64, 65] that context is vital
for humans to recognize objects, many empirical studies in
the computer vision community [10, 11, 16,22, 23,43, 60,

, 73, 82, 83] have also suggested that recognition algo-
rithms can be improved by proper modeling of context.

But what is the right model for context? Consider the
problem of object detection. There are two common mod-
els of context often used in the community. The first type
of model incorporates image or scene level context [5, 30,

'For more up-to-date results, please check our arXiv submission
https://arxiv.org/abs/1704.04224.

Figure 1: Evidence of image-level context reasoning inside
ConvNets. All examples are from our baseline faster RCNN
detector with VGG16 conv5_3 features on COCO [52].
Numbers are class confidences. Left and middle: two ex-
amples where the ConvNet is able to detect tiny and simple-
shaped objects much smaller than the receptive field size.
Bottom right: a false positive detection for person given the
seat on a passenger train. Our Spatial Memory Network
takes advantage of this power by encoding multiple object
instances into a “pseudo” image representation.

, 58, 63, 74, 81]. The second type models object-object
relationships at instance-level [15, 27, 32, 58, 67, 94]. Take
the the top-left image of Fig. | as an example, both the per-
son and the fennis racket can be used to create a contextual
prior on where the ball should be.

Of these two models, which one is more effective for
modeling context? A quick glimpse on the current state-
of-the-art approaches, the idea of single region classifica-
tion [40, 49, 51, 53, 69] with deep ConvNets [33, 76] is
still dominating object detection. On the surface, these ap-
proaches hardly use any contextual reasoning; but we be-
lieve the large receptive fields of the neurons in fact do in-
corporate image-level context (See Fig. 1 for evidences).
On the other hand, there has been little or no success in
modeling object-object relationships or instance-level con-
text in recent years.

Why so? Arguably, modeling the instance-level context
is more challenging. Instance-level reasoning for object de-
tection would have to tackle bounding boxes pairs or groups
in different classes, locations, scales, aspect ratios, efc.
Moreover, for modeling image-level context, the grid struc-
ture of pixels allows the number of contextual inputs to be
reduced efficiently (e.g. to a local neighborhood [11, 43, 73]
or a smaller scale [76, 87]), whereas such reductions for
arbitrary instances appear to be not so trivial. Above all,
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instance-level spatial reasoning inherently requires model-
ing conditional distributions on previous detections, but our
current object detection systems do not have any memory to
remember what to condition on! Even in the case of multi-
class object detection, the joint layout [15] is estimated by
detecting all objects in parallel followed by non-maximal
suppression (NMS) [20]. What we need is an object detec-
tion system with memory built inside it!

Memory has been successfully used in the recognition
community recently for tasks such as captioning [13, 17,
] or visual question answering [2, 3, 24, 44,

,57,72,90,91, 93, 97]. However, these works mostly fo-
cus on modeling an image-level memory, without capturing
the spatial layout of the understanding so far. On the other
hand, modeling object-object relationships requires spatial
reasoning — not only do we need a memory to store the spa-
tial layout, but also a suitable reasoning module to extract
spatial patterns. This paper presents a conceptually simple
yet powerful solution — Spatial Memory Network (SMN), to
model the instance-level context efficiently and effectively.
Our key insight is that the best spatial reasoning module
is a ConvNet itself! In fact, we argue that ConvNets are
actually the most generic” and effective framework for ex-
tracting spatial and contextual information so far! Inspired
by this observation, our spatial memory essentially assem-
bles object instances back into a pseudo “image” represen-
tation that is easy to be fed into another ConvNet to perform
object-object context reasoning.

However, if ConvNets are already so excellent at mod-
eling context, why would we even bother something else?
Isn’t the image itself the ultimate source of information and
therefore the best form of “spatial memory”? Given an im-
age, shouldn’t an ultra-deep network already take care of the
full reasoning inside its architecture? In spite of these valid
concerns, we argue that a spatial memory still presents as
an important next step for object detection and other related
tasks, for the following reasons:

s > k]

e First, we note that current region-based object detec-
tion methods are still treating object detection as a
perception problem, not a reasoning problem: the re-
gion classifier still produces multiple detection results
around an object instance during inference, and relies
on manually designed NMS [69] with a pre-defined
threshold for de-duplication. This process can be sub-
optimal. We show that with a spatial memory that
memorizes the already detected objects, it is possible
to learn the functionality of NMS automatically.

e Second, replacing NMS is merely a first demonstration
for context-based reasoning for object detection. Since
the spatial memory is supposed to store both semantic
and location information, a legitimate next step would
be full context reasoning: i.e., infer the “what” and

2Many context models can be built or formulated as ConvNets [89, 96].

