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Abstract

This paper proposes a weakly- and self-supervised deep

convolutional neural network (WSSDCNN) for content-

aware image retargeting. Our network takes a source image

and a target aspect ratio, and then directly outputs a retar-

geted image. Retargeting is performed through a shift map,

which is a pixel-wise mapping from the source to the target

grid. Our method implicitly learns an attention map, which

leads to a content-aware shift map for image retargeting.

As a result, discriminative parts in an image are preserved,

while background regions are adjusted seamlessly. In the

training phase, pairs of an image and its image-level anno-

tation are used to compute content and structure losses. We

demonstrate the effectiveness of our proposed method for a

retargeting application with insightful analyses.

1. Introduction

Cameras and display devices are designed depending on

diverse targets of customers’ needs, and hence the resolu-

tion and aspect ratio of each module are different. Consid-

ering a full screen display scenario of an image, the original

image may not perfectly fit the display in full screen, due

to the different aspect ratios between the display device and

the image. It may rather introduce clipping, stretching or

shrinking, as shown in Fig. 1-(b).

Image retargeting research has been actively carried out

in computer vision and image processing. Image retarget-

ing techniques adjust the aspect ratio (or size) of an image

to fit the target aspect ratio, while not discarding important

content in an image. Content-aware image retargeting aims

to preserve important content as much as possible, and var-

ious methods have been suggested [25, 42, 41, 49, 15, 18,

1, 32, 35, 16, 10, 6].

In traditional content-aware approaches, salient region

information is widely used. The saliency is convention-

ally generated from edge map or hand-crafted features,

which are restricted by fixed design principles and limit

(a) (b) (c)

Figure 1: Content-aware retargeting examples. (a) An input

image. (b) Linear scaling. (c) Content-aware retargeting

(OURS). Our method tends to preserve important parts of

the given image well.

its generality. In recent years, deep learning studies have

been actively conducted to extract high-level semantic fea-

tures [34, 38, 40, 14, 13] of an image. Furthermore, research

on deep learning has shown excellent performance in low-

level image processing tasks [43, 44, 7, 30, 5, 45, 27, 24].

Motivated by this, in this paper, we propose a content-

aware image retargeting method using high-level semantic

information through deep learning. In order to resize in-

put images within a network, we introduce a shift layer

that maps each pixel from the source to the target grid.

We demonstrate that end-to-end training is possible through

the shift layer, and retargeted images are directly produced

using input images with target aspect ratios. The spatial

semantic information is learned from image-level annota-

tions, and passed to the shift layer. Image-level annotations

are used to compute content loss on the retargeted images.

Moreover, input images are used for structure loss to sup-

press unwanted visual effects after retargeting. In summary,

this paper provides the following contributions:

1. We introduce a weakly- and self-supervised learning for

content-aware deep image retargeting. We utilize images

and its corresponding image-level annotations for struc-

ture and content loss computations, respectively. They
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do not require much human effort for output labels to

supervise network.

2. Our proposed network takes a source image and a target

aspect ratio as input, and then directly produces a retar-

geted image in a shot. Therefore, end-to-end training is

possible and its test time is also fast. To our knowledge,

this work is the first attempt to apply deep learning to the

image retargeting application.

3. We design a shift layer that maps each pixel from the

source to the target grid. Our method implicitly learns

semantic attention information, and passes it to the shift

map.

2. Related Works

In this section, we review previous studies related to this

paper. In particular, we review recent image processing re-

search based on deep CNN models, and then review image

retargeting approaches.

Deep CNN Model for Low-Level Vision Tasks Re-

cently, there have been many works related to CNN for

computer vision problems. We introduce a few insightful

works that are relevant to image processing problems, and

all of these pioneer works have demonstrated successful re-

sults: image denoising [17, 43], image artifact removal [8,

4], super resolution [5, 21, 20], deblurring [44, 39], col-

orization [48, 50], image inpainting [43, 28, 46], and image

matting [36, 2]. Interestingly, researchers have shed little

light on image retargeting based on a deep CNN approach.

