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Abstract

Person re-identification is an important task in video

surveillance systems. It can be formally defined as es-

tablishing the correspondence between images of a person

taken from different cameras at different times. In this pa-

per, we present a two stream convolutional neural network

where each stream is a Siamese network. This architec-

ture can learn spatial and temporal information separately.

We also propose a weighted two stream training objective

function which combines the Siamese cost of the spatial and

temporal streams with the objective of predicting a person’s

identity. We evaluate our proposed method on the publicly

available PRID2011 and iLIDS-VID datasets and demon-

strate the efficacy of our proposed method. On average, the

top rank matching accuracy is 4% higher than the accuracy

achieved by the cross-view quadratic discriminant analy-

sis used in combination with the hierarchical Gaussian de-

scriptor (GOG+XQDA), and 5% higher than the recurrent

neural network method.

1. Introduction

In recent years, the number of video surveillance systems

has increased dramatically. According to a study by Cisco,

Internet video surveillance traffic is projected to increase

tenfold between 2015 and 2020 [1]. The continuous moni-

toring of surveillance data is practically impossible, making

the automatic analysis of surveillance video the only plau-

sible solution. Many video analytic methods have been pro-

posed for person detection and tracking, action recognition,

crowd analysis and anomaly detection.

One of the fundamental tasks associated with video

surveillance systems is person re-identification (ReID). Per-

son re-identification refers to tracking a person across a

network of non-overlapping cameras [2, 3]. Given sin-
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Figure 1: Sample images of two subjects captured from two

different cameras in the PRID2011 [4] and the ILIDS-VID

[5] datasets

gle/multiple images or a video sequence outlining a per-

son’s appearance in the field of view of a camera, person

re-identification is the task of recognizing the same person

across a network of cameras with non-overlapping fields of

view. It can be formally defined as establishing the corre-

spondence between images of a person taken from different

cameras at different times [2].

The ReID task is a challenging problem. It remains an

active research area due to inter/intra illumination changes,

pose variations, occlusions, cluttered background, various

scales and viewpoints [3]. Figure 1 shows sample images

depicting the differences in camera viewpoints and illumi-

nation conditions.

Over the past years, the performance of ReID meth-

ods have improved by adopting new features, using met-

ric learning techniques, and the use of semantic attributes

and appearance models [6–13]. Most of the traditional

approaches proposed for ReID uses low-level features in

the form of color and texture histograms and exploit met-

ric learning to find a distance function in which distances

between images from the same class are minimized and
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distances between different classes are maximized [9, 10,

14–16]. In addition, multiple datasets have been made

available for testing, these include: Viewpoint invari-

ant pedestrian recognition dataset (VIPeR) [6], person re-

identification (PRID2011) dataset [4] and the iLIDS video

re-identification (iLIDS-VID) dataset [5]. VIPeR contains

a single image per appearance (single shot), whereas recent

datasets, such as PRID2011 and iLIDS-VID, contain multi-

ple images per appearance (multi-shot). ReID in multi-shot

scenarios is also referred to as video-based ReID.

[17] demonstrates that multi-shot scenario is superior to

single-shot scenario using empirical evidences. Their ex-

periments show that multi-shot approaches are more favor-

able since both probe and gallery contain much richer vi-

sual information as compared to single image. In addition,

combining spatial features using multi-shot helps address

the challenges associated with viewpoint and pose invari-

ance [5, 18]. Also, in real-life surveillance systems, human

detection and tracking methods generate multiple images

for each person appearance. Therefore, ReID in multi-shot

scenario is more suitable for practical applications.

[19] shows that temporal features (e.g. gait pattern) can

offer discriminative features for person identification even

using low resolution video sequences. In ReID multi-shot

scenarios, these temporal features can be used in combina-

tion with spatial features to create better feature representa-

tion. Temporal features can improve the accuracy of ReID

methods in particular when the majority of clothing worn

by subjects tends to be non-discriminative [5, 20].

In [20], a deep learning video-based ReID method using

a recurrent convolutional neural network architecture is pro-

posed to exploit both spatial and temporal features. A sin-

gle network is used to learn a representation for both feature

types. This poses a limitation which constrains the amount

of information that the network can learn. To address this

limitation, we propose the use of a two stream convolutional

neural network (CNN) [21] with weighted objective func-

tion where each stream has Siamese structure [22].