“where” of other instances based on the current layout
of detected objects in the scene. We show evidence for
such benefits on COCO [52].

e Third, our spatial memory essentially presents as a
general framework to encode instance-level visual
knowledge [48], which requires the model to properly
handle the spatial (e.g. overlaps) and semantic (e.g.
poses) interactions between groups of objects. Our ap-
proach follows the spirit of end-to-end learning, opti-
mizing the representation for an end-task — object de-
tection. Both the representation and the idea can be
applied to other tasks that require holistic image un-
derstanding [3, 42, 98].

2. Related Work

As we already mentioned most related work for con-
text and memory in Sec. 1, in this section we mainly re-
view ideas that use sequential prediction for object detec-
tion. A large portion of the literature [28, 45, 56] focuses
on sequential approaches for region proposals (i.e., fore-
ground/background classification). The motivation is to re-
lieve the burden for region classifiers by replacing an ex-
haustive sliding-window search [20] with a smarter and
faster search process. In the era of ConvNet-based detec-
tors, such methods usually struggle to keep a delicate bal-
ance between efficiency and accuracy, since a convolution
based 0/1 classifier (e.g. region proposal network [69]) al-
ready achieves an impressive performance when maintain-
ing a reasonable speed. Sequential search has also been
used for localizing small landmarks [77], but the per-class
model assumes the existence of such objects in an image
and lacks the ability to use other categories as context.

Another commonly used trick especially beneficial for
reducing localization error is iterative bounding box refine-
ment [25, 26, 69, 95], which leverages local image context
to predict a better bounding box iteratively. This line of re-
search is complementary to our SMN, since its goal is to
locate the original instance itself better, whereas our focus
is on how to better detect other objects given the current
detections.

An interesting recent direction focuses on using deep re-
inforcement learning (DRL) to optimize the sequence se-
lection problem in detection [6, 9, 50, 61]. However, due to
the lack of full supervision signal in a problem with high-
dimensional action space’, DRL has so far only been used
for bounding box refinements or knowledge-assisted detec-
ton, where the action space is greatly reduced. Neverthe-
less, SMN can naturally serve as an encoder of the state in
a DRL system to directly optimize average precision [34].

Note that the idea of using higher-dimensional memory
in vision is not entirely new. It has resemblance to spa-
tial attention, which has been explored in many high-level

3Jointly reason about all bounding boxes and all classes.
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tasks [47, 68, 91, 92]. To bypass NMS, LSTM [35] cells ar-
ranged in 2D order [78] and intersection-over-union (IoU)
maps [39] have been used for single-class object detection.
We also notice a recent trend in using 2D memory as a
map for planning and navigation [31, 66]. Our work ex-
tends such efforts into generic, multi-class object detection,
performing joint reasoning on both space and semantics.

3. Background: Faster RCNN

Our spatial memory network is agnostic to the choice of
base object detection model. In this paper we build SMN
on top of Faster R-CNN [69] (FRCNN) as a demonstration,
which is a state-of-the-art detector that predicts and classi-
fies Regions of Interest (Rols). Here we first give a brief
review of the approach.

3.1. Base Network

We use VGG16 [76] as the base network for feature ex-
traction. It has 13 convolutional (conv), 5 max-pooling
(pool), and 2 fully connected (fc) layers before feeding
into the final classifier, and was pre-trained on the ILSVRC
challenge [71]. Given an image Z of height A and width w,
feature maps from the last conv layer (conv5_3) are first
extracted by FRCNN. The conv5_3 feature size (h/, w’)
is roughly y=1/16 of the original image in each spatial di-
mension. On top of it, FRCNN proceeds by allocating two
sub-networks for region proposal and region classification.

