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Abstract

We introduce the first goal-driven training for visual ques-

tion answering and dialog agents. Specifically, we pose a

cooperative ‘image guessing’ game between two agents –

Q-BOT and A-BOT– who communicate in natural language

dialog so that Q-BOT can select an unseen image from a

lineup of images. We use deep reinforcement learning (RL)

to learn the policies of these agents end-to-end – from pixels

to multi-agent multi-round dialog to game reward.

We demonstrate two experimental results.

First, as a ‘sanity check’ demonstration of pure RL (from

scratch), we show results on a synthetic world, where the

agents communicate in ungrounded vocabularies, i.e., sym-

bols with no pre-specified meanings (X, Y, Z). We find that

two bots invent their own communication protocol and

start using certain symbols to ask/answer about certain vi-

sual attributes (shape/color/style). Thus, we demonstrate

the emergence of grounded language and communication

among ‘visual’ dialog agents with no human supervision.

Second, we conduct large-scale real-image experiments on

the VisDial dataset [5], where we pretrain on dialog data

with supervised learning (SL) and show that the RL fine-

tuned agents significantly outperform supervised pretrain-

ing. Interestingly, the RL Q-BOT learns to ask questions

that A-BOT is good at, ultimately resulting in more infor-

mative dialog and a better team.

1. Introduction

The focus of this paper is visually-grounded conversational

artificial intelligence (AI). Specifically, we would like to de-

velop agents that can ‘see’ (i.e., understand the contents of

an image) and ‘communicate’ that understanding in natu-

ral language (i.e., hold a dialog involving questions and an-

swers about that image). We believe the next generation of

intelligent systems will need to posses this ability to hold

a dialog about visual content for a variety of applications:

e.g., helping visually impaired users understand their sur-

roundings [3] or social media content [40] (‘Who is in the

photo? Dave. What is he doing?’), enabling analysts to

sift through large quantities of surveillance data (‘Did any-

*The first two authors (AD, SK) contributed equally.

I think we were talking about this image!

Two zebra are walking around their pen at the zoo.

Q1: Any people in the shot?

A1: No, there aren’t any.
[0.1, -1, 0.2, … , 0.5]

Q10: Are they facing each other?

A10: They aren’t.
[-0.5, 0.1, 0.7, … , 1]

Figure 1: We propose a cooperative image guessing game between

two agents – Q-BOT and A-BOT– who communicate through a

natural language dialog so that Q-BOT can select a particular un-

seen image from a lineup. We model these agents as deep neural

networks and train them end-to-end with reinforcement learning.

one enter the vault in the last month? Yes, there are 103

recorded instances. Did any of them pick something up?’),

and enabling users to interact naturally with intelligent as-

sistants (either embodied as a robot or not) (‘Did I leave my

phone on my desk? Yes, it’s here. Did I miss any calls?’).

Despite rapid progress at the intersection of vision and lan-

guage, in particular, in image/video captioning [4, 14, 36–

38, 41] and question answering [2, 25, 28, 34, 35], it is clear

we are far from this grand goal of a visual dialog agent.

Two recent works [5, 6] have proposed studying this task

of visually-grounded dialog. Perhaps somewhat counter-

intuitively, both these works treat dialog as a static super-

vised learning problem, rather than the interactive agent

learning problem that it naturally is. Specifically, both

works [5, 6] first collect a dataset of human-human dia-

log, i.e., a sequence of question-answer pairs about an im-

age (q1, a1), . . . , (qT , aT ). Next, a machine (a deep neu-

ral network) is provided with the image I , the human dia-

log recorded till round t− 1, (q1, a1), . . . , (qt−1, at−1), the

follow-up question qt, and is supervised to generate the hu-
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man response at. Essentially, at each round t, the machine

is artificially ‘injected’ into the conversation between two

humans and asked to answer the question qt; but the ma-

chine’s answer ât is thrown away, because at the next round

t+1, the machine is again provided with the ‘ground-truth’

human-human dialog that includes the human response at
and not the machine response ât. Thus, the machine is never

allowed to steer the conversation because that would take

the dialog out of the dataset, making it non-evaluable.

In this paper, we generalize the task of Visual Dialog be-

yond the necessary first stage of supervised learning – by

posing it as a cooperative ‘image guessing’ game between

two dialog agents. We use deep reinforcement learning

(RL) to learn the policies of these agents end-to-end – from

pixels to multi-agent multi-round dialog to the game reward.

Our setup is illustrated in Fig. 1. We formulate a game be-

tween a questioner bot (Q-BOT) and an answerer bot (A-

BOT). Q-BOT is shown a 1-sentence description (a caption)

of an unseen image, and is allowed to communicate in natu-

ral language (discrete symbols) with the answering bot (A-

BOT), who is shown the image. The objective of this fully-

cooperative game is for Q-BOT to build a mental model of

the unseen image purely from the natural language dialog,

and then retrieve that image from a lineup of images.

