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Abstract

One-shot pose estimation for tasks such as body joint lo-

calization, camera pose estimation, and object tracking are

generally noisy, and temporal filters have been extensively

used for regularization. One of the most widely-used meth-

ods is the Kalman filter, which is both extremely simple and

general. However, Kalman filters require a motion model

and measurement model to be specified a priori, which bur-

dens the modeler and simultaneously demands that we use

explicit models that are often only crude approximations of

reality. For example, in the pose-estimation tasks mentioned

above, it is common to use motion models that assume con-

stant velocity or constant acceleration, and we believe that

these simplified representations are severely inhibitive. In

this work, we propose to instead learn rich, dynamic repre-

sentations of the motion and noise models. In particular, we

propose learning these models from data using long short-

term memory, which allows representations that depend on

all previous observations and all previous states. We eval-

uate our method using three of the most popular pose esti-

mation tasks in computer vision, and in all cases we obtain

state-of-the-art performance.

1. Introduction

Pose estimation from images is a recurring challenge

in computer vision, for example for tasks such as camera

pose estimation, body joint localization, and object track-

ing. Such tasks have recently benefited from learned mod-

els [16, 24, 4], but various problems persist when applying

one-shot pose estimation to video data. In fact, disregarding

temporal information can result in very noisy estimates and

in the confusion of visually similar but spatially distinct im-

age features, such as those that result from the left and right

legs in the case of body joint localization. For this reason,

temporal filters are a popular approach for improving the ac-
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Figure 1. The proposed LSTM-KF approach builds on Kalman fil-

ters and LSTM networks to yield an improved temporal regular-

izer for common pose estimation tasks such as 3D body landmark

localization from RGB images.

curacy of pose estimation. Among these methods, because

of their simplicity and general applicability, Kalman filters

(KF) [15] are an extremely widely-used choice. Moreover,

the extended Kalman filter (EKF) [26] is capable of han-

dling non linear systems for both the measurement and tran-

sition models.

However, in many tasks, these measurement and transi-

tion models cannot be specified a priori, and in these situ-

ations the application of Kalman filters is severely limited.

In particular, in these in these tasks we must devise care-

fully tuned measurement and transition models, and even

once devised they tend to be overly simplistic. For exam-

ple, in the aforementioned computer vision tasks the trajec-

tories of objects and body parts do not follow any simple
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motion model. In such scenarios, Kalman filters are often

applied under the assumptions of constant velocity or con-

stant acceleration, which are clearly crude approximations

to reality.

To overcome such limitations, attempts have been made

to directly learn motion models from training data, for ex-

ample with support vector machines (SVMs) [21] or with

long short-term memory (LSTM) [18]. Learning motion

models can alleviate the modeler from time-consuming

Kalman filter selection and optimization and simultane-

ously enrich the underlying motion model. However, using

learned motion models to enforce temporal consistency in

pose estimation has to cope with the constraint that suffi-

cient training data needs to be available in order to cover all

possible motion paths of the tracked object.

In this work, we propose the LSTM Kalman filter

(LSTM-KF), a new architecture which lets us learn the in-

ternals of the Kalman filter. In particular, we learn the mo-

tion model and all noise parameters of the Kalman filter,

thus letting us gain the benefits of learning while letting us

successfully train our models with less data. The LSTM-

KF architecture is illustrated in Fig. 2. This framework can

be used to temporally regularize the output of any one-shot

estimation technique, which from here forward will be con-

sidered a generic black-box estimator.

Specifically, our estimation model learns to predict the

uncertainty of the initial prediction as well as the uncer-

tainty of the incoming measurement, which is crucial in

order to properly perform the update step. In addition,

a learned motion model is employed also for the predic-

tion step. Importantly, the estimator is not confined to the

learned motion model, as it keeps on being refined by mea-

surements during the update step. As a result, the filter

learns to implicitly regularize the pose over time without the

need for a hand-crafted transition or measurement model.