3.2. Region Proposal

The region proposal network essentially trains a class-
agnostic objectness [ 1] classifier, proposing regions that are
likely to have a foreground object in a sliding window man-
ner [20]. It consists of 3 conv layers, one maps from
conv5_3 to a suitable representation for Rol proposals,
and two 1x1 siblings on top of this representation for fore-
ground/background classification and bounding box regres-
sion. Note that at each location, anchor boxes [69] of multi-
ple scales (s) and aspect ratios (r) are used to cover a dense
sampling of possible windows. Therefore the total num-
ber of proposed boxes is K~h'xw’ xsxr*. During train-
ing and testing, k<< K regions are selected by this network
as candidates for the second-stage region classification.

3.3. Region Classification

Since the base network is originally an image classifier,
region classification network inherits most usable parts of
VGG16, with two caveats. First, because Rol proposals
can be be arbitrary rectangular bounding boxes, Rol pool-
ing [26, 40] is used in place of pool on conv5_3 to match
the the square-sized (7x7) input requirement for £c6. Sec-
ond, the 1,000-way fc layer for ILSVRC classification
is replaced by two fc layers for C-way classification and
bounding box regression respectively. Each of the C' classes
gets a separate bounding box regressor.

4Boarder anchors excluded.
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Figure 2: Overview of memory iterations for object detec-
tion. The original components from FRCNN are shown in
the gray area. The old detection (person) is marked with a
green box, and the new detection (car) is marked with blue.
Here the network is unrolled one iteration.

Image Memory S,_;

Memory S,

3.4. De-duplication

We want to point out the often-neglected fact that a
standard post-processing step is used in almost all detec-
tors [20, 49, 53, 69] to disambiguate duplications — NMS.
For FRCNN, NMS takes place in both stages. First, for
region proposals, it prunes out the overlapping Rols that
are likely corresponding to the same object (“one-for-all-
class™) to train the region classifier. Second, for the final
detection results, NMS is applied in an isolated, per-class
manner (“one-for-each-class”). In this paper, we still use
NMS for Rol sampling during training [12], and mainly fo-
cus on building a model to replace the per-class NMS, with
the hope that the model can encode the rich interplay across
multiple classes when suppressing redundant detections.

4. Spatial Memory Network

To better motivate the use of spatial memory network, we
resort to a mathematical formulation of the task at hand. For
object detection, the goal is to jointly infer and detect all the
object instances O=[01, 02,03, -+ - ,Ox] given an image
7T, where N is the maximum number of object instances for
any image’. Then the objective function of training a model

50,, denotes both the class and location of the object instance. When
there is not enough foreground objects, the sequence can be padded with
the background class.

4088



(e.g. FRCNN) M is to maximize the log-likelihood:

argmax £ = logP(O1.5| M, )
M

= Z IOgP(On|OO:n—l>M7I)’ (1)

n=1:N

where Oy, 1 is short for [O1, 02, O3, - - , O,,_1] and Oy.o
is an empty set. Note that this decomposition of the joint
layout probability is exact [8], regardless of the order we
are choosing.

For a region-based object detector, Eq.(1) is approxi-
mated by detecting each object instance separately:

argmax L~ Y logP (0, M, T), )
M n=1:N

where NMS shoulders the responsibility to model the cor-
relations in the entire sequence of detections. Since NMS is
mostly® dependent on overlapping patterns, the information
it can provide is limited compared to Og.,,—1.

How can we do better? Inspired by networks that impose
amemory [14, 18,29, 35, 79] for sequential and reasoning
tasks, and the two-dimensional nature of images, we pro-
pose to encode Og.,,—1 in a spatial memory, where we learn
to store all the previous detections. I.e., we introduce mem-
ory variable S,,_1, which gets updated each time an object
instance is detected, and the approximation becomes:

arg max L = Z logP (0, |Sp-1, M,I), (3)
M,S n=1:N

where the memory S is jointly optimized with M.

With the above formulation, the inference procedure for
object becomes conditional: An empty memory is initial-
ized at first (Sec. 4.1). Once an object instance is de-
tected, selected cells (Sec. 4.2) in the memory gets updated
(Sec. 4.4) with features (Sec. 4.3) extracted from the de-
tected region. Then a context model (Sec. 4.5) aggregates
spatial and other information from the memory, and outputs
(Sec. 4.6) scores that help region proposal and region clas-
sification in FRCNN. Then the next potential detection is
picked (Sec. 4.7) to update the memory again. This process
goes on until a fixed number of iterations have reached (See
Fig. 2 for an overview).

We now describe each module, beginning with a descrip-
tion of the memory itself.