We sketch the advances of image retargeting works in a cat-

egorical manner as follows.

Image Retargeting Approaches for image retargeting

can be categorized in a variety of ways, but we roughly clas-

sify them into seam carving based and warping based meth-

ods. The seam carving based methods [1, 32, 35, 16, 10]

change the aspect ratio of an image by repeatedly remov-

ing or insetting seams at unimportant areas. Avida et al. [1]

introduce the concept of seam carving and solve it using dy-

namic programming. Rubinstein et al. [32] later apply seam

carving in 3D volume for video retargeting. A representa-

tion of multisize media is defined by Shamir et al. [35] to

have continuous resizing ability in real time. Han et al. [16]

find multiple seams simultaneously with region smoothness

and seam shape prior. Frankovich and Wong [10] propose

an enhanced seam carving method by incorporating energy

gradient information into optimization framework.

The warping based approaches [25, 42, 41, 49, 15, 18]

continuously transform an input image into an image of a

target size. In Liu and Gleicher [25], a non-linear image

warping is used to emphasize important parts of an im-

age. Wolf et al. [42] try to reduce distortion by shrinking

less important pixels and preserving important regions. A

scale-and-stretch warping method is proposed by Wang et

al. [41]. Their method iteratively computes optimal scaling

factors for local regions and updates a warped image as-

sisted by edge and saliency map. Guo et al. [15] suggest a

mesh representation based on image structures to preserve

the shape of an input image. An interactive content-aware

retargeting is proposed by Jin et al. [18]. They formulate re-

targeting using a sparse linear system based on a triangular

mesh, and then solve it via quadratic optimization.

Studies that have been conducted thus far have used

salient region information of an image for content-aware

image retargeting. However, in most seam carving or warp-

ing based methods, previous studies have used hand-crafted

features such as edge maps to find prominent areas of an im-

age. In this paper, we apply deep CNN for image retargeting

to reflect more semantic information by utilizing many im-

ages for training. Our method directly produces a retargeted

image from an input image with a target size, and it does

not require iterative processes. As far as we are aware, this

is the first work that seriously addresses the content-aware

image retargeting through the weakly- and self-supervised

deep CNN model.

3. Architecture

In this section, we introduce our WSSDCNN model for

image retargeting. The overall architecture consists mainly

of two parts: an encoder-decoder (Sec. 3.1) and a shift

layer (Sec. 3.2) as illustrated in Fig. 2. The aspect ratio

can be adjusted by changing the width or height of an im-

age. For simplicity, we describe only the case of reducing

the width of images, but one can understand the other cases

analogously with simple modification, e.g., height adjust-

ment can be done by rotating an image by 90 degrees.

3.1. EncoderDecoder Model

The most important information for the content-aware

image retargeting is semantic information for each object

in the scene. Recently, some of previous works [23, 47]

have discovered that activations from high-level layers tend

to encode semantic information (i.e. high-level informa-

tion). Based on this observation, in order to utilize seman-

tic information, the encoder of our network takes an input

image and extract high-level features containing semantic

information. The decoder generates an attention map using

high-level features from the encoder. We adopt pre-trained

VGG16 [38] and inversely symmetric VGG16 architectures

for the encoder and decoder, respectively. In addition, we

remove fully connected layers of VGG16 and replace ReLU

layers in the decoder with ELU [3] layers.
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Figure 2: Overall architecture of the proposed network for image retargeting.

3.2. Shift Layer

The shift map defines to what extent a pixel should be

shifted from the input of size W × H to specified output

grids of size W ′ × H for each pixel. The relationship be-

tween the input and output images via shift map is

O(x, y) = I(x+ S(x, y), y), (1)

where I and O denote input and output images and (x, y)
are spatial coordinates of the output grid, respectively.

S ∈ [0,W −W ′]W
′×H is the shift map for the output grid.

We utilize an attention map from the decoder, whereby

the shift map acts in a semantic aware manner. First, we

resize the attention map to target size.