Notice that this is a challenging game. Q-BOT must ground

the words mentioned in the provided caption (‘Two zebra

are walking around their pen at the zoo.’), estimate which

images from the provided pool contain this content (there

will typically be many such images since captions describe

only the salient entities), and ask follow-up questions (‘Any

people in the shot? Are there clouds in the sky? Are they

facing each other?’) that help it identify the correct image.

Analogously, A-BOT must build a mental model of what Q-

BOT understands, and answer questions (‘No, there aren’t

any. I can’t see the sky. They aren’t.’) in a precise enough

way to allow discrimination between similar images from

a pool (that A-BOT does not have access to) while being

concise enough to not confuse the imperfect Q-BOT.

At every round of dialog, Q-BOT listens to the answer pro-

vided by A-BOT, updates its beliefs, and makes a prediction

about the visual representation of the unseen image (specif-

ically, the fc7 vector of I), and receives a reward from the

environment based on how close Q-BOT’s prediction is to

the true fc7 representation of I . The goal of Q-BOT and

A-BOT is to communicate to maximize this reward. One

critical issue is that both the agents are imperfect and noisy

– both ‘forget’ things in the past, sometimes repeat them-

selves, may not stay consistent in their responses, A-BOT

does not have access to an external knowledge-base so it

cannot answer all questions, etc. Thus, to succeed at the

task, they must learn to play to each other’s strengths.

An important question to ask is – why force the two agents

to communicate in discrete symbols (English words) as op-

posed to continuous vectors? The reason is twofold. First,

discrete symbols and natural language are interpretable. By

forcing the two agents to communicate and understand nat-

ural language, we ensure that humans can not only inspect

the conversation logs between two agents, but more im-

portantly, communicate with them. After the two bots are

trained, we can pair a human questioner with A-BOT to ac-

complish the goals of visual dialog (aiding visually/situa-

tionally impaired users), and pair a human answerer with

Q-BOT to play a visual 20-questions game. The second

reason to communicate in discrete symbols is to prevent

cheating – if Q-BOT and A-BOT are allowed to exchange

continuous vectors, then the trivial solution is for A-BOT to

ignore Q-BOT’s question and directly convey the fc7 vec-

tor for I , allowing Q-BOT to make a perfect prediction. In

essence, discrete natural language is an interpretable low-

dimensional “bottleneck” layer between these two agents.

Contributions. We introduce a novel goal-driven training

paradigm for visual question answering and dialog agents.

Despite significant popular interest in VQA (>200 works

citing [2] since 2015), all previous approaches have been

based on supervised learning, making this the first instance

of goal-driven training for VQA / visual dialog.

We demonstrate two experimental results.

First, as a ‘sanity check’ demonstration of pure RL (from

scratch), we show results on a diagnostic task where per-

ception is perfect – a synthetic world with ‘images’ con-

taining a single object defined by three attributes (shape/-

color/style). In this synthetic world, for Q-BOT to identify

an image, it must learn about these attributes. The two bots

communicate via an ungrounded vocabulary, i.e., symbols

with no pre-specified human-interpretable meanings (‘X’,

‘Y’, ‘1’, ‘2’). When trained end-to-end with RL on this

task, we find that the two bots invent their own communica-

tion protocol – Q-BOT starts using certain symbols to query

for specific attributes (‘X’ for color), and A-BOT starts re-

sponding with specific symbols indicating the value of that

attribute (‘1’ for red). Essentially, we demonstrate the auto-

matic emergence of grounded language and communication

among ‘visual’ dialog agents with no human supervision!

Second, we conduct large-scale real-image experiments on

the VisDial dataset [5]. Imperfect perception on real im-

ages makes the discovery of human-interpretable language

and communication strategy from scratch both difficult and

an unnecessary re-invention of English. Thus, we pretrain

with SL on VisDial before fine-tuning with RL; this allevi-

ates challenges in making RL converge to something mean-

ingful. We show that these RL fine-tuned bots significantly

outperform the supervised bots. Most interestingly, while

the supervised Q-BOT attempts to mimic how humans ask

questions, the RL trained Q-BOT shifts strategies and asks

questions that the A-BOT is better at answering, ultimately

resulting in more informative dialog and a better team.
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2. Related Work