We believe that our approach is advantageous with re-

spect to learning-based Kalman filter techniques such as

those in [21, 18]. On one hand, in contrast to SVR [21],

LSTM is able to estimate filter parameters using a model

that depends on all previously observed inputs. On the other

hand, by explicitly incorporating the prediction of LSTM

with measurements in a Kalman update fashion, we relax

the requirement on the LSTM to implicitly learn to fuse

measurements with the state prediction for all possible mo-

tion paths, as attempted in [18]. Indeed, our model splits up

the task of learning temporal regularization onto three dis-

tinct LSTMs that each have a defined objective: predicting

the new state, estimating the prediction noise, and estimat-

ing the measurement noise. Due to this split of objectives

in a Kalman filter fashion, each individual LSTM learns a

simpler task and our model will automatically start to rely

on the measurements in case of low accuracy predictions.

We evaluate the LSTM-KF using three relevant pose esti-

mation tasks: body landmark localization, object tracking,

and camera pose estimation, using real data from bench-

mark datasets. LSTM-KF outperforms both Kalman filters

with different transition models and LSTM.

In the next section, we discuss related work. Next, we

review Kalman filtering and long short-term memory in de-

tail. In Section 4, we introduce the LSTM Kalman filter

(LSTM-KF), including the underlying model, the modified

prediction and update steps, and the full architecture which

joins three LSTM modules with the Kalman filter. Next we

move on to results, where we see LSTM-KF outperform

other temporal regularization techniques, including stan-

dalone Kalman filters and standalone LSTM. Finally, we

conclude and discuss future work.

2. Related Work

In recent literature, temporal regularization for pose es-

timation has been extensively studied. We will first focus

on those works that use an implicit regularization scheme

and in the second part discuss those that explicitly use a

learning-based Kalman filter architecture to infer temporal

coherence.

For 3D human pose estimation, Du et al. [6] trained an

overcomplete dictionary of body joint positions as well as

joint velocities. They use a Levenberg-Marquardt optimizer

to find the dictionary basis coefficients that minimize the

2D backprojection error on the RGB input frame. This way,

joint velocities are used to regularize the joint position es-

timates. In the experiments section we show that our ap-

proach yields superior results on the Human3.6M dataset.

Temporal regularization for 6 DOF object pose estima-

tion was introduced by Krull et al. [19], who are using pose

estimations from a random forest as input to a particle filter

method. The particle filter propagates a posterior distribu-

tion of the objects pose though time, using a predefined con-

stant velocity motion model. Choi et al. extend the particle

filter approach by introducing improved 3D features and a

GPU implementation[5].

Two main lines of work can be identified that combine

machine learning and Kalman filter models for temporal

regularization. We divide the approaches into those that

learn static parameters of the Kalman filter and those that

actively regress the parameters during filtering. Static op-

timization of noise covariance matrices was performed by

Abbeel et al. [2], who seek to replace manual fine-tuning of

noise parameters in robotic navigation tasks. The authors

employ a coordinate ascent algorithm and optimize each in-

dividual element of the measurement and prediction noise

covariance matrices. However, this approach is only valid

for noisy but time-invariant systems. As opposed to our

dynamic model, a change in measurement noise, for exam-

ple due to partial occlusion of the tracked object, cannot be

taken into account by their method and will therefore pro-
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Figure 2. Overview of the LSTM-KF. (a) A high-level depiction of the architecture which uses three LSTM modules to predict the

internals of the Kalman filter. (b) The LSTM-KF unrolled over time, which can be trained end to end with backpropagation through time.

duce inaccurate state estimates.

Another approach is chosen by Krishnan et al. [18], who

focus on learning the underlying state transition function

that controls the dynamics of a hidden process state. How-

ever, only the state space equations of the Kalman filter are

used, not the prediction and update scheme that performs

optimally under the condition of linear state transitions and

additive Gaussian noise [26]. Instead, the authors train neu-

ral network models that jointly learn to propagate the state,

incorporate measurement updates and react to control in-

puts. Covariances were assumed to be constant throughout

the estimation. In our experiments section, we show that

this approach produces inferior state estimations than a dis-

tinct prediction and update model, especially in the absence

of large-scale training data.