Ar = resize(Ad, R), (2)

where Ar, Ad, and R denote a resized attention map, an out-

put from decoder, and a target aspect ratio, respectively. We

then feed it into 1D duplicate convolution and cumulative

normalization layers, which are described as follows.

1D Duplicate Convolution An attention map has rough

localization information about discriminative parts in an im-

age. By transforming semantic driven location information

through the shift map, semantically important parts in an

image are preserved while the scales of background regions

are adjusted. However, in order to maintain the overall

shape of an image, pixels in similar columns should have

similar shift values. Therefore, we constrain the shape of

an attention response to be uniform along the column axis

using 1D duplicate convolution layer:

A1D = duplication(conv1D(Ar, H), H), (3)

where conv1D(·, H) is a convolution with a H dimensional

column vector without padding, and duplication(·, H) re-

peats one dimensional vector H times as shown in Fig. 3.

All weights of conv1D(·, H) are learned by training.

Since A1D is restricted to be just column-wise map, to

handle residual cases, we use the combination of Ar and

A1D as a final attention map.

A = λAr +A1D, (4)

where λ is a balancing parameter for Ar and A1D. The ra-

tionale behind this composition is rather emblematic. By

H

W

H

W

W

1

Replicate

H times 

Weighted

summation∗ 1-D Convolution

with

Trainable weights

Figure 3: Illustration of 1D duplicate convolution. It re-

duces visual artifacts after retargeting effectively as shown

in Fig. 4.

restricting the structure of attention map A1D, it captures

the majority of the attention while making the final map

vertically structured, whereas the role of Ar is reduced to

draw residual attention, which might be necessary. If we

directly use an attention map Ar from the decoder, back-

ground areas are twisted around discriminative objects, as

shown in Fig. 4-(b).

Cumulative Normalization In order to recover the final

mapping from the input grid to the target grid, we convert

A into shift map S. Since S should be monotonically in-

creased along the spatial axes, we perform cumulative nor-

malization to constrain it.

S(x, y) = α ·

∑

x′≤x A(x
′, y)

∑

x A(x, y)
, (5)

where α is |W − W ′|. From the shift map S(x, y), we

retarget an input image to the target grid using Eq. (1).

Image Warping Finally, by Eq. (1), an input image is

warped into an image of a target size. Because the shift map

has subpixel precision, linear interpolation is performed us-

ing four neighboring pixels. As mentioned in [11], applying

a differentiable loss to a linearly warped image is also dif-

ferentiable. To further proceed, when a converted image

is passed to a pre-trained network to compute content and

structure losses, which are described in the following sec-

tion, zero padding is performed to fit the input size of the

pretrained model.

4. Losses

In order to train the shift map, we utilize two types of su-

pervisions. Image-level annotations and input images them-

selves are used for content and structure loss calculation,

respectively.
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4.1. Content Loss

If the main content in an image is well preserved af-

ter retargeting, its retargeted image should have a similar

outcome of classification using the original image. Taking

this point into consideration, we define content loss. Unlike

content loss used in [12, 19] to represent reconstruction er-

rors that measure activation differences of the target and the

prediction, we use a class score loss for the classification

task as content loss in this paper. The content loss is calcu-

lated on the retargeted image, and defined as per-class cross

entropy loss on sigmoid outputs from a classifier.

Ec = −
1

CN

C
∑

k=1

N
∑

i=1

[

lki log ˆlki + (1− lki) log(1− ˆlki)
]

,

(6)

where C and N are the number of classes and samples. lki
and ˆlki are the ground truth label and sigmoid output, re-

spectively. We use VGG16 [38] as a classifier model, and

all weights are initialized by pre-trained values, and fixed

during both training and test phases.

In order for classification to work well after retargeting,

discriminative parts of an image have to be well preserved.

Therefore, by content loss, the shift map is trained so as to

implicitly contain information about prominent areas of an

image.