Vision and Language. A number of problems at the inter-

section of vision and language have recently gained promi-

nence, e.g., image captioning [7, 9, 15, 38], and visual ques-

tion answering (VQA) [2, 11, 24, 25, 28]. Most related to

this paper are two recent works on visually-grounded dia-

log [5, 6]. Das et al. [5] proposed the task of Visual Di-

alog, collected the VisDial dataset by pairing two subjects

on Amazon Mechanical Turk to chat about an image (with

assigned roles of ‘Questioner’ and ‘Answerer’), and trained

neural visual dialog answering models. Note that the task

assigned to subjects in [5] – “ask questions to imagine the

hidden image better" – is similar to our game’s goal. De

Vries et al. [6] extended the Referit game [16] to a ‘Guess-

What’ game, where one person asks questions about an im-

age to guess which object has been ‘selected’, and the sec-

ond person answers questions in ‘yes’/‘no’/NA (natural lan-

guage answers are disallowed). One disadvantage of Guess-

What is that it requires bounding box annotations for ob-

jects; our image guessing game does not need any such an-

notations and thus an unlimited number of game plays may

be simulated. Moreover, as described in Sec. 1, both these

works unnaturally treat dialog as a static supervised learn-

ing problem. Although both datasets contain thousands of

human dialogs, they still only represent an incredibly sparse

sample of the vast space of visually-grounded questions and

answers. Training robust, visually-grounded dialog agents

via supervised techniques is still a challenging task.

In our work, we take inspiration from the AlphaGo [31] ap-

proach of supervision from human-expert games and rein-

forcement learning from self-play. Similarly, we perform

supervised pretraining on human dialog data and fine-tune

in an end-to-end goal-driven manner with deep RL.

20 Questions and Lewis Signaling Game. Our proposed

image-guessing game is naturally the visual analog of the

popular 20-questions game. More formally, it is a general-

ization of the Lewis Signaling (LS) [20] game, widely stud-

ied in economics and game theory. LS is a cooperative game

between two players – a sender and a receiver. In the clas-

sical setting, the world can be in a number of finite discrete

states {1, 2, . . . , N}, which is known to the sender but not

the receiver. The sender can send one of N discrete sym-

bols/signals to the receiver, who upon receiving the signal

must take one of N discrete actions. The game is perfectly

cooperative, and one simple (though not unique) Nash Equi-

librium is the ‘identity mapping’, where the sender encodes

each world state with a bijective signal, and similarly the

receiver has a bijective mapping from a signal to an action.

Our proposed ‘image guessing’ game is a generalization of

LS with Q-BOT being the receiver and A-BOT the sender.

However, in our proposed game, the receiver (Q-BOT) is

not passive. It actively solicits information by asking ques-

tions. Moreover, the signaling process is not ‘single shot’,

but proceeds over multiple rounds of conversation.

Text-only or Classical Dialog. Li et al. [21] have pro-

posed using RL for training dialog systems. However, they

hand-define what a ‘good’ utterance/dialog looks like (non-

repetition, coherence, continuity, etc.). In contrast, taking a

cue from adversarial learning [12, 22], we set up a cooper-

ative game between two agents, such that we do not need

to hand-define what a ‘good’ dialog looks like – a ‘good’

dialog is one that leads to a successful image-guessing play.

Emergence of Language. There is a long history of work

on language emergence in multi-agent systems [27]. The

more recent resurgence has focused on deep RL [1, 8, 10,

13, 18, 19, 23, 26]. The high-level ideas of these concur-

rent works are similar to our synthetic experiments. For our

large-scale real-image results, we do not want our bots to in-

vent their own uninterpretable language and use pretraining

on VisDial [5] to achieve ‘alignment’ with English.

3. Cooperative Image Guessing Game:

In Full Generality and a Specific Instantiation

Players and Roles. The game involves two collaborative

agents – a questioner bot (Q-BOT) and an answerer bot (A-

BOT) – with an information asymmetry. A-BOT sees an im-

age I , Q-BOT does not. Q-BOT is primed with a 1-sentence

description c of the unseen image and asks ‘questions’ (se-

quence of discrete symbols over a vocabulary V ), which A-

BOT answers with another sequence of symbols. The com-

munication occurs for a fixed number of rounds.

Game Objective in General. At each round, in addition

to communicating, Q-BOT must provide a ‘description’ ŷ

of the unknown image I based only on the dialog history

and both players receive a reward from the environment in-

versely proportional to the error in this description under

some metric ℓ(ŷ, ygt). We note that this is a general set-

ting where the ‘description’ ŷ can take on varying levels of

specificity – from image embeddings (i.e., fc7 vectors of I)

to textual descriptions to pixel-level image generations.

