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Abstract

Unsupervised learning from visual data is one of the

most difficult challenges in computer vision. It is essential

for understanding how visual recognition works. Learning

from unsupervised input has an immense practical value, as

huge quantities of unlabeled videos can be collected at low

cost. Here we address the task of unsupervised learning to

detect and segment foreground objects in single images. We

achieve our goal by training a student pathway, consisting

of a deep neural network that learns to predict, from a single

input image, the output of a teacher pathway that performs

unsupervised object discovery in video. Our approach is

different from the published methods that perform unsuper-

vised discovery in videos or in collections of images at test

time. We move the unsupervised discovery phase during the

training stage, while at test time we apply the standard feed-

forward processing along the student pathway. This has a

dual benefit: firstly, it allows, in principle, unlimited gener-

alization possibilities during training, while remaining fast

at testing. Secondly, the student not only becomes able to

detect in single images significantly better than its unsuper-

vised video discovery teacher, but it also achieves state of

the art results on two current benchmarks, YouTube Objects

and Object Discovery datasets. At test time, our system is

two orders of magnitude faster than other previous methods.

1. Introduction

Unsupervised learning is one of the most difficult and

intriguing problems in computer vision and machine learn-

ing today. Researchers believe that unsupervised learn-

ing from video could help decode hard questions regard-

ing the nature of intelligence and learning. As unlabeled

videos are easy to collect at low cost, solving this task

would bring a great practical value in vision and robotics.

Recent unsupervised methods follow two directions. One

is to learn powerful features in an unsupervised way and

then use them in a classic supervised learning scheme in

combination with different classifiers, such as SVMs or

CNNs [31, 24, 22]. In very recent work [28], developed

independently from ours, a deep network learns, from an

unsupervised system using motion cues in video, image

features that are applied to several transfer learning tasks.

The second main approach to unsupervised learning is to

discover, at test time, common patterns in unlabeled data

using clustering, feature matching or data mining formula-

tions [11, 7, 40]. Unsupervised learning in video is also

related to co-segmentation [13, 18, 36, 14, 20, 43, 37] and

weakly supervised localization [9, 25, 39]. Earlier methods

are based on local feature matching and detection of their

co-occurrence patterns [41, 40, 21, 27, 23], while more re-

cent ones [15, 33] discover object tubes by linking candi-

date bounding boxes between frames with or without refin-

ing their location. Traditionally, the task of unsupervised

learning from image sequences, has been formulated as a

feature matching or data clustering optimization problem,

which is computationally very expensive.

Our system is presented in Figure 1. We have an un-

supervised training stage, in which a student deep neural

network (Figure 2) learns frame by frame from an unsu-

pervised teacher, which performs object segmentation in

videos, to produce similar object masks in single images.

The teacher method takes advantage of the consistency in

appearance, shape and motion manifested by objects in

video. In this way, it discovers objects in the video and pro-

duces a foreground segmentation for each individual frame.

Then, the student network tries to imitate for each frame the

output of the teacher, while having as input only a single im-

age - the current frame. The teacher pathway is much sim-

pler in structure, but it has access to information over time.

In contrast, the student is much deeper in structure, but has

access only to one image. Thus, the information discovered

by the teacher in time is captured by the student in depth,

over neural layers of abstraction. In experiments, we show

a very encouraging fact: the student easily learns to out-

perform its teacher and discovers by itself general knowl-

edge about the shape and appearance properties of objects,
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well beyond the abilities of the teacher. Thus, the student

produces significantly better object masks, which generally

have a good form, do not have holes and display smooth

contours, while having an appearance that is often in con-

trast to the background scene. Since there are available

methods for video discovery with good performance, the

training task becomes immediately feasible. In this work

we chose the VideoPCA algorithm introduced as part of the

system in [41] because it is very fast (50-100 fps), uses very

simple features (pixel colors) and it is unsupervised - with

no usage of supervised pre-trained features. That method

exploits the stability in appearance and location of objects,

which is common in video shots. While the discovered ob-

ject masks are far from being perfect and are often noisy, the

student network manages to generalize and overcome some

of these limitations. We propose a ten layer deep neural net-

work for the student pathway (Figure 2). It takes as input

the original RGB, HSV and image spatial derivatives chan-

nels. It outputs a low resolution soft segmentation mask of

the main objects present in a given image.