Dynamic regression of Kalman filter parameters was ap-

proached by Salti and Di Stefano [21]. In their work, sup-

port vector regression (SVR) is used to estimate a linear

state transition function at each prediction step. The pre-

diction noise covariance matrix is estimated jointly with

the transition function. Their SVR based system is there-

fore able to deal with time-variant systems and outperforms

manually tuned Kalman models on tracking tasks. As op-

posed to our model, measurement noise covariances are

kept constant. The transition function is modeled as a ma-

trix multiplication and can therefore only estimate linear

motion models, while by design our model is able to es-

timate non-linear transition functions based on all previous

state observations.

Haarnoja et al. [11] focus on the integration of a one-

shot estimation as measurement into a Kalman framework,

but require the estimator to provide a prediction of the noise

covariance together with the measurement. The authors

demonstrate a superior performance of their Kalman model

by comparing to simple one-shot estimation and to a recur-

rent model that disregards measurement noise covariance.

In contrast, our model is designed to regard the estimator

that provides measurement updates as a black-box system

and automatically estimates the measurement noise covari-

ance based on past observations, which enables us to com-

bine it with existing one-shot estimators.

3. Background

In this section, we describe Kalman filters and long

short-term memory (LSTM) and highlight the aspects of

both methods which are most relevant to our LSTM Kalman

filter, which we will describe in Section 4.

3.1. Kalman Filters

Kalman Filters (KFs) are optimal state estimators under

the assumptions of linearity and Gaussian noise. More pre-

cisely, if we represent our state as yt and our measurement

as zt, and we assume the model

yt = Ayt−1
+w, w ∼ N(0,Q) (1)

zt = Hyt + v, v ∼ N(0,R) (2)

where the matrices A, Q, H, and R are known, then the

Kalman filter yields the best estimate ŷt in terms of sum-

of-squares error.

The Kalman filter achieves optimality through an itera-

tive feedback loop with two update steps, the prediction step

and the update step. In the prediction step, we estimate the

mean and covariance of our current state, independent of

the current measurement:

ŷ
′

t = Aŷt−1
(3)

P̂
′

t = AP̂t−1A
T +Q (4)

In the update step, we compute the optimal Kalman gain

Kt and use this along with our observed measurement ẑt to

estimate the mean and covariance of yt:

Kt = P̂
′

tH
T (HP̂

′

tH
T +R)−1 (5)

ŷt = ŷ
′

t +Kt(ẑt −Hŷ
′

t) (6)

P̂t = (I−KtHt)P̂
′

t (7)

3.2. Long Short­Term Memory

Recurrent neural networks (RNNs), unlike their feedfor-

ward counterparts, are naturally suited to modeling sequen-

tial data. However, early variants such as simple RNNs
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Figure 3. LSTM-KF architectures. As detailed in Section 5, the larger networks are used for the Human 3.6M dataset, and the smaller

networks for all other (smaller) datasets.

[7] were extremely difficult to train because of what is now

known as the vanishing gradient problem [12, 3].

Long short-term memory (LSTM) [13] was introduced

specifically to address this problem, and has since become

one of the most widely-used RNN architectures. In this

work, we use the common variant with forget gates [8],

which are known to be crucial to achieving good perfor-

mance [10]. This LSTM variant is described by

f t = σ(Wfhht−1 +Wfxxt + bf ) (8)

it = σ(Wihht−1 +Wixxt + bi) (9)

ot = σ(Wohht−1 +Woxxt + bo) (10)

c̃t = tanh(Wchht−1 +Wcxxt + bc) (11)

ct = f t ⊙ ct−1 + it ⊙ c̃t (12)

ht = ot ⊙ tanh(ct) (13)

where σ(·) denotes the element-wise sigmoid function and

⊙ denotes element-wise multiplication. Focusing on Equa-

tions 12 and 13, we can see that LSTM can be interpreted

as resetting memory according to the forget gate f t, writing

to memory according to the input gate it, and reading from

memory according to the output gate ot, finally forming the

output or hidden state, ht, at time step t. The intermediate

memory cell c̃t and all gates depend on xt, the input at the

current time step, and on all W and b, which collectively

form the parameters to be learned.