4.1. Memory

Different from previous works that either mixes mem-
ory with computation [14, 18, 35] or mimics the one-
dimensional memory in the Turing machine/von Neumann
architecture [86], we would like to build a two-dimensional
memory for images. This is intuitive because images are

6Since NMS is applied in a per-class manner, there is also semantic
information.

intrinsically 2D mappings of the 3D visual world. But more
importantly, we aim to leverage the power of ConvNets for
context reasoning, which “forces” us to provide an image-
like 2D input.

How big the memory should be spatially? For object
detection, FRCNN that operates entirely on conv5_3 fea-
tures can already retrieve even tiny objects (e.g. the ones in
Fig. 1), suggesting that a resolution 1/16 of the full image
strikes a reasonable balance between speed and accuracy.
At each location, the memory cell is a D=256 dimensional
vector that stores the visual information discovered so far.
Ideally, the initial values within the memory should capture
the photographic bias of a natural image, i.e., prior about
where a certain object tend to occur (e.g. sun is more likely
to occur in the upper part). But the prior cannot be depen-
dent on the input image size. To this end, we simply initial-
ize the memory with a fixed spatial size (20 x20x 256 cells),
and resize it according to the incoming conv5_3 size using
bilinear interpolation. In this way, the memory is fully uti-
lized to learn the prior, regardless of different image sizes.

4.2. Indexing

The most difficult problem that previous works [29, 79]
face when building an differentiable external memory is the
design of memory indexing. The core problem is which
memory cell to write to for what inputs. Luckily for spatial
memory, there is a natural correspondence between memory
and image. Specifically, the target regions to look up in 2D
memory are already provided by proposals. Furthermore,
Rol pooling [26, 40] is precisely the operations needed to
read off from the spatial memory’. The only remaining
task is to create a write function that updates the memory
given a detection. This can be divided into two parts, “what”
(Sec. 4.3), and “how” (Sec. 4.4).

4.3. Input Features

It may appear trivial, but the decision of what fea-
tures to insert into the memory requires careful delibera-
tion. First, since conv5_3 feature preserves spatial in-
formation, we need to incorporate it. Specifically, we use
crop-and_resize to obtain and resize the feature map
to 14x14. This operation is similar to Rol [26] but with no
max-pool. However, merely having conv5_3 is not suffi-
cient to capture the higher-level semantic information, es-
pecially pertaining which object class is detected. The de-
tection score is particularly useful for disambiguation when
two objects occur in the same region, e.g., a person riding
a horse. Therefore, we also include £c8 SoftMax score as
an input, which is appended at each conv5_3 locations and
followed by two 1x1 conv layers to fuse the information
(see Fig. 3). We choose the full score over a one-hot class
vector, because it is more robust to false detections.

7Although Rol pooling only computes partial gradients, back-
propagation w.r.t. bounding box coordinates are not entirely necessary [69]
and previously found unstable [40].
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Figure 3: Illustration of the input module (Sec. 4.3). It as-
sembles spatial and non-spatial features: detection scores
after SoftMax (fc8) are tiled at each location of the Rol
pooled 14x 14 conv5_3 feature. Two additional conv lay-
ers are used to merge the information from two sources.
Dotted arrow shows how the feature at one location is trans-
formed.

4.4. Writing

Given the region location and the input features x,,, we
update the corresponding memory cells with a convolu-
tional Gated Recurrent Unit [14] (GRU), which uses 3x3
conv filters in place of fc layers as weights. The GRU
has a reset gate, and an update gate, shared at each lo-
cation and activated with Sigmoid function o(-). Hyper-
bolic tangent tanh(-) is used to constrain the memory val-
ues between —1. and 1. For alignment, the region from the
original memory S,,_; is also cropped with the same Rol
pooling operation to 14x14. After GRU, the new memory
cells are placed back to S,, with the reverse operation of
crop-and_resize.

4.5. Context Model

Now that the detected objects are encoded in the mem-
ory, all we have to do for context reasoning is stacking an-
other ConNet on the top. In the current setup, we use a
simple 5-layer all-convolutional network to extract the spa-
tial patterns. Each conv filter has a spatial size of 3x3,
and channel size of 256. Padding is added to keep the fi-
nal layer m—conv5 same size of conv5_3. To ease back-
propagation, we add residual connections [33] every two
layers.