Specific Instantiation. In our experiments, we focus on the

setting where Q-BOT is tasked with estimating a vector em-

bedding of the image I . Given some feature extractor (i.e., a

pretrained CNN model, say VGG-16), no human annotation

is required to produce the target ‘description’ ŷgt (simply

forward-prop the image through the CNN). Reward/error

can be measured by simple Euclidean distance, and any im-

age may be used as the visual grounding for a dialog. Thus,

an unlimited number of ‘game plays’ may be simulated.

4. Reinforcement Learning for Dialog Agents

In this section, we formalize the training of two visual dia-

log agents (Q-BOT and A-BOT) with Reinforcement Learn-

ing (RL) – describing formally the action, state, environ-

ment, reward, policy, and training procedure. We begin by

noting that although there are two agents (Q-BOT, A-BOT),

since the game is perfectly cooperative, we can without loss
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of generality view this as a single-agent setup where the sin-

gle “meta-agent” is comprised of two “constituent agents”

communicating via a natural language bottleneck layer.

Action. Both agents share a common action space con-

sisting of all possible output sequences under a token vo-

cabulary V . This action space is discrete and in princi-

ple, infinitely-large since arbitrary length sequences qt, at
may be produced and the dialog may go on forever. In our

synthetic experiment, the two agents are given different vo-

cabularies to coax a certain behavior to emerge (details in

Sec. 5). In our VisDial experiments, the two agents share a

common vocabulary of English tokens. In addition, at each

round of the dialog t, Q-BOT also predicts ŷt, its current

guess about the visual representation of the unseen image.

This component of Q-BOT’s action space is continuous.

State. Since there is information asymmetry (A-BOT can

see the image I , Q-BOT cannot), each agent has its own

observed state. For a dialog grounded in image I with

caption c, the state of Q-BOT at round t is the caption

and dialog history so far s
Q
t = [c, q1, a1, . . . , qt−1, at−1],

while the state of A-BOT also includes the image sAt =
[I, c, q1, a1, . . . , qt−1, at−1, qt].

Policy. We model Q-BOT and A-BOT as operating under

stochastic policies πQ(qt | sQt ; θQ) and πA(at | sAt ; θA),
such that questions and answers may be sampled from these

policies conditioned on the dialog/state history. These poli-

cies will be learned by two separate deep neural networks

parameterized by θQ and θA. In addition, Q-BOT includes a

feature regression network f(·) that produces an image rep-

resentation prediction after listening to the answer at round

t, i.e., ŷt = f(sQt , qt, at; θf ) = f(sQt+1; θf ). Thus, the goal

of policy learning is to estimate the parameters θQ, θA, θf .

Environment and Reward. The environment consists of

the other agent and the image I upon which the dialog is

grounded. Since this is a purely cooperative setting, both

agents receive the same reward. Let ℓ(·, ·) be a distance

metric on image representations (Euclidean distance in our

experiments). At each round t, we define the reward as:

rt

(

s
Q
t

︸︷︷︸
state

, (qt, at, ŷt)
︸ ︷︷ ︸

action

)

= ℓ
(
ŷt−1, y

gt
)

︸ ︷︷ ︸

distance at t-1

− ℓ
(
ŷt, y

gt
)

︸ ︷︷ ︸

distance at t

(1)

i.e., the change in distance to the true representation be-

fore and after a round of dialog. In this way, we consider a

question-answer pair to be low quality (i.e., have a negative

reward) if it leads the questioner to make a worse estimate of

the target image representation than if the dialog had ended.

Note that the total reward summed over all time steps of a

dialog is a function of only the initial and final states due to

the cancellation of intermediate terms, i.e.,

T∑

t=1

rt

(

s
Q
t , (qt, at, ŷt))

)

= ℓ
(
ŷ0, y

gt
)
− ℓ

(
ŷT , y

gt
)

︸ ︷︷ ︸

overall improvement due to dialog

(2)

This is again intuitive – ‘How much do the feature predic-

tions of Q-BOT improve due to the dialog?’ The details of

policy learning are given in Sec. 4.2, before which we de-

scribe the inner working of the two agents.

4.1. Policy Networks for Q-BOT and A-BOT

Fig. 2 shows an overview of our policy networks for Q-BOT

and A-BOT and their interaction within a single round of

dialog. Both the agent policies are modeled via Hierarchical

Recurrent Encoder-Decoder neural networks, which have

recently been proposed for dialog modeling [5, 29, 30].

Q-BOT consists of the following four components:

- Fact Encoder: Q-BOT asks a question qt: ‘Are there any

animals?’ and receives an answer at: ‘Yes, there are two

elephants.’. Q-BOT treats this concatenated (qt, at)-pair

as a ‘fact’ it now knows about the unseen image. The fact

encoder is an LSTM whose final hidden state F
Q
t ∈ R

512

is used as an embedding of (qt, at).
- State/History Encoder is an LSTM that takes the en-

coded fact F
Q
t at each time step to produce an encoding

of the prior dialog including time t as S
Q
t ∈ R

512. Notice

that this results in a two-level hierarchical encoding of the

dialog (qt, at) → F
Q
t and (FQ

1 , . . . , F
Q
t ) → S

Q
t .