This architecture also easily extends to multiple-layer

LSTM, where the hidden state ht from the first layer is sim-

ply treated as the input xt to the second layer, or from the

second to third layer, and so on.

4. LSTM Kalman Filters

In this section, we present the long short-term memory

Kalman filter (LSTM-KF), a model for the temporal regu-

larization of pose estimators. The main idea is to leverage

Kalman filters without the need to specify a linear transition

function A or fixed process and measurement covariance

matrices Q and R. Instead, we will model a nonlinear tran-

sition function f along with Q, and R using three different

long short-term memory (LSTM) networks, thus providing

our model with the ability to learn rich, dynamic Kalman

components from data.

4.1. Model

We always assume that incoming measurements are

noisy estimates of the underlying state, and thus H = I

in Equation 2. Equations 1 and 2 then take on the modified

form

yt = f(yt−1
) +wt, wt ∼ N(0,Qt) (14)

zt = yt + vt, vt ∼ N(0,Rt) (15)

which specifies the underlying model of the LSTM-KF.

4.2. Prediction and Update Steps

Our prediction step is then defined by

ŷ
′

t = f(ŷt−1
) (16)

P̂
′

t = FP̂t−1F
T + Q̂t (17)

where f is modeled by one LSTM module, F is the Jaco-

bian of f with respect to ŷt−1
, and Q̂t is the output of a

second LSTM module. Finally, our update step is

Kt = P̂
′

t(P̂
′

t + R̂t)
−1 (18)

ŷt = ŷ
′

t +Kt(ẑt − ŷ
′

t) (19)

P̂t = (I−Kt)P̂
′

t (20)

where R̂t is the output of a third LSTM module and where

ẑt is our observed measurement at time t. Next we describe

these LSTM modules in detail.
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4.3. Architecture

We denote the three LSTM modules for f , Q̂t, and R̂t

by LSTMf , LSTMQ, and LSTMR; each is depicted in Fig.

3, and an overview of the system is depicted in Fig. 2.

At each time step t, LSTMf takes in the previous pre-

diction ŷt−1
as input and produces the intermediate state

ŷ
′

t (which does not depend on the current measurement).

LSTMQ then takes ŷ
′

t as input and produces an estimate

of the process covariance, Q̂t, as output. Meanwhile, the

observation zt serves as input to LSTMR, which only pro-

duces an estimate of the measurement covariance, R̂t, as

output. Finally, ŷ
′

t and zt, along with our covariance esti-

mates, are fed to a standard Kalman filter, as described by

Equations 17 through 20, finally producing the new predic-

tion ŷt.

We remark that in this work Q and R are restricted to

be diagonal, and they are restricted to be positive definite

by exponentiating the outputs of the LSTMQ and LSTMR

modules.

4.4. Loss

In preliminary experiments, we used standard Euclidean

loss summed over all time steps, but in this case we found

that the LSTMf module would fail to learn any reasonable

mapping. Because of this, we added a term to our loss to

enhance gradient flow to the LSTMf block, resulting in the

loss

L(θ) =
1

T

T∑

t=1

‖yt − ŷt(θ)‖
2 + λ‖yt − ŷ

′

t(θ)‖
2 (21)

We set the hyperparameter λ to 0.8 using the Human3.6M

dataset and kept it fixed for all other experiments, as we

found that performance was relatively insensitive around

this value.

4.5. Optimization

Our objective is to optimize all parameters θ to minimize

the loss given by Equation 21 with respect to all free param-

eters in our model, which are a concatenation of all weight

matrices and biases from all three LSTM modules. (Note

that these modules are combinations of LSTM layers and

linear layers, as depicted by figure 3.)

Our model can be trained end to end, with gradi-

ents obtained using the backpropagation through time

algorithm[27], which we implement using the TensorFlow

framework [1]. We use gradient updates according to the

Adam [17] optimizer.