The main contributions of this paper are:

• We propose a two stream CNN architecture where each

stream is a Siamese network. This architecture can

learn spatial and temporal information separately. By

having two separate networks, each network can learn

its own best feature representation.

• We propose a weighted two stream training objective

function which combines the Siamese cost of the spa-

tial and temporal streams with the objective to pre-

dict a person’s identity. For the ReID task, spatial

features are more discriminative than temporal fea-

tures [8]. The weighted cost function controls the in-

dividual contribution of the two streams accordingly.

To our best knowledge, this is the first time a weighted

two stream cost function is proposed for ReID.

We evaluate our proposed method on two publicly available

datasets. Our proposed method outperforms or shows com-

parable results to the existing best perform methods on both

datasets.

2. Related Work

Recent ReID methods have focused on appearance mod-

eling and metric learning to establish correspondences be-

tween people images. The input is assumed to be bounding

boxes outlining persons appearances in two different cam-

eras. Each appearance is represented by a single or multi-

ple bounding boxes. We will also assume this in this pa-

per. A common approach is to divide a bounding box into

a number of horizontal strips and to extract low-level fea-

tures from each strip. We will describe some of the features

that have been proposed for use in ReID systems. In [6],

an ensemble of local features (ELF) is constructed by using

the eight color channels corresponding to the three separate

channels of the RGB, YCbCr and HSV color spaces with

the exception of the value (V) channel. Thirteen Schmid

filters and six Gabor filters are also used to model texture.

Sixteen bin histograms are constructed for each of the 19

filter responses and for the eight color channels. The his-

tograms are concatenated to form a high dimensional fea-

ture vector for each image. Other approach is the use of the

local maximal occurrence feature (LOMO) based on multi-

scale Retinex to estimate HSV color histograms used for

color features [8]. The scale invariant local ternary pat-

tern (SILTP) descriptor is used to model illumination invari-

ant texture [23]. In [7], a hierarchical Gaussian descriptor

(GOG) is proposed and is based on the mean and covariance

information of pixel features within patches and region hier-

archies. Color and texture features are usually concatenated

to form a high dimensional feature vector which is used as

an input for learning methods.

We now describe some of the classification/learning

methods that have been used in ReID. Metric or dis-

tance learning is used to find a distance function in which

distances between images from the same class are min-

imized and in which distances between different classes

are maximized [8–10, 14–16]. The keep it “simple and

straightforward metric learning” method (KISSME) [9] and

cross-view quadratic discriminant analysis (XQDA) [8] are

widely used metric learning techniques for ReID. Both ap-

proaches belong to the class of Mahalanobis distance func-

tions. KISSME, based on a likelihood ratio test, casts the

problem in the space of pairwise differences and assumes a

Gaussian structure of the difference space [9]. XQDA ex-

tends Bayesian faces and the KISSME approach by learning

a subspace reduction matrix and a cross-view metric jointly.

A closed-form solution is computed by formatting the prob-
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lem as a generalized Rayleigh quotient and using eigenvalue

decomposition [8].

In [24], a multi shot approach is based on the combi-

nation of random projections for dimensionality reduction

and random forests for classification. A relative distance

comparison model which maximizes the likelihood that a

pair of correct match has a smaller distance than that of a

wrong match pair along with an ensemble strategy is in-

troduced in [25]. In [26], person re-id is formulated as a

block sparse recovery problem and in [27] is formulated as

a graph matching problem. In [28], images for a person tra-

jectory are clustered hierarchically to mitigate the problems

faced by Fisher Discriminate Analysis (FDA). A viewpoint-

invariant descriptor along with sub-image rectification and

poses estimation is proposed in [29].

When the majority of clothing worn tends to be non-

discriminative, ReID becomes very challenging. Attributes-

based re-identification methods try to solve this problem

by incorporating semantic attributes. ‘Jacket’, ‘female’

and ‘carried object’ are all examples of semantic attributes.

Semantic attributes are mid-level features learned from a

larger dataset a priori [30]. In [31], semantic attributes are

combined with the low level features and is shown to im-

prove the performance of ReID.

Until recently, CNN architectures [32] have not been

used for the ReID due to the small size of public datasets.

