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Abstract

Modeling instance-level context and object-object rela-

tionships is extremely challenging. It requires reasoning

about bounding boxes of different classes, locations etc.

Above all, instance-level spatial reasoning inherently re-

quires modeling conditional distributions on previous de-

tections. Unfortunately, our current object detection sys-

tems do not have any memory to remember what to con-

dition on! The state-of-the-art object detectors still detect

all object in parallel followed by non-maximal suppression

(NMS). While memory has been used for tasks such as cap-

tioning, they mostly use image-level memory cells without

capturing the spatial layout. On the other hand, model-

ing object-object relationships requires spatial reasoning –

not only do we need a memory to store the spatial layout,

but also a effective reasoning module to extract spatial pat-

terns. This paper presents a conceptually simple yet power-

ful solution – Spatial Memory Network (SMN), to model the

instance-level context efficiently and effectively. Our spatial

memory essentially assembles object instances back into a

pseudo “image” representation that is easy to be fed into

another ConvNet for object-object context reasoning. This

leads to a new sequential reasoning architecture where im-

age and memory are processed in parallel to obtain detec-

tions which update the memory again. We show our SMN

direction is promising as it provides 2.2% improvement over

baseline Faster RCNN on the COCO dataset with VGG161.

1. Introduction

Context helps image understanding! Apart from strong

psychological evidence [4, 37, 64, 65] that context is vital

for humans to recognize objects, many empirical studies in

the computer vision community [10, 11, 16, 22, 23, 43, 60,

62, 73, 82, 83] have also suggested that recognition algo-

rithms can be improved by proper modeling of context.

But what is the right model for context? Consider the

problem of object detection. There are two common mod-

els of context often used in the community. The first type

of model incorporates image or scene level context [5, 36,

1For more up-to-date results, please check our arXiv submission

https://arxiv.org/abs/1704.04224.

Figure 1: Evidence of image-level context reasoning inside

ConvNets. All examples are from our baseline faster RCNN

detector with VGG16 conv5 3 features on COCO [52].

Numbers are class confidences. Left and middle: two ex-

amples where the ConvNet is able to detect tiny and simple-

shaped objects much smaller than the receptive field size.

Bottom right: a false positive detection for person given the

seat on a passenger train. Our Spatial Memory Network

takes advantage of this power by encoding multiple object

instances into a “pseudo” image representation.

46, 58, 63, 74, 81]. The second type models object-object

relationships at instance-level [15, 27, 32, 58, 67, 94]. Take

the the top-left image of Fig. 1 as an example, both the per-

son and the tennis racket can be used to create a contextual

prior on where the ball should be.

Of these two models, which one is more effective for

modeling context? A quick glimpse on the current state-

of-the-art approaches, the idea of single region classifica-

tion [40, 49, 51, 53, 69] with deep ConvNets [33, 76] is

still dominating object detection. On the surface, these ap-

proaches hardly use any contextual reasoning; but we be-

lieve the large receptive fields of the neurons in fact do in-

corporate image-level context (See Fig. 1 for evidences).

On the other hand, there has been little or no success in

modeling object-object relationships or instance-level con-

text in recent years.

Why so? Arguably, modeling the instance-level context

is more challenging. Instance-level reasoning for object de-

tection would have to tackle bounding boxes pairs or groups

in different classes, locations, scales, aspect ratios, etc.

Moreover, for modeling image-level context, the grid struc-

ture of pixels allows the number of contextual inputs to be

reduced efficiently (e.g. to a local neighborhood [11, 43, 73]

or a smaller scale [76, 87]), whereas such reductions for

arbitrary instances appear to be not so trivial. Above all,
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instance-level spatial reasoning inherently requires model-

ing conditional distributions on previous detections, but our

current object detection systems do not have any memory to

remember what to condition on! Even in the case of multi-

class object detection, the joint layout [15] is estimated by

detecting all objects in parallel followed by non-maximal

suppression (NMS) [20]. What we need is an object detec-

tion system with memory built inside it!

Memory has been successfully used in the recognition

community recently for tasks such as captioning [13, 17,

59, 84, 85, 92] or visual question answering [2, 3, 24, 44,

55, 57, 72, 90, 91, 93, 97]. However, these works mostly fo-

cus on modeling an image-level memory, without capturing

the spatial layout of the understanding so far. On the other

hand, modeling object-object relationships requires spatial

reasoning – not only do we need a memory to store the spa-

tial layout, but also a suitable reasoning module to extract

spatial patterns. This paper presents a conceptually simple

yet powerful solution – Spatial Memory Network (SMN), to

model the instance-level context efficiently and effectively.