5. Experiments

In this section we compare the pose estimation perfor-

mance of our LSTM-KF architecture to a range of temporal

Figure 4. LSTM-KF error and mean Kalman gain during

training. At the beginning of training, the Kalman gain (as well as

error) is high, indicating that the model is relying almost entirely

on measurements. As training progresses, the Kalman gain drops

considerably, indicating that the Kalman filter relies significantly

on both on the measurements and the LSTMf module’s output.

regularization methods, including two standard Kalman fil-

ters that assume either a constant velocity or constant accel-

eration motion (respectively Kalman Vel, Kalman Acc), to

an exponential moving average filter (EMA), and to a stan-

dard LSTM module (Std. LSTM). Specifically, this LSTM

model that we compare to is a representative of the class of

models proposed in [18], and it is characterized by implic-

itly learning the prediction step as well as the measurement

update step in an end-to-end fashion.

We evaluate these models on four different datasets, one

for 3D human pose estimation, two for camera pose estima-

tion, and one for object pose estimation, all of them using

RGB images as input modality [14, 16, 22].

5.1. Implementation Details

We initialize all LSTM state-to-state weight matrices as

random orthogonal matrices, all other LSTM weight matri-

ces using a uniform distribution over [−0.01, 0.01], and all

linear-layer weight matrices using Xavier initialiation [9].

All biases are initialized with zeros except for LSTM forget-

gate bias; following best practices, we set these biases to 1.0

[8, 10].

Noise covariance matrices of the Kalman filter methods

(Kalman Vel, Kalman Acc) as well as the window size of the

exponential moving average method (EMA) were optimized

via grid search.

5.2. Human Pose Estimation

The Human3.6M dataset of Ionescu et al. [14], consists

of 3.6 million RGB video frames from video sequences that

were recorded in a controlled indoor motion capture setting.

In each of these sequences, one out of seven actors performs

15 activities with varying levels of movement complexity.

Each of the activities is between 3,000 and 5,000 frames

long. In our experiments, we follow the same data partition

scheme as [4, 28] for training and test set: training has 5

subjects (S1, S5, S6, S7, S8) and test data 2 subjects (S9,

S11). Similar to [4] we compute the model performance
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Directions Discussion Eating Greeting Phoning Photo Posing Purchases

Li et al. [20] - 136.88 96.94 124.74 - 168.68 - -

Tekin et al. [25] 102.39 158.52 87.95 126.83 118.37 185.02 114.69 107.61

Zhou et al. [28] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78

SMPLify [4] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3

Inception 67.18 74.79 71.80 73.85 81.04 88.73 72.58 73.12

+ Kalman Vel. 67.70 74.01 71.73 73.32 80.74 88.03 72.22 73.45

+ Kalman Acc. 67.08 74.75 71.21 73.23 80.74 88.01 72.11 73.31

+ EMA 67.01 74.78 71.81 73.81 81.04 88.70 72.50 72.02

+ Std. LSTM 62.70 70.11 63.53 67.24 75.42 85.37 67.42 67.07

+ LSTM-KF (ours) 61.41 69.98 62.12 65.93 71.93 83.92 63.0 65.87

Sitting SitDown Smoking Waiting WalkDog Walk WalkTogether Mean

Li et al. [20] - - - - 132.17 69.97 - -

Tekin et al. [25] 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28

Zhou et al. [28] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01

SMPLify [4] 100.3 137.3 83.4 83.4 79.7 86.8 81.7 82.3

Inception 91.36 111.19 79.25 71.67 88.04 71.95 74.01 79.8

+ Kalman Vel. 91.04 111.1 79.01 71.90 87.99 87.99 74.35 79.20

+ Kalman Acc. 90.88 111.11 79.13 71.51 87.62 87.62 74.10 79.07

+ EMA 91.31 111.11 79.21 71.70 88.04 71.91 73.97 79.26

+ Std. LSTM 85.15 104.16 72.69 72.68 80.77 59.23 61.36 73.22

+ LSTM-KF (ours) 84.81 98.85 69.79 65.88 79.44 55.32 60.29 70.98
Table 1. Average 3D joint error on Human 3.6M for test subjects 9 and 11. The error is given in [mm].