Main contributions: Our main contributions are:

1) Our system, to our best knowledge, is the first that

learns to detect and segment foreground objects in images

in an unsupervised fashion, with no pre-trained features

needed or manual labeling, while requiring only a single

image at test time.

2) The proposed architecture is novel. It consists of two

processing pathways, with complementary functions. The

first pathway discovers foreground objects in videos in an

unsupervised way and has access to all the video frames.

It acts as a teacher. The second ”student” pathway, which

is a deep convolutional net, learns to predict the teacher’s

output for each frame while having access only to a single

input image. The student learns to outperform its teacher,

despite being limited to a single image input. Once trained,

the student achieves state of the art results on two important

datasets.

2. Approach and intuition

There are several observations that motivate the ap-

proach we take for addressing the unsupervised learning

task. First, we notice that unsupervised learning methods

are generally more effective when considering video input,

in which objects satisfy spatio-temporal consistency, with

smooth variations in shape, appearance and location over

time. For that matter it is usually harder to learn about

objects from collections of images that are independently

taken. This motivates the video discovery pathway, based

on the VideoPCA algorithm introduced in [41], which is

both very fast, reasonably accurate and uses extremely sim-

ple cues - individual pixel colors, in combination with sev-

eral stages that take advantage of spatio-temporal consis-

Figure 1. The dual student-teacher system proposed for unsuper-

vised learning to detect foreground objects in images. It has two

pathways: the teacher, on the right, discovers in an unsupervised

fashion foreground objects in video. It outputs soft masks for each

frame. The resulting masks, are then filtered based on a simple

and effective unsupervised quality metric. The set of selected seg-

mentations is then augmented in a relatively simple manner, auto-

matically. The resulting final set of pairs - input image (a video

frame) and soft mask (the mask for that particular frame which

acts as an unsupervised label) - are used for training the student

CNN pathway.

tency and the contrasting properties of foreground and back-

ground. Next, if we want the student pathway to learn gen-

eral principles about objects in images, we need to limit its

access to a single input image. Otherwise, if given the en-

tire video as input, a powerful deep network would easily

overfit when trained to predict the teacher’s output.

An important question that needs to be answered is

whether the student can outperform its teacher. If this is the

case, then the student has an important accuracy advantage

over its teacher, besides being faster. We could envision the

potential practical benefit of unsupervised learning - espe-

cially when there is so much unlabeled video data available.

Thus, we first have to make sure that the student receives

only the best quality input possible from the teacher. For

that we add an extra module for unsupervised soft masks

selection. It is based on a simple and intuitive measure of

quality (explained later) which does a good job at ordering

masks with respect to their true quality. Then, we also need

to make sure that the student sees as much training data as

possible. So, we design an automatic data augmentation
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module, which creates extra training data by randomly scal-

ing and shifting the masks provided by the teacher after the

mask selection procedure.

In our experiments, the student indeed outperforms its

teacher. Moreover, it achieves state of the art results on

two different benchmarks. The success of this unsupervised

learning paradigm is due to the fact that the student is forced

to capture from appearance only (as it is limited to a single

image) visual features that are good predictors for the pres-

ence of objects.

3. System architecture

We now detail the architecture of our system, module by

module, as seen in Figure 1.

3.1. Teacher path: unsupervised discovery in video

There are several methods available for discovering ob-

jects and salient regions in images and videos [4, 6, 10,

12, 8, 3], with reasonably good performance. More re-

cent methods for foreground objects discovery such as [26]

are both relatively fast and accurate, with runtime above 4
seconds per frame. However, that runtime is still long and

prohibitive for training the student CNN that requires mil-

lions of images. For that reason we used the VideoPCA

algorithm, which is a part of the whole system introduced

in [41]. It has lower accuracy than the full system, but it is

much faster, running at 50 − 100 fps. At this speed we can

produce one million unsupervised soft segmentations in a

reasonable time of about 5-6 hours.