- Question Decoder is an LSTM that takes the state/his-

tory encoding from the previous round S
Q
t−1 and gener-

ates question qt by sequentially sampling words.

- Feature Regression Network f(·) is a single fully-

connected layer that produces an image representation

prediction ŷt from the current encoded state ŷt = f(SQ
t ).

Each of these components and their relation to each other

are shown on the left side of Fig. 2. We collectively refer to

the parameters of the three LSTM models as θQ and those

of the feature regression network as θf .

A-BOT has a similar structure to Q-BOT with slight differ-

ences since it also models the image I via a CNN:

- Question Encoder: A-BOT receives a question qt from

Q-BOT and encodes it via an LSTM QA
t ∈ R

512.

- Fact Encoder: Similar to Q-BOT, A-BOT also encodes

the (qt, at)-pairs via an LSTM to get FA
t ∈ R

512. The

purpose of this encoder is for A-BOT to remember what

it has already told Q-BOT and be able to understand ref-

erences to entities already mentioned.

- State/History Encoder is an LSTM that takes as in-

put at each round t – the encoded question QA
t , the

image features from VGG [32] y, and the previous

fact encoding FA
t−1 – to produce a state encoding, i.e.

(

(y,QA
1 , F

A
0 ), . . . , (y,QA

t , F
A
t−1)

)

→ SA
t . This allows

the model to contextualize the current question w.r.t. the

history while looking at the image to seek an answer.

- Answer Decoder is an LSTM that takes the state encod-

ing SA
t and generates at by sequentially sampling words.

Our code and models are publicly available at

github.com/batra-mlp-lab/visdial-rl.
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Are there any animals?

Yes, there are two elephants.

A-BOT

Question 
Encoder

Answer
Decoder

History 
Encoder

Fact 
EmbeddingQ-BOT

Question
Decoder

Fact 
Embedding

Feature 
Regression

Network

History 
Encoder

R
o

u
n

d
s

 o
f 

D
ia
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g

[0.1, -2, 0, … , 0.57]
Reward 
Function

Figure 2: Policy networks for Q-BOT and A-BOT. At each round t of dialog, (1) Q-BOT generates a question qt from its question decoder

conditioned on its state encoding S
Q
t−1

, (2) A-BOT encodes qt, updates its state encoding SA
t , and generates an answer at, (3) both encode

the completed exchange as F
Q
t and FA

t , and (4) Q-BOT updates its state to S
Q
t , predicts an image representation ŷt, and receives a reward.

To recap, a dialog round at time t consists of 1) Q-BOT

generating a question qt conditioned on its state encoding

S
Q
t−1, 2) A-BOT encoding qt, updating its state encoding

SA
t , and generating an answer at, 3) Q-BOT and A-BOT

both encoding the completed exchange as F
Q
t and FA

t , and

4) Q-BOT updating its state to S
Q
t based on F

Q
t and making

an image representation prediction ŷt for the unseen image.

4.2. Joint Training with Policy Gradients

In order to train these agents, we use the REINFORCE [39]

algorithm that updates policy parameters (θQ, θA, θf ) in re-

sponse to experienced rewards. In this section, we derive

the expressions for the parameter gradients for our setup.

Recall that our agents take actions – communication

(qt, at) and feature prediction ŷt – and our objective is to

maximize the expected reward under the agents’ policies,

summed over the entire dialog:

max
θA,θQ,θg

J(θA, θQ, θg) where, (3a)

J(θA, θQ, θg) = E
πQ,πA

[

T
∑

t=1

rt
(

s
Q
t , (qt, at, yt)

)

]

(3b)

While the above is a natural objective, we find that consid-

ering the entire dialog as a single RL episode does not dif-

ferentiate between individual good or bad exchanges within

it. Thus, we update our model based on per-round rewards,

J(θA, θQ, θg) = E
πQ,πA

[

rt
(

s
Q
t , (qt, at, yt)

)

]

(4)

Following the REINFORCE algorithm, we can write the

gradient of this expectation as an expectation of a quantity

related to the gradient. For θQ, we derive this explicitly:

∇θQJ = ∇θQ

[

E
πQ,πA

[rt (·)]

]

(rt inputs hidden to avoid clutter)

= ∇θQ

[
∑

qt,at

πQ

(

qt|s
Q
t−1

)

πA

(
at|s

A
t

)
rt (·)

]