in terms of average Euclidean distance between estimated

and ground-truth 3D joint positions. Furthermore, follow-

ing previous works for this dataset, we express all joint po-

sitions relative to a root joint, which is the pelvis joint in

our case. In order to get initial 3D human pose estimations

on the RGB videos, we refine a Inception-v4 CNN model

that was pre-trained on ImageNet [23]. For this fine tuning,

we use a batch size of 30 and set the initial learning rate to

0.01 and reduce it about a decay factor of 10 at each epoch,

and train for a total of only 3 epochs. To prevent overfitting,

we augment the RGB data by randomly cropping 300×300
patches from the 350×350 input images and randomly dis-

tort the brightness, hue, saturation and contrast of each input

image. Besides data augmentation, we apply dropout in the

last layer, retaining values with a probability of 0.8. Re-

training the network for the pose estimation task on a Tesla

K40 GPU took 10 days. We then use the Inception-v4 esti-

mation values as measurement inputs to train the LSTM-KF

and standard LSTM model.

In particular, given the abundance of training samples

for this dataset, we employ the bigger network architec-

tures presented in Fig. 3. Specifically, LSTMf consists of

3 stacked layers with 1024 hidden units each, followed by

three fully connected (FC) layers with 1024, 1024 and 48

hidden units. The standard LSTM is constructed in the same

way as LSTMf . We apply the ReLU non-linearity to all FC

layer activations except for the last layer, and each LSTM

layer is followed by a dropout layer with a keep probability

Left hand 

meas. cov.

0.78 0.11 0.22 0.85 0.15 0.71

Subject 11, 

walking 

sequence 

Figure 5. Measurement noise covariance during occlusion.

Here we include the Euclidean norm of covariance coefficients for

the left hand (normalized between 0 and 1) along with the corre-

sponding images from a Walking test sequence. The model has

learned to assign high measurement uncertainty to those frames in

which the left hand is occluded.

of 0.7. LSTMQ and LSTMR follow a single layer architec-

ture with 256 hidden units, followed by an FC layer with 48

hidden units. LSTM-KF and the standard LSTM are trained

with a learning rate of 1e-5, with a decay of 0.95 start-

ing from the second epoch. For this training we use trun-

cated backpropagation through time, propagating gradients

for 100 time steps. Qualitative pose estimation results are

shown in Figs. 1 and 6 and quantitative pose estimation er-

rors in Table 1 together with those of four recently published

state-of-the-art approaches. We furthermore show how the

estimated measurement noise covariance develops over the

course of a test sequence in Fig. 5.

The results show that the LSTM-KF significantly im-

proves on the raw measurements and outperforms standard

LSTM across all actions, achieving on average 14% im-

provement over the best state-of-the-art approach. Fur-

thermore, as expected, temporal information consistently
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Chess Fire Heads Office Pumpkin R. Kitchen Stairs Mean

tran. rot. tran. rot. tran. rot. tran. rot. tran. rot. tran. rot. tran. rot. tran. rot.

PoseNet [16] 0.38 7.51° 0.47 16.61° 0.32 13.6° 0.48 7.79° 0.54 11.17° 0.59 9.14° 0.55 15.65° 0.50 11.47°

+ Kalman Vel. 0.38 8.35° 0.47 16.66° 0.32 14.73° 0.48 8.64° 0.54 12.06° 0.59 9.94° 0.54 16.58° 0.50 12.40°

+ Kalman Acc. 0.37 8.34° 0.47 16.67° 0.32 14.71° 0.48 8.62° 0.54 12.09° 0.59 9.95° 0.54 16.58° 0.49 12.39°

+ EMA 0.37 7.31° 0.47 16.46° 0.32 13.53° 0.47 7.48° 0.54 11.01° 0.53 8.85° 0.55 15.56° 0.49 11.29°

+ Std. LSTM 0.41 8.4° 0.5 17° 0.35 15.05° 0.48 9.99° 0.53 10.38° 0.51 9.71° 0.65 13.62° 0.51 11.75°

+ LSTM-KF (ours) 0.33 6.9° 0.41 15.7° 0.28 13.01° 0.43 7.65° 0.49 10.63° 0.57 8.53° 0.46 14.56° 0.44 10.83°
Table 2. Comparison of temporal regularisation methods on camera pose estimations provided by PoseNet on the 7 Scenes dataset. As in

[16], values are given as median errors in translation [m] and rotation [degrees].