VideoPCA models the background in video frames with

Principal Component Analysis. It finds initial foreground

regions as parts of the frames that are not reconstructed well

with the PCA model. Foreground objects are smaller than

the background and have more complex movements, which

make them less likely to be captured well by the first PCA

components. The initial soft masks are obtained from the

error image, the difference between the original image and

the PCA reconstruction. These ”errors” are smoothed with

a large Gaussian and thresholded. The binary masks ob-

tained are used to learn color models of foreground and

background, based on which individual pixels are classi-

fied as belonging to foreground or not. The object masks

obtained are further multiplied with a large centered Gaus-

sian, assuming that foreground objects are often closer to

the image center. For more details the reader is invited to

consult [41]. In this work, we use the method exactly as

found online1 without any parameter tuning.

3.2. Student path: single­image segmentation

The student processing pathway (Figure 1) consists of

a deep convolutional network, with ten layers (seven con-

1https://sites.google.com/site/multipleframesmatching/

Figure 2. The ”student” deep convolutional net that processes sin-

gle images. It is trained to predict the unsupervised labels given by

the teacher pathway, frame by frame. We observed that by adding

at the last level the original input and mid-level features (skip

connections) and resizing them appropriately, the performance in-

creases.

volutional, two pooling and one fully connected layer) and

skip connections as shown in Figure 2. All layers use ReLU

activation functions. We chose this CNN based on its rela-

tive simplicity and strong performance. Skip connections

have proved to provide a boost in the network’s perfor-

mance [32, 29]. We also observed a slight improvement

in our case (≈ %1). The net takes as input a 128 × 128
color image (along with its hue, saturation, derivatives w.r.t.

x and y) and produces a 32 × 32 soft segmentation of the

main objects present in the image. While it does not iden-

tify the particular object classes, it learns from the unsu-

pervised soft-masks provided by the teacher to detect and

softly segment the main foreground objects present, regard-

less of their particular category, one frame at a time. Thus,

as shown in experiments, it is also able to detect and seg-

ment classes it has never seen before.

We treat foreground object segmentation as a regression

problem, where the soft mask given by the unsupervised

video segmentation system acts as the desired output. Let

I be the input RGB image (a video frame) and Y be the

corresponding 0-255 valued soft segmentation given by the

unsupervised teacher pathway for that particular frame. The
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goal of our network is to predict a soft segmentation mask

Ŷ of width W = 32 and height H = 32, that approximates

as well as possible the mask Y. For each pixel in the output

image, we predict a 0-255 value, so that the total difference

between Y and Ŷ is minimized. So, given a set of N train-

ing examples, let I(n) be the input image (a video frame),

Ŷ
(n) be the predicted output mask for I(n), Y(n) the soft

segmentation mask (corresponding to I
(n)) and w the net-

work parameters. Y(n) is produced by the video discoverer

after processing the video that I(n) belongs to. Then, our

loss is:

L(w) =
1

N

N∑

n=1

W×H∑

p=1

(Y(n)
p − Ŷ

(n)
p (w, I(n)))

2
(1)

where Y
(n)
p and Ŷ

(n)
p denotes the p-th pixel from Y

(n),

respectively Ŷ
(n).

We observed that in our tests, the L2 loss performed

better than the cross-entropy loss. We train our network

using the Tensorflow [1] framework with the Adam opti-

mizer [19]. All our models are trained end-to-end using

a fixed learning rate of 0.001 for about 10 epochs. The

training time for a given model is about 3 days on a Nvidia

GeForce GTX 1080 GPU.

Post-processing: Our CNN outputs a 32 × 32 soft mask.

In order to fairly compare our models with other methods,

we have two different post processing steps: 1) bounding

box fitting and 2) segmentation refinement. For fitting a

box around our soft mask, we first up-sample the 32 × 32
output to the original size of the image, then threshold the

mask (validated on a small subset), determine the connected

components, filter out the small ones (smaller than half the

size of the largest one) and finally fit a tight box around each

of the remaining components. When we are interested in

obtaining a fine object segmentation, we use the OpenCV

implementation of the GrabCut [35] method to refine our

soft mask, up-sampled to the original size.