=
∑

qt,at

πQ

(

qt|s
Q
t−1

)

∇θQ log πQ

(

qt|s
Q
t−1

)

πA

(
at|s

A
t

)
rt (·)

= E
πQ,πA

[

rt (·) ∇θQ log πQ

(

qt|s
Q
t−1

)]

(5)

Similarly, gradient w.r.t. θA, i.e., ∇θAJ can be derived as

∇θAJ = E
πQ,πA

[

rt (·) ∇θA log πA

(

at|s
A
t

)]

. (6)

As is standard practice, we estimate these expectations with

sample averages. Specifically, we sample a question from

Q-BOT (by sequentially sampling words from the question

decoder LSTM till a stop token is produced), sample its

answer from A-BOT, compute the scalar reward for this

round, multiply that scalar reward by the gradient of the

log-probability of this exchange, and propagate backward

to compute gradients with respect to all parameters θQ, θA.

This update has an intuitive interpretation – if a particu-

lar (qt, at) is informative (i.e., leads to positive reward), its

probabilities will be pushed up (positive gradient). Con-

versely, a poor exchange leading to negative reward will be

pushed down (negative gradient).

Finally, since the feature regression network f(·) forms a

deterministic policy, its parameters θf receive ‘supervised’

gradient updates for differentiable ℓ(·, ·).

5. Emergence of Grounded Dialog

To succeed at our image guessing game, Q-BOT and A-BOT

need to accomplish a number of challenging sub-tasks –

they must learn a common language (do you understand

what I mean when I say ‘person’?) and develop map-

pings between symbols and image representations (what

does ‘person’ look like?), i.e., A-BOT must learn to ground

language in visual perception to answer questions and Q-

BOT must learn to predict plausible image representations

– all in an end-to-end manner from a distant reward func-

tion. Before diving in to the full task on real images, we

conduct a ‘sanity check’ on a synthetic dataset with perfect

perception to ask – is this even possible?

Setup. As shown in Fig. 3, we consider a synthetic world

with ‘images’ represented as a triplet of attributes – 4

shapes, 4 colors, 4 styles – for a total of 64 unique images.

A-BOT has perfect perception and is given direct access to

this representation for an image. Q-BOT is tasked with de-

ducing two attributes of the image in a particular order –

2955



Figure 3: Emergence of grounded dialog: (a) Each ‘image’ has three attributes, and there are six tasks for Q-BOT (ordered pairs of

attributes). (b) Both agents interact for two rounds followed by attribute pair prediction by Q-BOT. (c) Example 2-round dialog where

grounding emerges: color, shape, style have been encoded as X,Y, Z respectively. (d) Improvement in reward while policy learning.

e.g., if the task is (shape, color), Q-BOT would need to out-

put (square, purple) for a (purple, square, filled) image seen

by A-BOT (see Fig. 3b). We form all 6 such tasks per image.

Vocabulary. We conducted a series of pilot experiments

and found the choice of the vocabulary size to be crucial for

coaxing non-trivial ‘non-cheating’ behavior to emerge. For

instance, we found that if the A-BOT vocabulary VA is large

enough, say |VA| ≥ 64 (#images), the optimal policy learnt

simply ignores what Q-BOT asks and A-BOT conveys the

entire image in a single token (e.g. token 1 ≡ (red, square,

filled)). As with human communication, an impoverished

vocabulary that cannot possibly encode the richness of the

visual sensor is necessary for non-trivial dialog to emerge.

To ensure at least 2 rounds of dialog, we restrict each agent

to only produce a single symbol utterance per round from

‘minimal’ vocabularies VA = {1, 2, 3, 4} for A-BOT and

VQ = {X,Y, Z} for Q-BOT. Since |VA|
#rounds < #images,

a non-trivial dialog is necessary to succeed at the task.

Policy Learning. Since the action space is discrete and

small, we instantiate Q-BOT and A-BOT as fully specified

tables of Q-values (state, action, future reward estimate) and

apply tabular Q-learning with Monte Carlo estimation over

10k episodes to learn the policies. Updates are done alter-

nately where one bot is frozen while the other is updated.

During training, we use ǫ-greedy policies [33], ensuring an

action probability of 0.6 for the greedy action and split the

remaining probability uniformly across other actions. At

test time, we default to greedy, deterministic policy ob-

tained from these ǫ-greedy policies. The task requires out-

putting the correct attribute value pair based on the task and

image. Since there are a total of 4+ 4+4 = 12 unique val-

ues across the 3 attributes, Q-BOT’s final action selects one

of 12×12=144 attribute-pairs. Further, task information is

excluded from Q-BOT’s state for this final action. We use

+1 and −1 as rewards for right and wrong predictions.