With the release of larger datasets, recent methods have

demonstrated the feasibility of the use of CNNs for

ReID [33, 34]. A filter pairing neural network (FPNN) is

proposed as a unified solution to extract features and learn

photometric and geometeric transforms in [33]. In [34], fea-

ture extraction layers are followed by a cross-input neigh-

borhood difference layer to compute the differences in fea-

ture values across the camera views.

Very recent deep learning ReID methods extended [33,

34] and incorporate metric learning and part-based learn-

ing. In [35], a cosine layer connects two sub-networks and

jointly learn color, texture and a similarity metric. In [36],

multi channels part-based CNN is proposed to jointly learn

both global and local body features of the person. The net-

work is trained using triplet images and a triplet loss func-

tion is used to learn the network model. In [37], single

image and cross-image representations are combined in a

single network. A deep learning network for learning fea-

tures from multiple domains is proposed in [38]. A domain

guided dropout (DGD) method is shown to improve feature

learning.

Most of the existing deep learning methods are based on

a simple architecture and ignore the temporal information in

a multi-shot scenario. To exploit the temporal information

for ReID, the use of recurrent neural network (RNN) with

the Siamese structure is proposed in [20]. An optical flow

image is concatenated to the YUV image and comprises the

input to the deep learning network. For the remainder of

this paper, we will refer to the ReID technique proposed

in [20] as the RNN-ReID technique. Instead of using a sin-

gle network to learn both spatial and temporal features, we

propose the use of a two stream CNN architecture where

each stream is a separate Siamese network.

3. Proposed Method

The overall architecture of our proposed method is

shown in Figure 2. The method is motivated by the fact

that both spatial and temporal features possess discrimina-

tive information useful for the ReID task. However, the

best feature representation does not need to be the same for

both types of features. Therefore, we propose a two stream

Siamese CNN which processes spatial and temporal infor-

mation separately. Siamese CNNs contain two identical

sub-networks with shared weights and are suitable for tasks

which involve finding the similarity between two compara-

ble inputs [22]. CNNs typically process an image or multi-

ple images and classify them into a single class, whereas

Siamese CNNs process two images or two sequences of

images and compute the similarity between them. In our

proposed ReID system, the input to first stream are two se-

quences of RGB frames where each sequence is captured

from a different camera. The second stream processes the

optical flow information from both cameras as shown in

Figure 2. The input is described in more details in Sec-

tion 3.1. Each stream is based on the same network archi-

tecture. Throughout this paper, we will refer to the network

associated with spatial content as SpatialNet and the net-

work associated with temporal content as TemporalNet.

Both networks are composed of multiple CNNs with

Siamese architecture, and all the CNNs within the same

stream share the same parameters. We refer to this CNN

as the “base CNN” and describe its structure in Section 3.2.

The outputs of the base CNNs which processes images from

the same camera view are combined using temporal pool-

ing. The temporal pooling is described in Section 3.3. The

outputs of the temporal pooling from both cameras are com-

bined using the Siamese cost as described in Section 3.4.

Finally, the two networks associated with both streams are

fused together using a weighted cost function as described

in Section 3.5.

3.1. The Inputs

We define the generic input sequence as Ic, where c ∈
a, b for camera A and B, respectively. For the SpatialNet,

the input sequence are RGB frames:

Ic = (S(1), . . . , S(t), . . . , S(L)) (1)

where L is the sequence length and S(t) is the RGB frame

at time t.
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Figure 2: Overall Architecture of the proposed two stream ReID system

For TemporalNet, optical flow images are used as input:

Ic = (T (1), . . . , T (t), . . . , T (L)) (2)

where L is the sequence length and T (t) is the input opti-

cal flow image at time t. To obtain T (t), the displacement

vectors in the horizontal and vertical directions between a

pair of consecutive frames are computed using the Lucas-

Kanade optical flow technique [39]. The effectiveness of

using optical flow to learn temporal features are demon-

strated in [20, 21].