3.3. Unsupervised soft masks selection

The performance of the student pathway is influenced

by the quality of the soft masks provided as labels by the

video discovery path. The cleaner the masks provided by

the teacher, the more chances the student has to actually

learn to segment well the objects in images. VideoPCA

used by the video processing path usually has good results

if the object present in the video stands out against the back-

ground scene, in terms of motion and appearance. However,

if the object is occluded at some point, if it does not move

w.r.t the scene or if it has a similar appearance to its back-

ground, the resulting soft masks might be poor. We used

a simple measure of masks quality based on the following

Figure 3. Purity of soft masks vs degree of selection. When selec-

tion rate decreases, the true purity of the training frames improves.

Our automatic selection method is not perfect: some low quality

masks have high scores and we remove some good segmentations.

observation: when masks are close to the ground truth, the

mean of their nonzero values is usually high. Thus, when

the discoverer is confident is more likely to be right. The

mean value of non-zero pixels in the soft mask is then used

as a score indicator for each segmented frame.

Next we sort all soft masks in the entire training dataset

(e.g. VID [38], YTO [30]) in descending order of their

mean score and keep only the top k percent. In this way,

we obtain a very simple unsupervised selection method. In

Figure 3 we present the dependency of segmentation perfor-

mance w.r.t ground truth object boxes (used only for eval-

uation) vs. the percentile k of masks kept after the auto-

matic selection. In other words, the fewer frames we select

the more likely it is that they are correctly segmented. This

procedure is not perfect, so we sometimes remove good seg-

mentations during this masks selection step. Even though

we can expect to improve the quality of the unsupervised

masks by drastically pruning them, the fewer we are left

with, the less training data we get, increasing the chance to

overfit. We make up for the losses in training data by aug-

menting the set of training masks ( Sec. 3.4) and by bringing

in unlabeled videos from other datasets.

Thus, the more selective we are about what masks to ac-

cept for training, the more videos we need to collect and

process with the teacher pathway, in order to improve gen-

eralization.

3.4. Data augmentation

Another drawback of VideoPCA is that it can only de-

tect the main object if it is close to the center of the image.

The assumption that the foreground is close to the center

is often true and indeed helps that method to produce soft

masks with a relatively high precision. It fails when the

object is not in the center, therefore its recall is relatively

low. Our data augmentation procedure also addresses this

limitation. That module can be concisely described as fol-
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lows: scale the input image and the corresponding soft mask

given by the video discovery framework at a higher reso-

lution (160 × 160) and randomly crop 128 × 128 patches

from the scaled version. Finally, down-scale each soft mask

to 32 × 32. This would produce slightly larger objects at

locations that cover the whole image area, not just the cen-

ter. As our experiments show, the student net is able to see

objects at different locations in the image, unlike its raw

teacher, which is strongly biased towards the image center.

Data selection along with data augmentation of the training

set significantly improve unsupervised learning, as shown

in the experiments section (Sec. 4).

4. Experimental analysis

The experiments we conducted aim to highlight various

aspects of the performance of our method. Firstly, we com-

pare the quality of the segmentations obtained by the feed-

forward CNN against its teacher, VideoPCA (Sec. 4.1).

Secondly, we tested that adding extra unlabeled videos im-

proves performance (Sec. 4.2). Finally, we compare the

performance of our unsupervised system to state of the art

approaches for object discovery in video, on the YouTube

Objects Dataset [30] benchmark, and object discovery in

images, on the Object Discovery in Internet Images [36]

benchmark (Sec. 4.3).