Results. Fig. 3d shows the reward achieved by the

agents’ policies vs. number of RL iterations (each with 10k

episodes/dialogs). We can see that the two quickly learn the

optimal policy. Fig. 3b,c show some example exchanges be-

tween the trained bots. We find that the two invent their own

communication protocol – Q-BOT consistently uses specific

symbols to query for specific attributes: X → color, Y →
shape, Z → style. And A-BOT consistently responds with

specific symbols to indicate the inquired attribute, e.g., if Q-

BOT emits X (asks for color), A-BOT responds with: 1 →
purple, 2 → green, 3 → blue, 4 → red. Similar mappings

exist for responses to other attributes. Essentially, we find

the automatic emergence of grounded language and a com-

munication protocol among ‘visual’ dialog agents without

any human supervision! Refer to [18] for detailed analysis

of ‘cheating’ strategies that emerge in a similar toy setup.

6. Experiments

Our synthetic experiments in the previous section establish

that when faced with a cooperative task where information

must be exchanged, two agents with perfect perception are

capable of developing a complex communication protocol.

In general, with imperfect perception on real images, dis-

covering human-interpretable language and communication

strategy from scratch is both tremendously difficult and an

unnecessary re-invention of English. We leverage the re-

cently introduced VisDial v0.5 dataset [5] that contains hu-

man dialogs (10 rounds of question-answer pairs) on 68k

images from the COCO dataset, for a total of 680k QA-

pairs (some examples shown in Tab. 1).

Image Feature Regression. We consider an instantiation of

the image guessing game described in Sec. 3 – specifically

at each round t, Q-BOT regresses to the vector embedding

ŷt of image I corresponding to the fc7 output from VGG-

16 [32]. The distance metric used in the reward computation

is ℓ2, i.e. rt(·) = ||ygt − ŷt−1||
2

2
− ||ygt − ŷt||

2

2
.

Training Strategies. We found two training strategies to be

crucial to ensure/improve the convergence of the RL frame-

work described in Sec. 4, to produce any meaningful dialog

exchanges, and to ground the agents in natural language.

1) Supervised Pretraining. We train both agents in a su-

pervised manner on the train split of VisDial [5] v0.5 un-

der an MLE objective. Thus, conditioned on human dialog

history, Q-BOT is trained to generate the follow-up ques-

tion by human1, A-BOT is trained to generate the response

by human2, and the feature network f(·) is optimized to

regress to y. The VGG-16 CNN in A-BOT is pretrained on

ImageNet. This pretraining ensures that the agents can gen-

erally recognize some objects/scenes and emit English.

2) Curriculum Learning. After supervised pretraining,
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Image + Caption Human Dialog SL-pretrained RL-full-QAf

A couple of people in the snow on skis.

What are their genders? 1 man 1 woman

Are they both adults? Yes

Do they wear goggles? Looks like sunglasses

Do they have hats on? Man does

Are there any other people? No

What color is man’s hat? Black

Is it snowing now? No

What is woman wearing? Blue jacket and black pants

Are they smiling? Yes

Do you see trees? Yes

How many people? 2

Male or female? I can’t tell

What are they wearing? I can’t tell, they are far away

What color are skis? I can’t tell

Are they wearing goggles? Yes

Are they wearing goggles? Yes

Are they wearing goggles? Yes

Are they wearing goggles? Yes

Are they wearing hats? Yes

Are they wearing goggles? Yes

Are people male or female or both? I think 1 is male, can’t see other 1 ...

What are they wearing? They are all wearing snow pants and jackets

Is it snowing? It does not appear to be snowing at moment

Can you see any trees? Yes, there are lot of trees in background

Can you see any buildings in background? No, I can not

Can you see any trees? Yes, there are lot of trees in background

Can you see any buildings in background? No, I do not see any buildings

Can you see any trees? Yes, there are lot of trees in background

Can you see any buildings in background? No , I do not see any buildings

Does it look like they are in park? It does not appear to be

A man riding a skateboard down the side of a ramp.

How old is man? In his teens

Is he wearing helmet? No

Is he wearing any protective gear? No

What color is his hair? Dirty blonde or dark brown

What color is his shirt? Black with red letters

Is he wearing shorts? Yes

What color are his shorts? Denim

Are there other people visible? No

What color are his shoes? I can’t see them

Is this at skate park? Yes

How old is man? I can’t see his face, I don’t know

What is he wearing? shorts and t shirt

What color is his shirt? white

what color are his pants? black

what color is his shirt? blue

What color are his shoes? Black

What color are his shoes? Black

What color are his shoes? Black

What color are his shoes? Black

What color are his shoes? Black

What color is skateboard? It is hard to tell but I think it’s black

Is he wearing helmet? Yes

Is he wearing knee pads? No, no knee pads

Is it day or night? It is daytime

Is it sunny? It is bright out, but I see no shadows, so I can not

Can you see any other people? There are 2 other people in background

Is it day or night? It is daytime

Is it sunny? Yes, it is sunny

What color is skateboard? It is hard to tell but I think it’s black

Is he wearing helmet? Yes, he is wearing helmet

Table 1: Selected examples of Q-BOT-A-BOT interactions for SL-pretrained and RL-full-QAf. RL-full-QAf interactions are

diverse, less prone to repetitive and safe exchanges (“can’t tell", “don’t know" etc.), and more image-discriminative.