3.2. The Base CNN Architecture

Conv 1

5x5x16

( pad 4, stride 2 )

tanh

2x2 max pool

Conv 2

5x5x32

( pad 4, stride 2 )

tanh

2x2 max pool

Conv 3

5x5x32

( pad4, stride 2 )

tanh

2x2 max pool

full

128

Dropout

f

Figure 3: The structure of the base CNN and hyper-

parameters

As shown in Figure 2, the input sequence Ic is processed

using the base CNN. Figure 3 shows the base CNN structure

and the hyper-parameters associated with it. The CNN takes

one input sample (S(t) or T (t)) and produces the output

feature vector fS or fT for SpatialNet and TemporalNet,

respectively. Our base CNN is composed of three convolu-

tion layers where each layer has convolution, non-linear ac-

tivation and max-pooling steps. We use hyperbolic-tangent

(tanh) as non-linear activation function. At the end of the

three convolution layers, a fully connected layer is placed

to have mapping to all the activations from the last convo-

lution layer. Dropout [40] is also used to reduce the model

over-fitting.

3.3. Temporal Pooling

For the SpatialNet, the base CNN processes a single

RGB frame out of the sequence of frames in the multi-shot

scenario, or optical flow content in the case of the Tem-

poralNet. Combining the spatial or temporal features us-

ing multiple frames helps address the challenges associated

with various viewpoints and poses. To process the input se-

quence, each sub-network of the Siamese network in each

stream utilizes L base CNNs and produces L feature vec-

tors. The feature vectors produced by the L CNNs in each

sub-network are combined into a single feature vector us-

ing temporal pooling. Max pooling, sum pooling and mean

pooling are the most common techniques used to achieve

this. In [20], the RNN-ReID method has shown that the

mean pooling method is the most suitable temporal pooling

technique for the ReID task. We adopt the same approach

in our proposed method. If we denote the base CNN by the

function C(), then the temporally pooled feature vector, f̄ic ,

is computed as follows:

f̄ic =
1

L

L
∑

t=1

C(I
(t)
ic

) (3)

where i is the person ID, c ∈ {a, b} is the camera view

and I
(t)
ic

, t ∈ 1, . . . , L, is one element (RGB image or op-

tical flow vectors) of the input multi-shot sequence. The

sequence of images are processed and temporally pooled to

obtain the feature vector f̄S
ic

or f̄T
ic

for the SpatialNet and

TemporalNet, respectively.

3.4. Siamese Cost

Siamese networks are composed of two sub-networks

with shared weights [22]. While learning the features from

each sub-network, Siamese networks compare the features

1986



from the pair using Euclidean distance. Thus, in training

process, the network tries to minimize the distance between

feature pairs when they are from the same class and maxi-

mize the distance between feature pairs when they are from

different classes. Due to this property, Siamese networks

have been widely used for the ReID task since the goal is

to find the similarity between a pair of sequences. As men-

tioned before, we use a Siamese network for both streams:

SpatialNet and TemporalNet as shown in Figure 2. Further-

more, the generic Siamese cost of our proposed method can

be defined as follows:

D(f̄ic , f̄jc) =

{

1
2 ||f̄ic − f̄jc ||

2
, if i = j

1
2{max(m− ||f̄ic − f̄jc ||, 0)}

2
, if i 6= j

(4)

where m is the Siamese margin and f̄ic , f̄jc are the tempo-

rally pooled feature vectors for person i and j, respectively.

Equation 4 applies to both SpatialNet and TemporalNet in

the same way with different type of inputs.

3.5. Weighted Two Stream Joint Identification
and Verification

During the training process, we build on the joint iden-

tification and verification approach from [41] to define our

training objective. We use the softmax loss function to com-

pute the identification cost as in [20]. Then, this cost is inte-

grated into our final training objective function as explained

later. The identification cost is defined as:

V (x) = P (q = c|x) =
exp(Wcx)

∑

k exp(Wkx)
(5)

where x is the feature vector and q is the person’s identity.

Wc and Wk indicate the cth and the kth column of the soft-

max matrix W , respectively. Note that the softmax matrix

W is the matrix representation of the fully connected layer

in the base CNN architecture.

From the RNN-ReID method, it was already observed

that joining the identification with the Siamese cost is cru-

cial to improve the ReID accuracy. We have two Siamese

cost functions from each stream, whereas RNN-ReID has

only one Siamese cost. Therefore, we define the combined

cost function Jf as follows:

Jf =ωSD(f̄S
ic
, f̄S

jc
) + ωTD(f̄T

ic
, f̄T

jc
)

+ V (f̄S
ic
) + V (f̄S

jc
)

(6)

where V is the standard softmax loss defined in Equation

5. ωS , ωT are the weights for SpatialNet and Temporal-

Net, respectively. Note that we only use the identification

cost V which is computed using the spatial features since

they contain more information regarding to the person la-

bel than the temporal features. We propose using differ-

ent weights for each stream to be able to emphasize the

spatial features as compared to the temporal features. For

ReID Task, even though walking motion adds discrimina-

tive power to the ReID solution, spatial features such as

appearance, color or texture are relatively more important

in terms of re-identifying people. Thus, we set the weights

empirically with the condition ωS ≥ ωT .