Our key insight is that the best spatial reasoning module

is a ConvNet itself! In fact, we argue that ConvNets are

actually the most generic2 and effective framework for ex-

tracting spatial and contextual information so far! Inspired

by this observation, our spatial memory essentially assem-

bles object instances back into a pseudo “image” represen-

tation that is easy to be fed into another ConvNet to perform

object-object context reasoning.

However, if ConvNets are already so excellent at mod-

eling context, why would we even bother something else?

Isn’t the image itself the ultimate source of information and

therefore the best form of “spatial memory”? Given an im-

age, shouldn’t an ultra-deep network already take care of the

full reasoning inside its architecture? In spite of these valid

concerns, we argue that a spatial memory still presents as

an important next step for object detection and other related

tasks, for the following reasons:

• First, we note that current region-based object detec-

tion methods are still treating object detection as a

perception problem, not a reasoning problem: the re-

gion classifier still produces multiple detection results

around an object instance during inference, and relies

on manually designed NMS [69] with a pre-defined

threshold for de-duplication. This process can be sub-

optimal. We show that with a spatial memory that

memorizes the already detected objects, it is possible

to learn the functionality of NMS automatically.

• Second, replacing NMS is merely a first demonstration

for context-based reasoning for object detection. Since

the spatial memory is supposed to store both semantic

and location information, a legitimate next step would

be full context reasoning: i.e., infer the “what” and

2Many context models can be built or formulated as ConvNets [89, 96].

“where” of other instances based on the current layout

of detected objects in the scene. We show evidence for

such benefits on COCO [52].

• Third, our spatial memory essentially presents as a

general framework to encode instance-level visual

knowledge [48], which requires the model to properly

handle the spatial (e.g. overlaps) and semantic (e.g.

poses) interactions between groups of objects. Our ap-

proach follows the spirit of end-to-end learning, opti-

mizing the representation for an end-task – object de-

tection. Both the representation and the idea can be

applied to other tasks that require holistic image un-

derstanding [3, 42, 98].

2. Related Work

As we already mentioned most related work for con-

text and memory in Sec. 1, in this section we mainly re-

view ideas that use sequential prediction for object detec-

tion. A large portion of the literature [28, 45, 56] focuses

on sequential approaches for region proposals (i.e., fore-

ground/background classification). The motivation is to re-

lieve the burden for region classifiers by replacing an ex-

haustive sliding-window search [20] with a smarter and

faster search process. In the era of ConvNet-based detec-

tors, such methods usually struggle to keep a delicate bal-

ance between efficiency and accuracy, since a convolution

based 0/1 classifier (e.g. region proposal network [69]) al-

ready achieves an impressive performance when maintain-

ing a reasonable speed. Sequential search has also been

used for localizing small landmarks [77], but the per-class

model assumes the existence of such objects in an image

and lacks the ability to use other categories as context.

Another commonly used trick especially beneficial for

reducing localization error is iterative bounding box refine-

ment [25, 26, 69, 95], which leverages local image context

to predict a better bounding box iteratively. This line of re-

search is complementary to our SMN, since its goal is to

locate the original instance itself better, whereas our focus

is on how to better detect other objects given the current

detections.

An interesting recent direction focuses on using deep re-

inforcement learning (DRL) to optimize the sequence se-

lection problem in detection [6, 9, 50, 61]. However, due to

the lack of full supervision signal in a problem with high-

dimensional action space3, DRL has so far only been used

for bounding box refinements or knowledge-assisted detec-

ton, where the action space is greatly reduced. Neverthe-

less, SMN can naturally serve as an encoder of the state in

a DRL system to directly optimize average precision [34].

Note that the idea of using higher-dimensional memory

in vision is not entirely new. It has resemblance to spa-

tial attention, which has been explored in many high-level

3Jointly reason about all bounding boxes and all classes.
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tasks [47, 68, 91, 92]. To bypass NMS, LSTM [35] cells ar-

ranged in 2D order [78] and intersection-over-union (IoU)

maps [39] have been used for single-class object detection.

We also notice a recent trend in using 2D memory as a

map for planning and navigation [31, 66]. Our work ex-

tends such efforts into generic, multi-class object detection,

performing joint reasoning on both space and semantics.

3. Background: Faster RCNN

Our spatial memory network is agnostic to the choice of

base object detection model. In this paper we build SMN

on top of Faster R-CNN [69] (FRCNN) as a demonstration,

which is a state-of-the-art detector that predicts and classi-

fies Regions of Interest (RoIs). Here we first give a brief

review of the approach.