4.6. Output

As for the module that outputs the reasoning results, we
treat m—conv5 exactly the same way as conv5_3 in FR-
CNN: 3 conv layers for region proposal, and 2 fc layers
with Rol pooling for region classification. The fc layers
have 2048 neurons each.

We design another residual architecture to combine the
memory scores with the FRCNN scores (see Fig. 4): in the
first iteration when the memory is empty, we only use FR-
CNN for detection; from the second iteration on, we add the
memory predictions on top of the FRCNN ones, so that the
memory essentially provides the additional context to close
the gap. This design allows a handy visualization of the
prediction difference with/without context. But more im-

Memory m-box regression m-class
augmented
A
L) )

box regression class

Fuse: two 4096-dim
fc layers

Faster

o
scores

Output Module
(Region Classification) Y
. M Sns
c7 4096-dim )L

(4C) -dim \ / c-dim

m-fc7 2048-dim W

Figure 4: Illustration of the output module (Sec. 4.6) for
region classification. FRCNN scores are optimized at the
first iteration when memory is empty, and then augmented
with memory scores in later iterations. Same is done for
region proposals. Two additional fc layers are used to fuse
FRCNN and memory features.

portantly, such an architecture is critical to let us converge
the full network. Details for this are covered in Sec. 5.1.

4.7. Selecting Next Region

Since spatial memory turns object detection into a se-
quential prediction problem, an important decision to make
is which region to take-in next [7]. Intuitively, some ob-
jects are more useful serving as context for others (e.g. per-
son) [21, 30, 32, 94], and some object instances are easier
to detect and less prone to consequent errors. However, in
this paper we simply follow a greedy strategy — the most
confident foreground object box is selected to update the
memory, leaving more advanced models that directly opti-
mize the sequence [80] as future work.

5. Training the Spatial Memory

Like a standard network with recurrent connections,
our SMN is trained by back-propagation through time
(BPTT) [88], which unrolls the network multiple times
before executing a weight-update. However, apart from
the well-known gradient propagation issue, imposing the
conditional structure on object detection incurs new chal-
lenges for training. Interestingly, the most difficult one we
face in our experiment, is the “straightforward” task of de-
duplication.

5.1. Learning De-duplication

Simply put, the functionality of de-duplication is: how
can the network learn that a detected instance should no
longer be detected again? More specifically, we need to
design the output module (Sec. 4.6) to fuse the memory (S)
and FRCNN (M) beliefs and predict intelligently: when
the memory is empty, the FRCNN score should be used;
but when the memory has the instance stored, the network
needs to ignore, or negate the cue from FRCNN.

Since multi-layer networks are universal function ap-
proximators [38], our first attempt is to fuse the informa-
tion by directly feeding into a multi-layer network (Fig. 5
(a)). However, joint-training fails to even converge FR-
CNN. Suspicious that the longer, weaker supervision might
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Figure 5: Four design choices for learning the functionality
of de-duplication. M is FRCNN features, and S, _1 repre-
sents memory features. Each design is shown by two gray
panels showing the information flow of Iteration O (left) and
Iteration n>0 (right). We find it hard to even converge the
network when the gradient is back-propagated to FRCNN in
all iterations (a) & (b). Stop the gradient in later iterations
(c) can successfully converge the network, and our final de-
sign (d) separates perception from reasoning and makes it
easy to visualize the effect of context. All design choices
are abstract and apply to both region proposal and classifi-
cation. Please see Sec. 5.1 for more details.

be the cause, we also added skip connections [5] to guide
the FRCNN training directly (Fig. 5 (b)). Yet it still does not
help much. Tracking the learning process, we find where
the actual problem lies — because the network needs to de-
duplicate, it keeps receiving contradicting signals: the nor-
mal one that guides perception, and the adversarial one that
prevents more perception. And because S also starts off
from scratch, the signal it can provide is also weak and un-
reliable. As a result, part of both error signals are back-
propagated to M?, causing trouble for learning further.

Realizing where the issue is, a direct solution is to just
stop the adversarial signal from flowing back and canceling
the normal one. Therefore, we stopped the gradient to FR-
CNN from second iteration on (Fig. 5 (c)), and the network
can successfully converge.