4.2. Structure Loss

While preserving the most important parts of the given

image, we want to suppress unnatural visual artifacts such

as distortion. In order to make the retargeted image have

a similar structure to the original image, we utilize the in-

put image as a supervision for structural similarity. We de-

sign structure loss to make the neighborhood of each pixel

in the retargeted image to be as similar as possible to the

neighborhood of each corresponding pixel in the input im-

age. Since we can infer correspondences between the input

image and the retargeted image from the shift map, we can

measure the corresponding patch similarity of the input and

output. One of the simplest approaches for the similarity

measure is pixel-wise 4-neighbor comparison between in-

put and output pixels. However, pixel-wise comparison eas-

ily fails with image noise, contrast change and patch mis-

alignment.

As reported in [23, 47], activations from the first few

convolutional layers of CNN provide low-level structural

information. These activations are robust to image noise,

contrast change, and misalignment due to convolution op-

erations. Therefore, we do not utilize pixel-wise difference,

but utilize activations from conv1 of VGG16 for the com-

(a) (b)

(c) (d)

Figure 4: (a) An input image. (b-d) A attention map and

a regtargeted image. (b) Content loss. (c) Content loss +

structure loss. (d) Content loss + structure loss + 1D convo-

lution.

putation of structural similarity as follows:

Es =

2
∑

j=1

∑

x,y

[Fj(O(x, y))− Fj(I(x+ S(x, y), y))], (7)

where Fj are function of conv1j in VGG16. Through

conv11 and conv12, the receptive field of each pixel cov-

ers a 5× 5 neighborhood.

The network trained with structure loss makes pixels in

similar columns of an attention map to have similar values,

as shown in Fig. 4-(c). This is desirable in the 1D duplicate

convolution layer, and, as a result, artifacts of a retargeted

image are significantly reduced compared to the case using

only content loss. Also, combining the structure loss with

the 1D duplicate convolution layer produces better results,

as in Fig. 4-(d). In short, content loss plays a role of pre-

serving salient objects, and the structure loss and the 1D

duplicate convolution layer reduce the artifact of retargeted

images.

5. Experiments

In this section, we first describe implementation details.

Qualitative comparisons of deep content-aware image re-

targeting to previous works are also shown. After that, we

analyze the role and effect of the shift map of our algorithm.

5.1. Training

We train our proposed network using Pascal VOC 2007

dataset [9] with only image-level annotations. First of all,

we train the VGG16 model using VOC data, and use the
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trained weights for initialization of the encoder and classi-

fier parts. They are fixed during the training of the other

parts. The other parts of the network are trained with

content and structure losses. Input images are resized to

224 × 224, and input aspect ratios are randomly generated

for each batch within 224
4 ∼ 224

2 . It takes around 1 ∼ 2
days for 300 epochs on a machine with a GTX 1080 GPU

and an Intel i7 3.4GHz CPU. The learning rate, momentum

and batch size are set to 10−5, 0.9, and 16, respectively. A

forward pass takes around 0.5 ∼ 1 seconds to process an

image with a resolution of 224 × 224 pixels. Except for

the classifier used in training, the proposed network is fully

convolutional, and thus an image of arbitrary size can be

retargeted at the test time.

5.2. Results

VOC Dataset Fig. 5 shows the width retargeting results

on VOC 2007 test images. All results are reduced to half

size. We compare our results with linear scaling, manual

cropping, and seam carving [1]. In addition, results with

only content loss, and results with content loss+structure

loss are compared to verify the effects of structure loss and

1D duplicate convolution layer. In linear scaling (Fig. 5-

(b)), the size of the object can be excessively reduced while

cropping (Fig. 5-(c)) takes away important regions of an

image. Since seam carving (Fig. 5-(d)) subtracts the dis-

cretized seam, if the reducing factor is large or objects oc-

cupy a large portion of an image, important parts are also re-

moved and distorted. Also, as mentioned above, with only

content loss (Fig. 5-(e)), objects are preserved but distorted.