3.1. Base Network

We use VGG16 [76] as the base network for feature ex-

traction. It has 13 convolutional (conv), 5 max-pooling

(pool), and 2 fully connected (fc) layers before feeding

into the final classifier, and was pre-trained on the ILSVRC

challenge [71]. Given an image I of height h and width w,

feature maps from the last conv layer (conv5 3) are first

extracted by FRCNN. The conv5 3 feature size (h′, w′)

is roughly γ=1/16 of the original image in each spatial di-

mension. On top of it, FRCNN proceeds by allocating two

sub-networks for region proposal and region classification.

3.2. Region Proposal

The region proposal network essentially trains a class-

agnostic objectness [1] classifier, proposing regions that are

likely to have a foreground object in a sliding window man-

ner [20]. It consists of 3 conv layers, one maps from

conv5 3 to a suitable representation for RoI proposals,

and two 1×1 siblings on top of this representation for fore-

ground/background classification and bounding box regres-

sion. Note that at each location, anchor boxes [69] of multi-

ple scales (s) and aspect ratios (r) are used to cover a dense

sampling of possible windows. Therefore the total num-

ber of proposed boxes is K≈h′×w′×s×r4. During train-

ing and testing, k≪K regions are selected by this network

as candidates for the second-stage region classification.

3.3. Region Classification

Since the base network is originally an image classifier,

region classification network inherits most usable parts of

VGG16, with two caveats. First, because RoI proposals

can be be arbitrary rectangular bounding boxes, RoI pool-

ing [26, 40] is used in place of pool on conv5 3 to match

the the square-sized (7×7) input requirement for fc6. Sec-

ond, the 1, 000-way fc layer for ILSVRC classification

is replaced by two fc layers for C-way classification and

bounding box regression respectively. Each of the C classes

gets a separate bounding box regressor.

4Boarder anchors excluded.
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Figure 2: Overview of memory iterations for object detec-

tion. The original components from FRCNN are shown in

the gray area. The old detection (person) is marked with a

green box, and the new detection (car) is marked with blue.

Here the network is unrolled one iteration.

3.4. De­duplication

We want to point out the often-neglected fact that a

standard post-processing step is used in almost all detec-

tors [20, 49, 53, 69] to disambiguate duplications – NMS.

For FRCNN, NMS takes place in both stages. First, for

region proposals, it prunes out the overlapping RoIs that

are likely corresponding to the same object (“one-for-all-

class”) to train the region classifier. Second, for the final

detection results, NMS is applied in an isolated, per-class

manner (“one-for-each-class”). In this paper, we still use

NMS for RoI sampling during training [12], and mainly fo-

cus on building a model to replace the per-class NMS, with

the hope that the model can encode the rich interplay across

multiple classes when suppressing redundant detections.

4. Spatial Memory Network

To better motivate the use of spatial memory network, we

resort to a mathematical formulation of the task at hand. For

object detection, the goal is to jointly infer and detect all the

object instances O=[O1, O2, O3, · · · , ON ] given an image

I, where N is the maximum number of object instances for

any image5. Then the objective function of training a model

5On denotes both the class and location of the object instance. When

there is not enough foreground objects, the sequence can be padded with

the background class.
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(e.g. FRCNN) M is to maximize the log-likelihood:

argmax
M

L = logP(O1:N |M, I)

=
∑

n=1:N

logP (On|O0:n−1,M, I), (1)

where O0:n−1 is short for [O1, O2, O3, · · · , On−1] and O0:0

is an empty set. Note that this decomposition of the joint

layout probability is exact [18], regardless of the order we

are choosing.

For a region-based object detector, Eq.(1) is approxi-

mated by detecting each object instance separately:

argmax
M

L ≈
∑

n=1:N

logP (On|M, I), (2)

where NMS shoulders the responsibility to model the cor-

relations in the entire sequence of detections. Since NMS is

mostly6 dependent on overlapping patterns, the information

it can provide is limited compared to O0:n−1.

How can we do better? Inspired by networks that impose

a memory [14, 18, 29, 35, 79] for sequential and reasoning

tasks, and the two-dimensional nature of images, we pro-

pose to encode O0:n−1 in a spatial memory, where we learn

to store all the previous detections. I.e., we introduce mem-

ory variable Sn−1, which gets updated each time an object

instance is detected, and the approximation becomes:

argmax
M,S

L ≈
∑

n=1:N

logP (On|Sn−1,M, I), (3)

where the memory S is jointly optimized with M.