3.6. Similarity Metric for Testing

The weighted two stream joint identification and verifi-

cation objective function, which is used for training, incor-

porates the ability to predict a person’s identity. However,

during the evaluation, the goal is to find the similarity score

(metric) between two sequences of images and to rank the

gallery accordingly. Therefore, we modify Equation 6 to

disregard the contribution of the standard softmax loss V

and replace the Siamese cost D with the Euclidean distance.

The Euclidean distances are computed using the temporally

pooled feature vectors (f̄S
ic

, f̄T
ic

, f̄S
jc

and f̄T
jc

) as follows:

dS = ||f̄S
ia
− f̄S

jb
|| (7)

dT = ||f̄T
ia
− f̄T

jb
|| (8)

Finally, dS and dT are combined using a weighted average

to compute the final similarity metric dF :

dF =
ωSdS + ωT dT

ωS + ωT

(9)

4. Experiments

In this section, we evaluate our proposed method

using the publicly available datasets: Person re-

identification (PRID2011) dataset [4] and the iLIDS

video re-identification (iLIDS-VID) dataset [5]. We

investigate our proposed method with different hyper-

parameter settings and evaluate the performance against the

state-of-the-art ReID methods.

4.1. Datasets

Both datasets feature a multi-shot scenario in which

a person trajectory is represented by a sequence of im-

ages. The PRID2011 dataset contains images from two

non-overlapping static surveillance cameras. The sequence

presents the significant differences in viewpoint, illumina-

tion and camera characteristics. It is composed of 385 per-

son trajectories from one view and 749 from the other one,

with 200 persons appearing in both views. Each image se-

quence has a variable length ranging from 5 to 675 image

frames, with an average number of 100 images. We only

consider the 200 persons appearing in both views as sug-

gested in [5].

The iLIDS-VID dataset was created by observing pedes-

trians in two camera views. The outputs of two non-

overlapping cameras were captured at a crowded airport ar-
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rival hall. It consists of 600 image sequences of 300 indi-

viduals with one pair of sequences from two camera views

for each person. Each image sequence has a variable length

ranging from 23 to 192 image frames, with an average num-

ber of 73 images. It is one of the most challenging datasets

due to the cluttered background and random occlusions.

4.2. Experiment Setup

Input images are pre-processed before being fed into the

two stream Siamese CNN. Each color channel of the RGB

image is normalized to introduce invariance to illumination

changes. This is simply done by subtracting the mean and

dividing by the standard deviation. Each horizontal and ver-

tical optical flow channel is also normalized to the range of

[−1, 1].
The same data augmentation technique in [20] is used to

add more variety to the data. Random mirroring and crop-

ping are used for data augmentation. Note that a consistent

data augmentation technique is applied to the images from

the same sequence.

As suggested in [20], positive and negative pairs are al-

ternatively fed into the network. Sequence pairs are ran-

domly sampled from the all training identities. All training

sequence lengths are set to 16 and the test sequence lengths

are varied to investigate the significance of the sequence

length as described in Section 4.4.1. Note that this sequence

length can be arbitrary due to the network architecture.

The proposed network is trained for 1000 epochs using

the stochastic gradient descent method. The batch size is

set to 1, the learning rate to 1e−3 and the momentum to 0.9.

The Siamese cost function margin is set to m = 2. The base

CNN feature dimension is 128 with the dropout rate set to

0.5.

4.3. Evaluation Protocol

We follow the evaluation protocol described in [5]. The

dataset is randomly split into two subsets with the same size.

One is used for training and one for testing. For the testing,

the sequences from the first camera are used as the probes

while the sequences from the second camera are used as the

gallery.

We validate the performance of our proposed method

and compare the performance against other methods us-

ing the Cumulative Matching Characteristic (CMC) curve

which indicates the probability of finding the correct match

in the top K matches within the ranked gallery. The experi-

ment is repeated five times by randomly splitting the dataset

into training and testing and the average result is reported.