To make it easy for training and showing the confidence
changes for consequent detections given the context, we
further reduced the architecture to exclude all memory re-
lated weights in the first iteration (Fig. 5 (d)). This way, the
change in predictions with/without memory can be read-off
directly”, and training can be done separately for M and S.

8Since there are two sets of scores (from M and fused f£c) added to-
gether for prediction in Fig. 5 (b), we find the conflicting signals are also
propagated to the biases of these predictions: resulting in one going up and
the other down while essentially canceling each other.

9Otherwise we have to run the inference again with Sp.

5.2. Rol Sampling

To avoid getting overwhelmed by negative boxes,
FRCNN enforces a target sampling ratio for fore-
ground/background boxes. The introduction of a spatial
memory that learns to de-duplicate, brings in another spe-
cial type — regions whose label is flipped from previous iter-
ations. To keep these regions from being buried in negative
examples too, we changed the sampling distribution to in-
clude flipped regions.

It is important to point out that Rol sampling greatly
enhances the robustness of our sequential detection sys-
tem. Because only k<K regions are sampled from all re-
gions, the overall most confident Rol is not guaranteed to be
picked when updating the memory. This opens up chances
for other highly confident boxes to be inserted into the se-
quence as well [80] and reduces over-fitting.

5.3. Multi-Tasking

We also practiced the idea of multi-task learning for
SMN. The major motivation is to force the memory to mem-
orize more: the basic SMN is only asked fulfill the mission
of predicting the missing objects, which does not necessar-
ily translate to a good memorization of previously detected
objects. E.g., it may remember that one region has an object
in general, but does not store more categorical information
beyond that. To better converge the memory, we also added
a reconstruction loss [13, 70], i.e., letting the network in ad-
dition predict the object classes it has stored in the memory.
Specifically, we add an identical set of branches on top of
the m—convb5 features as FRCNN, for both region proposal
and region classification in each iteration. These weights
are used to predict only the previously detected objects.

5.4. Stage-wise Training

Thanks to the design of our memory augmented predic-
tion, so far we have trained the full model in two separate
stages, where FRCNN M, the perception model can be
optimized independently at first; then the reasoning model
with spatial memory S is learned on top of fixed M. This
helps us isolate the influence of the base model and focus
directly on the study of SMN.

For efficiency, we also follow a curriculum learning [8]
strategy: bootstrap a SMN of more iterations (e.g. N=10)
with a pre-trained SMN of fewer iterations (e.g. N=5). As
N gets larger, the task becomes harder. Curriculum learning
does not require re-learning de-duplication (which we learn
with N from 2 to 4), and allows the network to focus more
on object-object relationships instead.

5.5. Hyper-parameters

Given a pre-trained FRCNN or SMN (in the case of cur-
riculum learning), we train a fixed number of 30k steps. The
initial learning rate is set to 1e—3 and reduced to le—4 af-
ter 20k steps. Since we do not use automatic normalization
tricks [41, 54], different variances are manually set when
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Table 1: Baseline and initial analysis on COCO 2014 mini-
val when constraining the number of detections N=5/10.
AP and AR numbers are from COCO evaluation tool.

N | Method AP | AR-10 | AR-S AR-M AR-L
- | FRCNN [69] 242 337 | 11.7 395 541
- | Baseline [12] 29.1| 38.7 | 17.7 449 569
ki Baseline 23.8| 27.8 70 287 484
Z | SMN 245 289 | 7.3 297 50.6
= | Baseline 27.1| 335 | 10.8 36.7 5338
é SMN 281 | 350 | 11.5 381 564

initializing weights from scratch, in order to let different in-
puts contribute comparably (e.g. when concatenating fc7
and m-fc7). Other hyper-parameters are kept the same to
the ones used in FRCNN.

6. Experimental Results

We highlight the performance of our spatial memory net-

work on COCO [52]. However, for ablative analysis and
understanding the behaviour of our system, we use both
PASCAL VOC 2007 [19] and COCO [52]. For VOC we
use the trainval split for training, and fest for evaluation.
For COCO we use trainval35k [5] and minival. For evalu-
ation, toolkits provided by the respective dataset are used.
The main metrics (mAP, AP and AR) are based on detection
average precision/recall.
Implementation Details: We use TensorFlow to imple-
ment our model, which is built on top of the open-sourced
FRCNN implementation'’ serving as a baseline.  For
COCO, this implementation has an AP of 29.1% compared
to the original one 24.2% [69].