With the above formulation, the inference procedure for

object becomes conditional: An empty memory is initial-

ized at first (Sec. 4.1). Once an object instance is de-

tected, selected cells (Sec. 4.2) in the memory gets updated

(Sec. 4.4) with features (Sec. 4.3) extracted from the de-

tected region. Then a context model (Sec. 4.5) aggregates

spatial and other information from the memory, and outputs

(Sec. 4.6) scores that help region proposal and region clas-

sification in FRCNN. Then the next potential detection is

picked (Sec. 4.7) to update the memory again. This process

goes on until a fixed number of iterations have reached (See

Fig. 2 for an overview).

We now describe each module, beginning with a descrip-

tion of the memory itself.

4.1. Memory

Different from previous works that either mixes mem-

ory with computation [14, 18, 35] or mimics the one-

dimensional memory in the Turing machine/von Neumann

architecture [86], we would like to build a two-dimensional

memory for images. This is intuitive because images are

6Since NMS is applied in a per-class manner, there is also semantic

information.

intrinsically 2D mappings of the 3D visual world. But more

importantly, we aim to leverage the power of ConvNets for

context reasoning, which “forces” us to provide an image-

like 2D input.

How big the memory should be spatially? For object

detection, FRCNN that operates entirely on conv5 3 fea-

tures can already retrieve even tiny objects (e.g. the ones in

Fig. 1), suggesting that a resolution 1/16 of the full image

strikes a reasonable balance between speed and accuracy.

At each location, the memory cell is a D=256 dimensional

vector that stores the visual information discovered so far.

Ideally, the initial values within the memory should capture

the photographic bias of a natural image, i.e., prior about

where a certain object tend to occur (e.g. sun is more likely

to occur in the upper part). But the prior cannot be depen-

dent on the input image size. To this end, we simply initial-

ize the memory with a fixed spatial size (20×20×256 cells),

and resize it according to the incoming conv5 3 size using

bilinear interpolation. In this way, the memory is fully uti-

lized to learn the prior, regardless of different image sizes.

4.2. Indexing

The most difficult problem that previous works [29, 79]

face when building an differentiable external memory is the

design of memory indexing. The core problem is which

memory cell to write to for what inputs. Luckily for spatial

memory, there is a natural correspondence between memory

and image. Specifically, the target regions to look up in 2D

memory are already provided by proposals. Furthermore,

RoI pooling [26, 40] is precisely the operations needed to

read off from the spatial memory7. The only remaining

task is to create a write function that updates the memory

given a detection. This can be divided into two parts, “what”

(Sec. 4.3), and “how” (Sec. 4.4).

4.3. Input Features

It may appear trivial, but the decision of what fea-

tures to insert into the memory requires careful delibera-

tion. First, since conv5 3 feature preserves spatial in-

formation, we need to incorporate it. Specifically, we use

crop and resize to obtain and resize the feature map

to 14×14. This operation is similar to RoI [26] but with no

max-pool. However, merely having conv5 3 is not suffi-

cient to capture the higher-level semantic information, es-

pecially pertaining which object class is detected. The de-

tection score is particularly useful for disambiguation when

two objects occur in the same region, e.g., a person riding

a horse. Therefore, we also include fc8 SoftMax score as

an input, which is appended at each conv5 3 locations and

followed by two 1×1 conv layers to fuse the information

(see Fig. 3). We choose the full score over a one-hot class

vector, because it is more robust to false detections.

7Although RoI pooling only computes partial gradients, back-

propagation w.r.t. bounding box coordinates are not entirely necessary [69]

and previously found unstable [40].
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pooled conv5_3 fc8

1
4

(512+C)-dim

two 1x1 512-dim

conv layers

input features to memory

Figure 3: Illustration of the input module (Sec. 4.3). It as-

sembles spatial and non-spatial features: detection scores

after SoftMax (fc8) are tiled at each location of the RoI

pooled 14×14 conv5 3 feature. Two additional conv lay-

ers are used to merge the information from two sources.

Dotted arrow shows how the feature at one location is trans-

formed.

4.4. Writing

Given the region location and the input features xn, we

update the corresponding memory cells with a convolu-

tional Gated Recurrent Unit [14] (GRU), which uses 3×3
conv filters in place of fc layers as weights. The GRU

has a reset gate, and an update gate, shared at each lo-

cation and activated with Sigmoid function σ(·). Hyper-

bolic tangent tanh(·) is used to constrain the memory val-

ues between −1. and 1. For alignment, the region from the

original memory Sn−1 is also cropped with the same RoI

pooling operation to 14×14. After GRU, the new memory

cells are placed back to Sn with the reverse operation of

crop and resize.