In our proposed method, we have two extra hyper-

parameters (ωS , ωT ). To see the effectiveness of pro-

posed method, we perform experiments with various hyper-

parameters settings. We perform experiments with ωS = 1
when ωT is set to 0 or 1 in order to verify the individual

contribution of TemporalNet. We also perform experiments

with ωS = 2, 3 when ωT = 1 to see the relative contribution

of the spatial features as compared to the temporal features.

4.4. Results and Discussion

4.4.1 Probe and Gallery Sequence Length

❳
❳

❳
❳

❳
❳
❳
❳
❳
❳

Length
Rank 1 5 10 20

16 41 70 81 92

32 50 79 88 95

64 56 82 91 97

128 58 85 93 97

Table 1: Matching accuracies with various probe/gallery se-

quence lengths in iLIDS-VID

In this section, we investigate the significance of the se-

quence length during testing. An experiment is conducted

to evaluate the ReID matching accuracy using various se-

quence lengths. Our proposed network shown in Figure 2 is

trained with the sequence length set to 16 using the iLIDS-

VID dataset. During evaluation, the matching accuracy is

calculated using {16, 32, 64, 128} as lengths for the probe

and gallery sequences. In the case when the probe or gallery

sequence is shorter than the test length, we use the entire se-

quence.

The matching accuracies for different sequence lengths

are summarized in Table 1. The results clearly indicate

that the matching accuracies are improved as the sequence

length is increased. For instance, when we increase the se-

quence length from 16 to 128, the top rank matching accu-

racy is improved by 17%. This is an intuitive result since

combining the spatial and temporal features using multiple

images helps address the challenges associated with various

viewpoints and poses.

4.4.2 Verification on Two Stream

To verify the usefulness of temporal information in ReID

task, we perform the experiments with the different settings

of the hyper-parameters (ωS , ωT ). This also can verify the

improvement gained by the use of a two stream CNN ar-

chitecture. Note that ωS and ωT control the individual con-

tributions of the SpatialNet and the TemporalNet, respec-

tively. When ωT = 0, the contribution of TemporalNet be-

comes totally 0 in training phase. This also applies to the

test phase in the same way based on the Equation 9.

We then compare ReID matching accuracies for different

hyper-parameter settings such as spatial only case (ωT = 0,

ωS = 1,) and Both Stream cases when ωT is fixed to 1
while ωS is varying from 1 − 3. As shown in Table 2,

using both stream cases have 3-4% accuracy improvement
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❳
❳

❳
❳

❳
❳
❳
❳
❳
❳

Streams
Rank 1 5 10 20

ωS = 1, ωT = 0 75 93 97 98

ωS = 1, ωT = 1 78 94 94 99

ωS = 2, ωT = 1 78 94 97 99

ωS = 3, ωT = 1 79 93 97 98

(a) PRID2011

❳
❳

❳
❳

❳
❳
❳
❳
❳
❳

Streams
Rank 1 5 10 20

ωS = 1, ωT = 0 57 60 91 95

ωS = 1, ωT = 1 58 86 93 97

ωS = 2, ωT = 1 60 86 93 97

ωS = 3, ωT = 1 56 86 92 96

(b) iLIDS-VID

Table 2: Matching accuracies with different stream settings

❳
❳

❳
❳

❳
❳
❳
❳
❳
❳

Methods
Rank 1 5 10 20

Proposed (ωS = 2) 78 94 97 99

RNN-ReID 70 90 95 97

GOG + XQDA 74 91 94 96

GOG + KISSME 57 80 89 94

LOMO + XQDA 67 86 92 94

LOMO + KISSME 48 72 82 91

ELF + XQDA 22 43 54 64

ELF + KISSME 15 32 42 56

(a) PRID2011

❳
❳

❳
❳

❳
❳
❳
❳
❳
❳

Methods
Rank 1 5 10 20

Proposed (ωS = 2) 60 86 93 97

RNN-ReID 58 84 91 96

GOG + XQDA 55 79 86 90

GOG + KISSME 38 67 79 89

LOMO + XQDA 53 79 88 95

LOMO + KISSME 35 65 79 90

ELF + XQDA 23 49 60 74

ELF + KISSME 15 40 55 70

(b) iLiDS-VID

Table 3: Matching accuracies comparison with previous methods
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Figure 4: CMC Curves for comparison