Structure loss (Fig. 5-(f)) suppresses much of the distortion,

but there are still wobbles. Through the 1D duplicate con-

volution layer, however, wobbles are significantly restored,

as in Fig. 5-(g). In addition, height retargeting results are

shown in Fig. 6. Our results are also better than the re-

sults of linear scaling, manual cropping and seam carving.

Results of progressively reducing the size of an image are

shown in Fig. 7. Even though the size of an image can be

changed only in discrete pixels, we can make a continuous

changing effect if the aspect ratio is densely sampled.

Interestingly, semantic objects often disappear after

seam carving. This is because seam carving depends on

low-level features such as edge maps, as well as other exist-

ing content-aware image retargeting methods. For instance,

in the first and second columns of Fig. 6, the results of seam

carving show that a bird and a bicyclist are severely dam-

aged. This is because seam carving, which relies on low-

level features, cannot reasonably infer semantic information

in complex background images. This problem can be solved

by using a high-level feature using deep learning as shown

in results of our proposed method.

Benchmark Dataset In order to compare our method

with more previous works, we directly quote published re-

sults from a benchmark [31]. Fig. 8-(a-h) shows example re-

sults of previous methods [22, 33, 32, 29, 41, 42] including

cropping and linear scaling. Our results are shown in Fig. 8-

(i). Although images from [31] do not have exactly the same

labels as the VOC dataset, object regions are well found,

and our results are competitive with previous methods.

Image Enlarging Although the proposed network is

trained to adjust the aspect ratio of an image by reducing

the size of an image, it is also possible to appropriately en-

large an image by using an attention map. In the case of

image enlarging, since the main objects should be fixed as

much as possible while textures and background regions are

expanded, an attention map is reversed to map an input to

target grid as follow:

A−1 = exp(−
A

γ
), (8)

where γ is a parameter of inversion. After cumulative nor-

malization, the final shift map is obtained. In order to ex-

pand an image by k, we first obtain an attention map for

the task of reducing an input by k, and then resize it to the

input size. For image enlarging, mapping between an input

of size W × H and an output of size W ′ × H images is

determined as follows:

O′(x′ + S(x′, y′), y′) = I(x′, y′), (9)

where (x′, y′) are spatial coordinates of the input grid. In

this case, S ranges from 0 to W ′ − W . Fig. 9 shows ex-

amples of image enlarging. Compared to linear scaling, the

main objects are much better preserved while background

regions are expanded.

User Study In order to evaluate our proposed method in

terms of pleasantness to the human eye, we conduct a user

study with 32 people from different backgrounds (age range

24-55) using 30 sets of pascal (20) and non-pascal (10) im-

ages. For comparison with the proposed method, linear

scaling, center crop, edge crop, seam carving, BDS [37],

and AAD [26] methods are used. Each person is guided

to select two preferred images over the seven choices. As

shown in Fig. 10, our proposed method receives the highest

vote. Also, considering the linear scale method is a moder-

ate baseline, it is qualitatively meaningful that our proposed

method receives the most votes.

5.3. Analysis

Classification on Retargeted Images In order to quan-

titatively confirm that the main objects are well preserved
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(a) (b) (c) (d) (e) (f) (g)

Figure 5: Width adjustment. (a) Input images. (B) Linear scaling. (c) Manual Cropping. (d) Seam carving [1]. (e) Results

with content loss. (f) Results with content loss + structure loss. (g) Results with content loss + structure loss + 1D duplicate

convolution.

after retargeting, we experiment on how much the classifi-

cation accuracy differs before and after retargeting. Exper-

iments are conducted on the VOC 2007 test set. For the

purpose of fair comparison, we use pre-trained Alexnet and

VGG19 instead of VGG16, so that we can evaluate the gen-

erality while avoiding any bias induced by VGG16, which

was used in our model. Since the VOC dataset has multiple

classes in an image, we measure mAP instead of accuracy,

and report the ratio with classification results against origi-

nal images, i.e.,
mAP(Iretargeted)
mAP(Ioriginal)

. Images with reduced size are

linearly interpolated to their original size before classifica-

tion. Note that we use zero padding when retargeted images

are passed to the classifier at training time. We compare

the mAP ratio of the proposed method with the retarget-

ing methods using center cropping, edge-based cropping,

and seam carving [1]. Edge-based cropping is a way to

crop a window containing the largest amount of gradients

within the given window size. As shown in Fig. 11, the

mAP ratio is measured while reducing image sizes from 0.7

to 0.3 times at intervals of 0.1. Our method shows signifi-

cantly slower decay of performance than the other methods.