4.5. Context Model

Now that the detected objects are encoded in the mem-

ory, all we have to do for context reasoning is stacking an-

other ConNet on the top. In the current setup, we use a

simple 5-layer all-convolutional network to extract the spa-

tial patterns. Each conv filter has a spatial size of 3×3,

and channel size of 256. Padding is added to keep the fi-

nal layer m-conv5 same size of conv5 3. To ease back-

propagation, we add residual connections [33] every two

layers.

4.6. Output

As for the module that outputs the reasoning results, we

treat m-conv5 exactly the same way as conv5 3 in FR-

CNN: 3 conv layers for region proposal, and 2 fc layers

with RoI pooling for region classification. The fc layers

have 2048 neurons each.

We design another residual architecture to combine the

memory scores with the FRCNN scores (see Fig. 4): in the

first iteration when the memory is empty, we only use FR-

CNN for detection; from the second iteration on, we add the

memory predictions on top of the FRCNN ones, so that the

memory essentially provides the additional context to close

the gap. This design allows a handy visualization of the

prediction difference with/without context. But more im-

fc7 4096-dim m-fc7 2048-dim

classbox regression

Fuse: two 4096-dim

fc layers

m-classm-box regressionMemory 

augmented 

scores

Faster

RCNN

scores

Iter-�
Iter-�

(4C)-dim C-dim

ℳ ��−1
Figure 4: Illustration of the output module (Sec. 4.6) for

region classification. FRCNN scores are optimized at the

first iteration when memory is empty, and then augmented

with memory scores in later iterations. Same is done for

region proposals. Two additional fc layers are used to fuse

FRCNN and memory features.

portantly, such an architecture is critical to let us converge

the full network. Details for this are covered in Sec. 5.1.

4.7. Selecting Next Region

Since spatial memory turns object detection into a se-

quential prediction problem, an important decision to make

is which region to take-in next [7]. Intuitively, some ob-

jects are more useful serving as context for others (e.g. per-

son) [21, 30, 32, 94], and some object instances are easier

to detect and less prone to consequent errors. However, in

this paper we simply follow a greedy strategy – the most

confident foreground object box is selected to update the

memory, leaving more advanced models that directly opti-

mize the sequence [80] as future work.

5. Training the Spatial Memory

Like a standard network with recurrent connections,

our SMN is trained by back-propagation through time

(BPTT) [88], which unrolls the network multiple times

before executing a weight-update. However, apart from

the well-known gradient propagation issue, imposing the

conditional structure on object detection incurs new chal-

lenges for training. Interestingly, the most difficult one we

face in our experiment, is the “straightforward” task of de-

duplication.

5.1. Learning De­duplication

Simply put, the functionality of de-duplication is: how

can the network learn that a detected instance should no

longer be detected again? More specifically, we need to

design the output module (Sec. 4.6) to fuse the memory (S)

and FRCNN (M) beliefs and predict intelligently: when

the memory is empty, the FRCNN score should be used;

but when the memory has the instance stored, the network

needs to ignore, or negate the cue from FRCNN.

Since multi-layer networks are universal function ap-

proximators [38], our first attempt is to fuse the informa-

tion by directly feeding into a multi-layer network (Fig. 5

(a)). However, joint-training fails to even converge FR-

CNN. Suspicious that the longer, weaker supervision might

4090



…

Iter-�

Pred-�

ℳ �଴Fuse Layer

Iter-�

Pred-�

ℳ ��−1Fuse Layer …

Iter-� Iter-�

Pred-�

ℳ �଴Fuse

Pred-�

ℳ ��−1Fuse

…

Iter-� Iter-�
…

Iter-� Iter-�

Pred-�

ℳ
Pred-�

ℳ �଴Fuse

Pred-�

ℳ ��−1Fuse

Pred-�

ℳ ��−1Fuse

Figure 5: Four design choices for learning the functionality

of de-duplication. M is FRCNN features, and Sn−1 repre-

sents memory features. Each design is shown by two gray

panels showing the information flow of Iteration 0 (left) and

Iteration n>0 (right). We find it hard to even converge the

network when the gradient is back-propagated to FRCNN in

all iterations (a) & (b). Stop the gradient in later iterations

(c) can successfully converge the network, and our final de-

sign (d) separates perception from reasoning and makes it

easy to visualize the effect of context. All design choices

are abstract and apply to both region proposal and classifi-

cation. Please see Sec. 5.1 for more details.

be the cause, we also added skip connections [5] to guide

the FRCNN training directly (Fig. 5 (b)). Yet it still does not

help much. Tracking the learning process, we find where

the actual problem lies – because the network needs to de-

duplicate, it keeps receiving contradicting signals: the nor-

mal one that guides perception, and the adversarial one that

prevents more perception. And because S also starts off

from scratch, the signal it can provide is also weak and un-

reliable. As a result, part of both error signals are back-

propagated to M8, causing trouble for learning further.