in PRID2011 and 1-3% accuracy improvement in iLIDS-

VID. This result demonstrates that by having two separate

networks to represent the spatial and the temporal content,

each network is able to learn the best feature representation

and improves the ReID performance. In addition, based on

the results for ωS ≥ 2 cases, ReID performance improved

in PRID2011 whereas it did not improve in iLIDS-VID for

ωS = 3 case. We thus conclude that the optimal relative

contribution of the spatial and temporal features is data de-

pendent.

4.4.3 Comparisons

We compare the performance of our proposed method

against several of the best performing methods in a multi-

shot ReID setting. We evaluate state-of-the-art metric learn-

ing methods (XQDA [8] and KISSME [9]) using state-of-

the-art feature extraction methods: LOMO [8], GOG [7]

and ELF [6]. Since we are evaluating multi-shot ReID

1989



methods, we extract the features for each image in the se-

quence and compute the average which is used by the met-

ric learning methods. To our best knowledge, the combi-

nation of GOG and XQDA achieves state-of-the-art perfor-

mance and the RNN-ReID method is the best performing

deep learning method [20].

The CMC curves are plotted in Figure 4a and 4b and

the matching accuracies are summarized in Table 3a and

3b for the PRID2011 and the iLIDS-VID datasets, respec-

tively. For the PRID2011 dataset, our proposed method

outperforms all the other methods. The top rank matching

accuracy is 4% higher than the accuracy achieved by the

GOG+XQDA method and 8% higher than RNN-ReID.

For the iLIDS-VID dataset, the results show that our ap-

proach has comparable accuracy to the RNN-ReID method

and is 5% higher than the accuracy achieved by the

GOG+XQDA method as can be seen in Table 3b and Fig-

ure 4b. The top rank matching accuracy for the iLIDS-

VID dataset is 18% lower than the case for the PRID2011

dataset. We believe this mainly due to the cluttered

background and occlusions associated with the iLIDS-VID

dataset. To make our method more robust to these challeng-

ing conditions, we plan to incorporate semantic attributes.

5. Conclusion

In this paper, we proposed a person re-identification

method based on a two stream convolutional neural network

where each stream is a Siamese network. This architec-

ture can learn spatial and temporal information separately

in a re-identification setting. Our proposed method is eval-

uated on the publicly available PRID2011 and iLIDS-VID

datasets. We demonstrate that combining the spatial and

temporal features using multiple images helps address the

challenges associated with viewpoint and pose invariants.

Our experimental results also demonstrate that by having

two separate networks to represent the spatial and the tem-

poral content, each network is able to learn the best feature

representation and improves the ReID performance. In the

future, we want to incorporate semantic attributes using a

multi-stream approach to address the challenges associated

with occlusions and cluttered background.
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laxed pairwise learned metric for person re-identification,”

Proceedings of the 10th European Conference on Computer

Vision, pp. 780–793, October 2012, Florence, Italy.

[16] J. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon,

“Information-theoretic metric learning,” Proceedings of the

24th International Conference on Machine Learning, pp.

209–216, June 2007, Corvallis, OR.

1990



[17] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and

Q. Tian, “Mars: A video benchmark for large-scale person

re-identification,” Proceedings of the European Conference

on Computer Vision, October 2016, Amsterdam, Nether-

lands.

[18] J. You, A. Wu, X. Li, and W. Zheng, “Top-push video-based

person re-identification,” Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 1345–

1353, June 2016, Las Vegas, NV.

[19] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and

K. W. Bowyer, “The humanid gait challenge problem: Data

sets, performance, and analysis,” IEEE transactions on pat-

tern analysis and machine intelligence, vol. 27, no. 2, pp.

162–177, 2005.

[20] N. McLaughlin, J. Martinez, and P. Miller, “Recurrent con-

volutional network for video-based person re-identification,”

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1325–1334, June 2016, Las Ve-

gas, NV.

[21] K. Simonyan and A. Zisserman, “Two-stream convolutional

networks for action recognition in videos,” Proceedings of

the Advances in Neural Information Processing Systems, pp.

568–576, December 2014, Montreal, Canada.

[22] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun,
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