4.1. Unsupervised learning from ImageNet

It is a well known fact that the performance of a convolu-

tional network strongly depends on the amount of data used

for training. Because of this, we chose to use as our primary

training dataset the ImageNet Object Detection from Video

(VID) dataset [38]. VID is one of the largest video datasets

publicly available, being fully annotated with ground truth

bounding boxes. The large set of annotations available al-

lowed us to have a thorough evaluation of our unsupervised

system. The dataset consists of about 4000 videos, having a

total of about 1.2M frames. The videos contain objects that

belong to 30 different classes. Each frame could have zero,

one or multiple objects annotated. The benchmark chal-

lenge associated with this dataset focuses on the supervised

object detection and recognition problem, which is differ-

ent from the problem that we tackle here. Our system is not

trained to identify different object categories. On the VID

dataset we evaluated the student CNN against its teacher

pathway. We measure performance of soft-masks by maxi-

mum F-measure computed w.r.t ground truth bounding box,

by considering pixels inside the bounding box as true posi-

tives and those outside as true negatives. This simple metric

allows us to evaluate the soft masks directly, without any

post-processing steps.

We tested our unsupervised system on the validation split

of the VID dataset. As it can be seen from Table 1 the

student outperforms its teacher (VideoPCA) by a very sig-

Method F1 measure Dataset

VideoPCA [41] 41.83 -

Baseline 51.17 VID

Baseline 51.9 VID + YTO

Refined 52.51 VID

Data selection 5% 53.20 VID

Data selection 10% 53.82 VID

Data selection 30% 53.67 VID

Data selection 10% 54.53 VID + YTO

Table 1. Results on the VID dataset [38]. The ”dataset” column

refers to the datasets used for training the student network. Our

baseline model is represented by a classic CNN having only the

RGB image as input and no skip-connections. The refined model

is our final student CNN model as presented in Figure 2. The data

selection entries refer to the percentage of kept soft masks after

applying our selection method. All masks selection experiments

were conducted using the refined model. We highlight that the

overall system performance improves with the amount of selectiv-

ity, which shows that a simple quality measure used for soft mask

selection can improve the performance of the CNN image-based

pathway. Thus, the data augmentation module makes up for the

frames lost during the selection process.

nificant margin. Also, in Figure 4 we present some qual-

itative results on this dataset as compared to VideoPCA.

We can see that the masks produced by VideoPCA are of

lower quality, often having holes, non-smooth boundaries

and strange shapes. In contrast, the student learns more

general shape and appearance characteristics of objects in

images, reminding of the grouping principles governing the

basis of visual perception as studied by the Gestalt psychol-

ogists [34] and the more recent work on the concept of ”ob-

jectness” [2]. The object masks produced by the student

are simpler, with very few holes, have nicer and smoother

shapes and capture well the figure-ground contrast and or-

ganization. Another interesting observation is that the net-

work is able to detect multiple objects, a feature that is less

commonly achieved by the teacher.

4.2. Adding more data

We also tested how adding more unlabeled data affects

the overall performance of our system. Therefore, we

added the Youtube Objects(YTO) dataset to the existing

VID dataset. The YTO dataset is a weakly annotated dataset

that consists of about 2500 videos, having a total of about

720K frames, divided into 10 classes. Adding more unla-

beled videos (from YTO, without annotations) to the un-

supervised training set clearly improves performance as re-

ported in Tables 3, 1 and 4. The capacity of our system to

improve its performance in the presence of unlabeled data,

without degradation or catastrophic forgetting is mainly due

to the robustness of the teacher pathway combined with

data selection and augmentation, in conjunction with the
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Figure 4. Visual results on the VID dataset [38] compared to the teacher method. A: current frame, B: soft mask produced by

VideoPCA [41] for the current frame, after processing the entire video, C: thresholded soft mask produced by our network, D: segmentation

mask produced after refining the soft output of our network with GrabCut [35], E: bounding box obtained from the soft segmentation mask;

F: ground truth bounding box.

tendency of the single-image CNN net to improve over its

teacher.

As it comes to the soft mask selection, our experiments

show that we obtain the best overall results by using the top

10% soft masks with data augmentation. All the experi-

ments are conducted using this setup for each dataset.