Original FRCNN uses NMS for region sampling as well.

However, NMS hurts our performance more since we do
sequential prediction and one miss along the chain can neg-
atively impact all the follow-up detections. To overcome
this disadvantage, we would ideally like to examine all K
regions in a sliding window fashion. However, due to the
GPU memory limit, the top 5k regions are used instead. We
analyze this choice in ablative analysis (Sec. 6.2). Due to
the same limitation, our current implementation of SMN
can only unroll N=10 times in a single GPU. At each
timestep in SMN, we do a soft max-prediction for the top
box selected, so that a single box can be assigned to multi-
ple classes. We will also justify and analyze this choice in
Sec. 6.2.
Initial Results: Table 1 shows the initial results of our ap-
proach as described. As it can be seen for N=>5 detections
per image our SMN give an AP of 24.5% and for N=10
if gives an AP of 28.1%. When the baseline is allowed
the same number of detections (N=5, 10), the AP is 23.8%
and 27.1%. Therefore, while we do outperform baseline for
fixed number of detections per image, due to limited roll-out
capability we are still ~1% below the baseline [12].

Onttps://github.com/endernewton/tf-faster-rcenn

Table 2: Final comparison between SMN and baselines. We
additionally include MLP baseline where the number of pa-
rameters are kept the same as SMN for context aggregation
and output. Top 5k regions are used to select proposal in-
stead of NMS.

Method AP | AP-5 | AP-75 AP-S AP-M AP-L AR-S AR-M AR-L
Baseline [12] 129.4| 50.0 | 309 122 337 438 185 455 589
MLP 30.1| 50.8 | 31.7 125 342 445 192 470 598
SMN 31.6 | 522 | 332 144 357 458 205 488 63.2

6.1. SMIN for Hard Examples

In this section, we want to go beyond N=10 detections
and see if the overall detection performance can be im-
proved with SMN. Intuitively, for highly confident detec-
tions, ConvNet-based FRCNN is already doing a decent job
and not much can be learned from an additional memory. It
is the “tails” that need help from the context! This means
two things: 1) with a limited resource budget, SMN should
be used in later iterations to provide conditional informa-
tion; and 2) at the beginning of the sequence, a standard
FRCNN can work as a proxy. Given these insights, we ex-
perimented with the following strategy: For the first /V; it-
erations, we use a standard FRCNN to detect easier objects
and feed the memory with a sequence ordered by FRCNN
confidence (after per-class NMS). Memory gets updated as
objects come in, but does not output features to augment
prediction. Only for the later Ns iterations it acts normally
as a context provider to detect harder examples. For COCO,
we set N1 =50 and bootstrap from a N;=10 SMN model.

Although SMN is trained with the goal of context rea-
soning and learns new functionality (e.g. de-duplication)
that the original FRCNN does not have, it does have in-
troduced more parameters for memory-augmented predic-
tion. Therefore, we also add a MLP baseline, where a
5-layer ConvNet (Sec. 4.5) is directly stacked on top of
conv5_3 for context aggregation, and the same output
modules (Sec. 4.6) are used to make predictions.

The results can be found in Table 2. As can be seen,

on our final system, we are 2.2% better than the baseline
FRCNN. This demonstrates our ability to find hard exam-
ples. It is worth noting that here hard does not necessar-
ily translate to small. In fact, our reasoning system also
helps big objects, potentially due to its ability to perform
de-duplication more intelligently and benefit larger objects
that are more likely to overlap.
Qualitative Results: We show a couple of examples of how
context using spatial memory can help improve the perfor-
mance and detections. In the first case, the score of sheep
gets boosted due to other sheep. The score of horse de-
creases due to the detection of cake and fable. Please check
the supplementary material for more examples.

6.2. Ablative Analysis

We now perform ablative analysis to explain all our
choices for the final implementation. For ablative analysis,
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Figure 6: Examples of context has helped improve scores
by reasoning. Left: the score of sheep is increased due to
presence of other sheep in background. Right: the score of
horse is decreased due to the detection of cake and table.

Table 3: Ablative analysis on VOC 2007 test and COCO
2014 minival. All approaches constrained by detections
N=5/10. mAP is used to evaluate VOC, AP and AR num-
bers are from COCO.