Street K. College S. Facade St. M. Church Old Hospital Mean

tran. rot. tran. rot. tran. rot. tran. rot. tran. rot. tran. rot.

PoseNet [16] 3.35 6.12° 1.97 5.38° 1.65 8.49° 2.88 9.04° 2.60 5.32° 2.49 6.87

+ Kalman Vel. 3.16 5.93° 1.85 5.29° 1.48 8.20° 2.94 9.29° 2.53 5.07° 2.39 6.75°

+ Kalman Acc. 3.14 5.92° 1.88 5.29° 1.49 8.33° 2.95 9.33° 2.45 5.07° 2.38 6.79°

+ EMA 3.33 5.63 ° 1.95 5.28° 1.62 8.35° 2.82 8.99° 2.68 5.10° 2.48 6.67°

+ Std. LSTM 9.56 11.2° 4.24 7.95° 1.87 7.04° 3.34 11.52° 4.03 6.46° 4.61 8.83°

+ LSTM-KF (ours) 3.05 5.62° 2.01 5.35° 1.63 6.89° 2.61 8.94° 2.35 5.05° 2.33 6.37°
Table 3. Comparison of temporal regularisation methods on camera pose estimations provided by PoseNet on the Cambridge Landmarks

dataset. As in [16], values are given as median errors in translation [m] and rotation [degrees].

(Ours)
CNN CNN + Kalman CNN + LSTM CNN + LSTM-KF

Ground Truth Estimated

Figure 6. Qualitative results on the Human3.6M dataset. Ground

truth pose in green and estimation in red. Based on the initial CNN

estimation, we compare temporal regularization output of Kalman,

standard LSTM and our LSTM-KF method. Especially for arm

and leg joints, our model improves over the other methods.

improves over the raw one-shot estimations from the

Inception-v4 model. It is also relevant to note that the use of

the inception architecture alone outperforms previous work.

5.3. Camera Tracking

To demonstrate the wide applicability of our method, we

selected camera pose estimation as another application do-

main and evaluate on the Cambridge Landmarks[16] and

7 Scenes[22] datasets. The Cambridge Landmarks dataset

contains 5 different large outdoor scenes of landmarks in

the city of Cambridge. The 7 Scenes dataset contains 7 im-

age series captured in typical everyday indoor scenes. Both

datasets come with a predefined training and test split that

we follow. In order to generate one-shot camera pose es-

timates on which we compare the temporal regularisation

methods, we retrain the publically avaliable PoseNet CNN

architecture [16] on the respective training partition of each

dataset.

Since these datasets are much smaller than the previously

used Human3.6M dataset, we employ the smaller network

architectures presented in Fig. 3 so to prevent overfitting.

Specifically, for LSTMf , LSTMQ, and LSTMR we use a

single layer architecture with 16 hidden units, where each

LSTM layer is followed by a fully connected layer without

non-linearity. The standard LSTM follows the LSTMf ar-

chitecture. We use batch size of 2, set the learning rate to

5e-4, and train for 10 epochs. Here, we use truncated back-

propagation through time, propagating gradients for 10 time

steps.

Table 3 for Cambridge Landmarks and Table 2 for 7

Scenes show the quantitative results on those datasets. Our
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Kinect Box Tide Orange Juice Milk Mean

tran. rot. tran. rot. tran. rot. tran. rot. tran. rot.

Tan et al. [24] 1.70 0.30° 1.17 0.44° 1.29 0.35° 1.27 0.41° 1.36 0.37°

+ Kalman Vel. al. 1.69 0.29° 1.84 0.38° 1.27 0.35° 1.27 0.35° 1.52 0.34°

+ Kalman Acc. 1.69 0.28° 1.84 0.38° 1.28 0.31° 1.79 0.42° 1.65 0.35°

+ EMA 1.71 0.28° 1.17 0.39° 1.50 0.28° 1.49 0.37° 1.47 0.33°

+ Std. LSTM 41.03 6.30° 32.23 8.31° 30.16 7.42° 18.3 7.95° 30.43 7.49°

+ LSTM-KF (ours) 0.86 0.35° 0.77 0.49° 0.59 0.37° 0.66 0.43° 0.72 0.41°
Table 4. We show the effect of temporal regularisation on object tracking estimations of Tan et al. We denoting the errors in translation as