Realizing where the issue is, a direct solution is to just

stop the adversarial signal from flowing back and canceling

the normal one. Therefore, we stopped the gradient to FR-

CNN from second iteration on (Fig. 5 (c)), and the network

can successfully converge.

To make it easy for training and showing the confidence

changes for consequent detections given the context, we

further reduced the architecture to exclude all memory re-

lated weights in the first iteration (Fig. 5 (d)). This way, the

change in predictions with/without memory can be read-off

directly9, and training can be done separately for M and S .

8Since there are two sets of scores (from M and fused fc) added to-

gether for prediction in Fig. 5 (b), we find the conflicting signals are also

propagated to the biases of these predictions: resulting in one going up and

the other down while essentially canceling each other.
9Otherwise we have to run the inference again with S0.

5.2. RoI Sampling

To avoid getting overwhelmed by negative boxes,

FRCNN enforces a target sampling ratio for fore-

ground/background boxes. The introduction of a spatial

memory that learns to de-duplicate, brings in another spe-

cial type – regions whose label is flipped from previous iter-

ations. To keep these regions from being buried in negative

examples too, we changed the sampling distribution to in-

clude flipped regions.

It is important to point out that RoI sampling greatly

enhances the robustness of our sequential detection sys-

tem. Because only k≪K regions are sampled from all re-

gions, the overall most confident RoI is not guaranteed to be

picked when updating the memory. This opens up chances

for other highly confident boxes to be inserted into the se-

quence as well [80] and reduces over-fitting.

5.3. Multi­Tasking

We also practiced the idea of multi-task learning for

SMN. The major motivation is to force the memory to mem-

orize more: the basic SMN is only asked fulfill the mission

of predicting the missing objects, which does not necessar-

ily translate to a good memorization of previously detected

objects. E.g., it may remember that one region has an object

in general, but does not store more categorical information

beyond that. To better converge the memory, we also added

a reconstruction loss [13, 70], i.e., letting the network in ad-

dition predict the object classes it has stored in the memory.

Specifically, we add an identical set of branches on top of

the m-conv5 features as FRCNN, for both region proposal

and region classification in each iteration. These weights

are used to predict only the previously detected objects.

5.4. Stage­wise Training

Thanks to the design of our memory augmented predic-

tion, so far we have trained the full model in two separate

stages, where FRCNN M, the perception model can be

optimized independently at first; then the reasoning model

with spatial memory S is learned on top of fixed M. This

helps us isolate the influence of the base model and focus

directly on the study of SMN.

For efficiency, we also follow a curriculum learning [8]

strategy: bootstrap a SMN of more iterations (e.g. N=10)

with a pre-trained SMN of fewer iterations (e.g. N=5). As

N gets larger, the task becomes harder. Curriculum learning

does not require re-learning de-duplication (which we learn

with N from 2 to 4), and allows the network to focus more

on object-object relationships instead.

5.5. Hyper­parameters

Given a pre-trained FRCNN or SMN (in the case of cur-

riculum learning), we train a fixed number of 30k steps. The

initial learning rate is set to 1e−3 and reduced to 1e−4 af-

ter 20k steps. Since we do not use automatic normalization

tricks [41, 54], different variances are manually set when
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Table 1: Baseline and initial analysis on COCO 2014 mini-

val when constraining the number of detections N=5/10.

AP and AR numbers are from COCO evaluation tool.

N Method AP AR-10 AR-S AR-M AR-L

- FRCNN [69] 24.2 33.7 11.7 39.5 54.1

- Baseline [12] 29.1 38.7 17.7 44.9 56.9

N
=
5 Baseline 23.8 27.8 7.0 28.7 48.4

SMN 24.5 28.9 7.3 29.7 50.6

N
=
1
0 Baseline 27.1 33.5 10.8 36.7 53.8

SMN 28.1 35.0 11.5 38.1 56.4

initializing weights from scratch, in order to let different in-

puts contribute comparably (e.g. when concatenating fc7

and m-fc7). Other hyper-parameters are kept the same to

the ones used in FRCNN.

6. Experimental Results

We highlight the performance of our spatial memory net-

work on COCO [52]. However, for ablative analysis and

understanding the behaviour of our system, we use both

PASCAL VOC 2007 [19] and COCO [52]. For VOC we

use the trainval split for training, and test for evaluation.

For COCO we use trainval35k [5] and minival. For evalu-

ation, toolkits provided by the respective dataset are used.

The main metrics (mAP, AP and AR) are based on detection

average precision/recall.