N | Method mAP | AP | AR-10 AR-S AR-M AR-L
Baseline (FR-CNN) 658 236 276 7.0 291 474
‘ﬁ SMN Base 63.6 1233 272 6.7 28.0 46.1
=z + Sample Flipped | 644 |23.5 272 69 284 464
SMN Full 64.6 | 23.8 | 27.7 6.9 285 474
. Baseline 703 1269 | 332 109 36.6 52.7
I | SMN Full 67.5 1266 32.6 103 356 52.1
= +Tune from N=5 67.8 127.1| 327 103 359 523

we use both VOC and COCO datasets. The numbers are
summarized in Table 3. For the comparisons shown here,
we switch back to the standard NMS-based region sampling
and select top k=300 Rols as in original FRCNN. Also,
when we do the roll-out, at each step we choose one detec-
tion and perform HardMax (rather than SoftMax): make the
hard decision about what class does the selected box belong
to — a natural idea for sequential prediction.

For N=5, we compared three models. First, SMN Base,
where we simply train the network as is done in FRCNN.
Next, regions with flipped labels (Sec. 5.2) are added to re-
places some of the negative example — for training region
proposal the ratio for positive/flipped/negative is 2:1:1, and
for region classification it is 1:1:2. Third, SMN Full, where
we keep the previous sampling strategy and in addition in-
clude the reconstruction loss (Sec. 5.3). Overall, both strate-
gies help performance but with a seemly different strength:
sampling flipped regions helps more on small objects, and
multi-task learning helps more on bigger ones.

However, our best performance in Table 3 is still behind
the baseline and judging from the COCO AR we believe the
biggest issue lies in recall. Therefore, we take the best SMN
Full model and conduct two other investigations specifically
targeting recall. Here we only list the final results, please
see supplementary material for more discussions.

SoftMax vs. HardMax: First, we address a subtle question:
if we take top IV detections with the memory and compare
them directly with top N detections of Faster R-CNN: are
these results comparable? It turns out to be not! As men-

Table 4: Investigating the recall issue. S stands for Soft-
Max based testing, and H for HardMax. X is short for Non-
aggressive NMS, where top 5k Rols are directly selected
without NMS.

N | Method N | Max mAP AP AR-10 AR-S AR-M AR-L
Baseline X S | 658 |236| 276 70 291 474
SMNFull | X S | 664 241| 288 7.5 297 500

kit Baseline X H 654 [235| 272 6.7 28.6 469

Z |SMNFull | X H |646 238| 277 69 285 474
Baseline v/ S 660 238 278 7.0 287 484
SMNFull | v S 666 245 289 73 297 506
Baseline X S |703/269| 332 109 366 527
SMNFull | X S | 694 (277| 350 11.6 376 557

%’ Baseline X H | 680 264| 319 97 350 507

Zz |SMNFull | X H | 678 27.1| 327 103 359 523
Baseline v S 704 271 335 108 367 538
SMNFull | v S 700 281 350 115 381 564

tioned in Sec. 3.4, because NMS is applied in a per-class
manner, the actual number of box candidates it can put in
the final detection is kxC. To make it more clear, for a
confusing region where e.g. the belief for laptop is 40% and
keyboard is 35%, NMS can keep both candidates in the top
N detections, whereas for SMN it can only keep the max-
imum one''. Therefore, to be fair, we try: a) HardMax for
baseline; and b) SoftMax for SMN.

Non-aggressive NMS: Finally, we also evaluate our choice
of non-aggressive NMS during Rol sampling. Both baseline
and SMN perform better with 5k proposals; however our
boost on AP is more significant due to sequential prediction
issues.

7. Conclusion and Discussion

This paper is our first step towards instance-level rea-
soning in object detection with ConvNets. We introduce
a simple yet powerful framework of spatial memory net-
work, to model the instance-level context efficiently and ef-
fectively. Our spatial memory essentially assembles object
instances back into a pseudo “image” representation. This
memory can simply be fed into another ConvNet to extract
context information and perform object-object relationship
reasoning. We show our SMN direction is promising as it
provides 2.2% improvement over baseline Faster RCNN on
the COCO dataset with VGG16. We believe our frame-
work is generic and should promote research focusing on
knowledge-based reasoning on images.
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1t also a result of our current input feature design, where we only
used £c8 and conv5_3 features to update the memory without a top-
down notion [75] of which class is picked, so there’s no more need for
SMN to return.
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