4.3. Comparisons with other methods

Single image discovery methods Next, we compare our

unsupervised system with state of the art methods designed

for the task of object discovery in collections of images,

that might contain one or a few main object categories of

interest. A representative current benchmark in this sense

is the Object Discovery in Internet Images dataset. This set

contains Internet images and it is annotated with high detail

segmentation masks. In order to enable comparison with

previous methods, we use the 100 images subsets.

The methods evaluated on this dataset, in the literature,

aim to either discover the bounding box of the main ob-

ject in a given image, or its fine segmentation mask. We

evaluate our system on both. Different from other methods,

we do not need a collection of images during testing, since

each image is processed independently by our system, at

test time. Therefore, our performance is not affected by the

structure of the image collection or the number of classes of

interest being present in the collection.

For evaluating the detection of bounding boxes the

most used metric is CorLoc defined as the percentage

Method Airplane Car Horse Avg

Kim et al. [18] 21.95 0.00 16.13 12.69

Joulin et al. [13] 32.93 66.29 54.84 51.35

Joulin et al. [14] 57.32 64.04 52.69 58.02

Rubinstein et al. [36] 74.39 87.64 63.44 75.16

Tang et al. [42] 71.95 93.26 64.52 76.58

Cho et al. [7] 82.93 94.38 75.27 84.19

Cho et al. [7] mixed 81.71 94.38 70.97 82.35

OursVID 93.90 93.26 70.97 86.04

OursVID+YTO 87.80 95.51 74.19 85.83

Table 2. Results on the Object Discovery in Internet images [36]

dataset (CorLoc metric). OursVID represents our network trained

using the VID dataset (with 10% selection), while OursVID+YTO

represents our network trained on VID and YTO datasets (with

10% selection).

of images correctly localized according to the PASCAL

criterion:
Bp∩BGT

Bp∪BGT
≥ 0.5, where BP is the predicted bound-

ing box and BGT is the ground truth bounding box. In Ta-

ble 2 we present the performance of our method as com-

pared to other unsupervised object discovery methods in

terms of CorLoc on the Object Discovery dataset. We com-

pare our predicted box against the tight box fitted around

the ground-truth segmentation as done in [7, 42]. Our sys-

tem can be considered in the mixed class category: it does

not depend on the structure of the image collection. It treats

each image independently. The performance of the other
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Figure 5. Visual results on the Object Discovery dataset. A: input image, B: segmentation obtained by [14], C: segmentation obtained

by [36], D: thresholded soft mask produced by our network, E: segmentation mask produced after refining the soft output of our network

with GrabCut [35], F: ground truth segmentation. More details and results: https://sites.google.com/view/unsupervisedlearningfromvideo.

Airplane Car Horse

P J P J P J

[18] 80.20 7.90 68.85 0.04 75.12 6.43

[13] 49.25 15.36 58.70 37.15 63.84 30.16

[14] 47.48 11.72 59.20 35.15 64.22 29.53

[36] 88.04 55.81 85.38 64.42 82.81 51.65

[5] 90.25 40.33 87.65 64.86 86.16 33.39

Ours1 90.92 62.76 85.15 66.39 87.11 54.59

Ours2 91.41 61.37 86.59 70.52 87.07 55.09

Table 3. Results on the Object Discovery in Internet images [36]

dataset (P, J metric). Ours1 represents our network trained using

the VID dataset (with 10% selection), while Ours2 represents our

network trained on VID and YTO datasets (with 10% selection).

We observe that Ours2 has better results with mean P of 88.36

and mean J of 62.33 compared to Ours1 (mean P: 87.73, mean J:

61.25).

algorithms degrades as the number of main categories in-

creases in the collection (some are not even tested by their

authors on the mixed-class case).

We obtain state of the art results on all classes (in the

mixed class case), improving by a significant margin over

the method of [7]. When the method in [7] is allowed to

see a collection of images that are limited to a single ma-

jority class, its performance improves and outperforms ours

on one class. However, the comparison is not truly appro-

priate since our method has no other information necessary

besides the input image, at test time.

We also tested our system on the task of fine foreground

object segmentation and compared to the best performers

in the literature on the Object Discovery dataset in Table 3.