Implementation Details: We use TensorFlow to imple-

ment our model, which is built on top of the open-sourced

FRCNN implementation10 serving as a baseline. For

COCO, this implementation has an AP of 29.1% compared

to the original one 24.2% [69].

Original FRCNN uses NMS for region sampling as well.

However, NMS hurts our performance more since we do

sequential prediction and one miss along the chain can neg-

atively impact all the follow-up detections. To overcome

this disadvantage, we would ideally like to examine all K
regions in a sliding window fashion. However, due to the

GPU memory limit, the top 5k regions are used instead. We

analyze this choice in ablative analysis (Sec. 6.2). Due to

the same limitation, our current implementation of SMN

can only unroll N=10 times in a single GPU. At each

timestep in SMN, we do a soft max-prediction for the top

box selected, so that a single box can be assigned to multi-

ple classes. We will also justify and analyze this choice in

Sec. 6.2.

Initial Results: Table 1 shows the initial results of our ap-

proach as described. As it can be seen for N=5 detections

per image our SMN give an AP of 24.5% and for N=10
if gives an AP of 28.1%. When the baseline is allowed

the same number of detections (N=5, 10), the AP is 23.8%
and 27.1%. Therefore, while we do outperform baseline for

fixed number of detections per image, due to limited roll-out

capability we are still ∼1% below the baseline [12].

10https://github.com/endernewton/tf-faster-rcnn

Table 2: Final comparison between SMN and baselines. We

additionally include MLP baseline where the number of pa-

rameters are kept the same as SMN for context aggregation

and output. Top 5k regions are used to select proposal in-

stead of NMS.

Method AP AP-.5 AP-.75 AP-S AP-M AP-L AR-S AR-M AR-L

Baseline [12] 29.4 50.0 30.9 12.2 33.7 43.8 18.5 45.5 58.9

MLP 30.1 50.8 31.7 12.5 34.2 44.5 19.2 47.0 59.8

SMN 31.6 52.2 33.2 14.4 35.7 45.8 20.5 48.8 63.2

6.1. SMN for Hard Examples

In this section, we want to go beyond N=10 detections

and see if the overall detection performance can be im-

proved with SMN. Intuitively, for highly confident detec-

tions, ConvNet-based FRCNN is already doing a decent job

and not much can be learned from an additional memory. It

is the “tails” that need help from the context! This means

two things: 1) with a limited resource budget, SMN should

be used in later iterations to provide conditional informa-

tion; and 2) at the beginning of the sequence, a standard

FRCNN can work as a proxy. Given these insights, we ex-

perimented with the following strategy: For the first N1 it-

erations, we use a standard FRCNN to detect easier objects

and feed the memory with a sequence ordered by FRCNN

confidence (after per-class NMS). Memory gets updated as

objects come in, but does not output features to augment

prediction. Only for the later N2 iterations it acts normally

as a context provider to detect harder examples. For COCO,

we set N1=50 and bootstrap from a N2=10 SMN model.

Although SMN is trained with the goal of context rea-

soning and learns new functionality (e.g. de-duplication)

that the original FRCNN does not have, it does have in-

troduced more parameters for memory-augmented predic-

tion. Therefore, we also add a MLP baseline, where a

5-layer ConvNet (Sec. 4.5) is directly stacked on top of

conv5 3 for context aggregation, and the same output

modules (Sec. 4.6) are used to make predictions.

The results can be found in Table 2. As can be seen,

on our final system, we are 2.2% better than the baseline

FRCNN. This demonstrates our ability to find hard exam-

ples. It is worth noting that here hard does not necessar-

ily translate to small. In fact, our reasoning system also

helps big objects, potentially due to its ability to perform

de-duplication more intelligently and benefit larger objects

that are more likely to overlap.

Qualitative Results: We show a couple of examples of how

context using spatial memory can help improve the perfor-

mance and detections. In the first case, the score of sheep

gets boosted due to other sheep. The score of horse de-

creases due to the detection of cake and table. Please check

the supplementary material for more examples.

6.2. Ablative Analysis

We now perform ablative analysis to explain all our

choices for the final implementation. For ablative analysis,
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Figure 6: Examples of context has helped improve scores

by reasoning. Left: the score of sheep is increased due to

presence of other sheep in background. Right: the score of

horse is decreased due to the detection of cake and table.

Table 3: Ablative analysis on VOC 2007 test and COCO

2014 minival. All approaches constrained by detections

N=5/10. mAP is used to evaluate VOC, AP and AR num-

bers are from COCO.