Through these quantitative experiments, we verify that the

proposed method can adjust the size of an image while pre-

serving the main content of an image well.

4563



Figure 6: Height adjustment. From the top to the bottom: input images, linear scaling, manual cropping, seam carving [1],

and our results (content loss + structure loss + 1D duplicate convolution).

Figure 7: Retargeted images according to varying aspect ratio from 0.9 to 0.3 times width. (Top) Linear scaling. (Bottom)

Our results (content loss + structure loss + 1D duplicate convolution).

Discussion Alternative supervision approaches can be

conceived. As a specific potential alternative, one may think

of directly supervising pixel-level attention map (or shift

map) to provide more precise location information. How-

ever, it is totally anecdotal how to annotate while incorpo-

rating semantic information. Also, if we create directly re-

targeted images using pixel-level annotations and use them

as output, we have to make images with all aspect ratios.

Also, it is not desirable to simply set the results of image

retargeting as a unique result. In this regard, we decide to

use only image-level annotations as supervision, and try to

resolve artifacts such as wobbles through the 1D duplicate

convolution layer and structure loss.

When retargeting is performed, regions with a high value

in the attention map are reduced more than areas with a low

value. As in Fig. 4-(c,d), when we look at the attention map,

high values are formed in the shape of curved lines along

the background, which is similar to seams to be removed

in seam carving. That is, our proposed method shrinks less

important parts, similar to seam carving, but uses high-level

information induced by semantic understanding.

An image without dominant objects (e.g. landscape) can

be regarded as a limitation because the prominent object in

an image is either too small or does not appear. However,

the network can still perform reasonably well because it has

higher responses in textural areas in comparisons with tex-

tureless areas.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8: Comparisons on benchmark in [31] (a) Manual Cropping. (b) Streaming Video [22]. (c) Multi-operator [33]. (d)

Seam carving [32]. (e) Linear scaling. (f) Shift map [29]. (g) Scale-and-Stretch [41]. (h) Nonhomogeneous warping [42]. (i)

Our results (content loss + structure loss + 1D duplicate convolution).

(a) (b) (c) (d) (e)

Figure 9: Enlarging examples. (a) Input images. (b-e) 1.5 and 1.7 times enlarged images using linear scaling and our method.

(b) Linear scaling (1.5×). (c) Our method (1.5×). (d) Linear scaling (1.7×). (e) Our method (1.7×).

Ours Linear scaling Center crop Edge crop Seam carving BDS ADD
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Methods
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Figure 10: User study results.

6. Conclusion

In this paper, we have proposed a weakly- and self-

supervised deep convolutional neural network (WSSD-

CNN) for content-aware image retargeting. Our network

produces a retargeted image directly, given an input image

and a target aspect ratio. The network architecture con-

sists of an encoder-decoder structure for the attention map

generation, and the shift map is generated from 1D dupli-

cate convolution and cumulative normalization layers. Be-

cause our network is trained in an end-to-end manner using

only image-level annotations, we do not have to collect a

large amount of finely annotated image data. The proposed

content and structure losses ensure a retargeted image pre-

Figure 11: Transition graph of mAP ratio according to the

resizing scale. X-axis: scale ratio of image retargeting, Y-

axis: mAP ratio against classification results of original im-

ages.

serves important objects, and also reduce visual artifacts

such as structure distortion. Experimental results demon-

strate that our algorithm is superior to previous works, and

shows more visually pleasing qualitative results.
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