[mm] and rotation in [degrees]

approach consistently improves estimations on the 7 Scenes

dataset. The same is true for the Cambridge Landmarks

dataset, except for the King’s College and S. Facade se-

quence. In the King’s College sequence, learning the mo-

tion model might be a disadvantage, as the camera trajec-

tory in the training set moves in curves, while in the test

set it resembles a straight line. The S. Facade sequence

poses a different challenge for the LSTM-KF, as its train-

ing set only consists of 231 frames, which is most likely

too short for the LSTMf to learn a valid motion model (av-

erage training sequence length: 1370 frames). Since the

datasets are quite limited in size, the standard LSTM was

not able to improve the results, and even decreases the ac-

curacy. Our LSTM-KF model achieves an improvement of

up to 6.23% for translation and 7.53% for rotation on aver-

age over the Cambridge Landmarks dataset, while Kalman

Vel and Kalman Acc improve 4.1% and 4.43% for transla-

tion and 1.66% and 1.17% for rotation, respectively. For the

7 Scenes dataset, LSTM-KF improves the PoseNet estima-

tions about 10.13% for translation and 7.53% for rotation.

Kalman Acc, Kalman Vel and standard LSTM algorithms

were not able to improve over the original PoseNet estima-

tion.

5.4. Object Tracking

As third experiment, we evaluated our method on the

public MIT RGB-D Object Pose Tracking Dataset [5]. As

in Tan et al. [24], we used four synthetically generated ob-

ject tracking sequences from the dataset, for which 6-DOF

ground truth poses were available. The sequences consist

of 1,000 RGB-D frames in which the tracked object (Kinect

Box, Milk, Orange Juice, Tide) was rendered in front of a

virtual kitchen scene.

Our model parameters were set up equal to experi-

ment 5.3, specifically using single layer LSTMs with 16

hidden units, a batch size of 2 and a learning rate of 5e-

4. We trained for 120 epochs, again using truncated back-

propagation through time, propagating gradients for 10 time

steps. The same holds true for the standard LSTM method

that we evaluated against. As no separate training set was

provided, we performed 2-fold cross validation by training

on the Kinect Box and Milk sequence to test on Orange

Juice, Tide and vice versa. As input to all methods, we use

the raw object pose estimations of [24], which were pro-

vided by the authors. This tracking algorithm exploits suc-

cessive frame pairs to estimate the 3D pose of a 3D CAD

model being tracked through a sequence of depth frames.

Hence, the task for all methods compared in this experi-

ment is to gain additional improvements over an existing

object tracking method. Results for this scenario are re-

ported in Table 4. The methods that did not learn the motion

model on training data, i.e. Kalman Vel, Kalman Acc and

EMA, were not able to meaningfully improve on the trans-

lation estimation, while rotation was slightly improved. For

the object position, LSTM-KF achieves the best results at

0.72 mm average error, improving 47.05 % over the origi-

nal estimation. The standard LSTM approach yields a high

error in both position and rotation estimation. It does not

follow the measurement and starts to deviate from the cor-

rect trajectory rather quickly. We assume that the task of

implicit fusion of past state and measurement update is too

difficult for the standard LSTM to learn, given the available

training data.

6. Conclusions

In this work, we introduced the long short-term mem-

ory Kalman filter (LSTM-KF). This model alleviates the

modeler from specifying motion and noise models a pri-

ori and simultaneously allows the learning of rich models

from data which are extremely difficult to write down ex-

plicitly. In an extensive set of experiments, we found that

the LSTM-KF outperforms both the standalone Kalman fil-

ter and standalone LSTM for temporal regularization. In

addition, we achieved state-of-the-art performance on three

diverse tasks, for example reducing the joint error in the

Human 3.6M dataset by 13.8%, from 82.3 mm to 71.0 mm.
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