N Method mAP AP AR-10 AR-S AR-M AR-L

N
=
5

Baseline (FR-CNN) 65.8 23.6 27.6 7.0 29.1 47.4

SMN Base 63.6 23.3 27.2 6.7 28.0 46.1

+ Sample Flipped 64.4 23.5 27.2 6.9 28.4 46.4

SMN Full 64.6 23.8 27.7 6.9 28.5 47.4

N
=
1
0

Baseline 70.3 26.9 33.2 10.9 36.6 52.7

SMN Full 67.5 26.6 32.6 10.3 35.6 52.1

+Tune from N=5 67.8 27.1 32.7 10.3 35.9 52.3

we use both VOC and COCO datasets. The numbers are

summarized in Table 3. For the comparisons shown here,

we switch back to the standard NMS-based region sampling

and select top k=300 RoIs as in original FRCNN. Also,

when we do the roll-out, at each step we choose one detec-

tion and perform HardMax (rather than SoftMax): make the

hard decision about what class does the selected box belong

to – a natural idea for sequential prediction.

For N=5, we compared three models. First, SMN Base,

where we simply train the network as is done in FRCNN.

Next, regions with flipped labels (Sec. 5.2) are added to re-

places some of the negative example – for training region

proposal the ratio for positive/flipped/negative is 2:1:1, and

for region classification it is 1:1:2. Third, SMN Full, where

we keep the previous sampling strategy and in addition in-

clude the reconstruction loss (Sec. 5.3). Overall, both strate-

gies help performance but with a seemly different strength:

sampling flipped regions helps more on small objects, and

multi-task learning helps more on bigger ones.

However, our best performance in Table 3 is still behind

the baseline and judging from the COCO AR we believe the

biggest issue lies in recall. Therefore, we take the best SMN

Full model and conduct two other investigations specifically

targeting recall. Here we only list the final results, please

see supplementary material for more discussions.

SoftMax vs. HardMax: First, we address a subtle question:

if we take top N detections with the memory and compare

them directly with top N detections of Faster R-CNN: are

these results comparable? It turns out to be not! As men-

Table 4: Investigating the recall issue. S stands for Soft-

Max based testing, and H for HardMax. 6N is short for Non-

aggressive NMS, where top 5k RoIs are directly selected

without NMS.

N Method 6N Max mAP AP AR-10 AR-S AR-M AR-L

N
=
5

Baseline ✗ S 65.8 23.6 27.6 7.0 29.1 47.4

SMN Full ✗ S 66.4 24.1 28.8 7.5 29.7 50.0

Baseline ✗ H 65.4 23.5 27.2 6.7 28.6 46.9

SMN Full ✗ H 64.6 23.8 27.7 6.9 28.5 47.4

Baseline ✓ S 66.0 23.8 27.8 7.0 28.7 48.4

SMN Full ✓ S 66.6 24.5 28.9 7.3 29.7 50.6

N
=
1
0

Baseline ✗ S 70.3 26.9 33.2 10.9 36.6 52.7

SMN Full ✗ S 69.4 27.7 35.0 11.6 37.6 55.7

Baseline ✗ H 68.0 26.4 31.9 9.7 35.0 50.7

SMN Full ✗ H 67.8 27.1 32.7 10.3 35.9 52.3

Baseline ✓ S 70.4 27.1 33.5 10.8 36.7 53.8

SMN Full ✓ S 70.0 28.1 35.0 11.5 38.1 56.4

tioned in Sec. 3.4, because NMS is applied in a per-class

manner, the actual number of box candidates it can put in

the final detection is k×C. To make it more clear, for a

confusing region where e.g. the belief for laptop is 40% and

keyboard is 35%, NMS can keep both candidates in the top

N detections, whereas for SMN it can only keep the max-

imum one11. Therefore, to be fair, we try: a) HardMax for

baseline; and b) SoftMax for SMN.

Non-aggressive NMS: Finally, we also evaluate our choice

of non-aggressive NMS during RoI sampling. Both baseline

and SMN perform better with 5k proposals; however our

boost on AP is more significant due to sequential prediction

issues.

7. Conclusion and Discussion

This paper is our first step towards instance-level rea-

soning in object detection with ConvNets. We introduce

a simple yet powerful framework of spatial memory net-

work, to model the instance-level context efficiently and ef-

fectively. Our spatial memory essentially assembles object

instances back into a pseudo “image” representation. This

memory can simply be fed into another ConvNet to extract

context information and perform object-object relationship

reasoning. We show our SMN direction is promising as it

provides 2.2% improvement over baseline Faster RCNN on

the COCO dataset with VGG16. We believe our frame-

work is generic and should promote research focusing on

knowledge-based reasoning on images.
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