For refining our soft masks we apply the GrabCut method,

as it is available in OpenCV. We evaluate based on the same

P, J evaluation metric as described by Rubinstein et al. [36]

- the higher P and J, the better. P refers to the per pixel

precision, while J is the Jaccard similarity (the intersection

over union of the result and ground truth segmentations). In

Figure 5 and 6 we present some qualitative samples from

each class.

Video discovery methods We also performed compar-

isons with methods specifically designed for object discov-

ery in video. For that, we choose the YouTube Objects

dataset and compared to the best performers on this dataset

in the literature (Table 4). Evaluations are conducted on

both versions of YouTube Objects dataset, YTOv1 [30] and

YTOv2.2 [17]. On YTOv1 we follow the same experimen-

tal setup as [16, 30], by running experiments only on the

training videos. We have not included in Table 4 the re-

sults reported by [41] because they use a different setup,

testing on all videos from YTOv1. It is important to stress

out again the fact that while the methods presented here for

comparison have access to whole video shots, ours only

needs a single image at test time. Despite this limitation,
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Figure 6. Qualitative results on the Object Discovery in Internet Images [36] dataset. For each example we show the input RGB image

(first and third row) and immediately below (second and fourth row) our refined segmentation result obtained by applying GrabCut on the

soft segmentation mask predicted by our network. Note that our method produces good quality segmentation results, even in cases with

cluttered background.

Method Aero Bird Boat Car Cat Cow Dog Horse Mbike Train Avg Time Version

[30] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5 N/A

v1 [30]
[26] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1 4s

[16] 64.3 63.2 73.3 68.9 44.4 62.5 71.4 52.3 78.6 23.1 60.2 N/A

OursVID 69.8 59.7 65.4 57.0 50.0 71.7 73.3 46.7 32.4 34.9 56.1 0.04s

OursVID+YTO 77.0 67.5 77.2 68.4 54.5 68.3 72.0 56.7 44.1 34.9 62.1 0.04s

OursVID+YTO 75.7 56.0 52.7 57.3 46.9 57.0 48.9 44.0 27.2 56.2 52.2 0.04s v2.2 [17]

Table 4. Results on Youtube Objects dataset [30]. OursVID represents our network trained using the VID dataset (with 10% selection),

while OursVID+YTO represents our network trained on VID and YTO datasets (with 10% selection). Note that our system has a significantly

lower per frame test time than [26] which we estimate that is the fastest method. Our method performs well on many classes, having state

of the art results on 8 out of 10 and on average on YTOv1. The only class on which it has a significant lower score than the state of the art

is motorbike, probably due to the fact that the objects are much smaller. On the last line we also present our results on YTOv2.2, which is

the latest version of the dataset.

our method outperforms the others on 8 out of 10 classes

and has the best overall average performance. Moreover,

our CNN feed-forward net processes each image in 0.04

sec, being at least one to two orders of magnitude faster

than all other methods (see Table 4). We also highlight

that in all our comparisons, while our system is faster at test

time, it takes much longer during its unsupervised training

phase and requires large quantities of unsupervised training

data.

5. Conclusions and Future Work

We have shown in extensive experiments that it is possi-

ble to use a relatively simple method for unsupervised ob-

ject discovery in video to train a powerful deep neural net-

work for detection and segmentation of objects in single im-

ages. The result is interesting and encouraging and shows

how a system could learn, in an unsupervised fashion, gen-

eral visual characteristics that predict well the presence and

shape of objects in images. The network essentially discov-

ers appearance object features from single images, at dif-

ferent levels of abstraction, that are strongly correlated with

the spatiotemporal consistency of objects in video.

The student network, during the unsupervised training

phase, is thus able to learn general ”objectness” character-

istics that are well beyond the capabilities of its teacher.

These characteristics include good form, closure, smooth

contours, as well as contrast with its background. What

the simpler teacher discovers over time, the deep, complex

student is able to learn across several layers of image fea-

tures at different levels of abstraction. Therefore, our un-

supervised learning model, tested in extensive experiments,

brings a valuable contribution to the unsupervised learning

problem in vision research.
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