we ‘smoothly’ transition the agents to RL training accord-

ing to a curriculum. Specifically, we continue supervised

training for the first K rounds of dialog and transition to

policy-gradient updates for the remaining 10 − K rounds.

We start at K = 9 and gradually anneal to 0. This curricu-

lum ensures that the agent team does not suddenly diverge

off-policy, if one incorrect q or a is generated.

Models are pretrained for 15 epochs on VisDial, then transi-

tioned to policy-gradient training by annealing K down by

1 every epoch. All LSTMs are 2-layered with 512-d hidden

states. We use Adam [17] with a learning rate of 10−3, and

clamp gradients to [−5, 5] to avoid explosion. There is no

explicit state-dependent baseline in our training as we ini-

tialize from supervised pretraining and have zero-centered

rewards, which ensures a good proportion of random sam-

ples are both positively and negatively reinforced.

Model Ablations. We compare to a few natural ablations of

our full model, denoted RL-full-QAf. First, we evaluate

the purely supervised agents (denoted SL-pretrained),

i.e., trained only on VisDial data (no RL). Comparison to

these agents establishes how much RL helps over super-

vised learning. Second, we fix one of Q-BOT or A-BOT to

the supervised pretrained initialization and train the other

agent (and the regression network f ) with RL; we label

these as Frozen-Q or Frozen-A respectively. Compar-

ing to these partially frozen agents tell us the importance of

coordinated communication. Finally, we freeze the regres-

sion network f to the supervised pretrained initialization

while training Q-BOT and A-BOT with RL. This measures

improvements from language adaptation alone.

We quantify performance along two axes – how well agents

perform at image guessing and how closely they emulate

human dialogs (i.e. performance on the VisDial dataset [5]).

Evaluation: Guessing Game. To assess how well the

agents have learned to cooperate at the image guessing task,

we setup an image retrieval experiment based on the test

split of VisDial v0.5 (∼9.5k images), which were never

seen by the agents in RL training. We present each im-

age + an automatically generated caption [15] to the agents,

and allow them to communicate over 10 rounds of dialog.

After each round, Q-BOT predicts a feature representation

ŷt. We sort the entire test set in ascending distance to this

prediction and compute the rank of the source image.

Fig. 4a shows the mean percentile rank of the source im-

age for our method and the baselines across the rounds

(shaded region indicates standard error). A percentile rank

of 95% means that the source image is closer to the predic-

tion than 95% of the images in the set. Tab. 1 shows ex-

ample exchanges between two humans (from VisDial), the

SL-pretrained and the RL-full-QAf agents.

- RL improves image identification. We see that

RL-full-QAf outperforms SL-pretrained and all

other ablations (e.g., at round 10, improving percentile rank

by over 3%), indicating that our training framework is in-

deed effective at training these agents for image guessing.

- All agents ‘forget’; RL agents forget less. One interest-

ing trend we note in Fig. 4a is that all methods significantly

improve from round 0 (caption-based retrieval) to rounds

2 or 3, but beyond that all methods with the exception of

RL-full-QAf get worse, even though they have strictly

more information. As shown in Tab. 1, agents will often get

stuck in infinite repeating loops but this is much rarer for

RL agents. Moreover, even when RL agents repeat them-

selves, it is after longer gaps (2-5 rounds). We conjecture

that this is because errors cascade in SL agents, while RL

agents can drive conversations away from these poor paths.

- RL leads to more informative dialog. SL A-BOT tends

to produce ‘safe’ generic responses (‘I don’t know’, ‘I can’t

see’) but RL A-BOT responses are much more detailed (‘It

is hard to tell but I think it’s black’). These observations

are consistent with work in text-only dialog [21]. Our hy-

pothesis is that human responses are diverse and SL trained

agents tend to ‘hedge their bets’ and achieve a reasonable

log-likelihood by being non-committal. In contrast, such

‘safe’ responses do not help Q-BOT in picking the correct

image, thus encouraging a more informative RL A-BOT.
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(a) Guessing Game Evaluation

Model MRR R@5 R@10 Mean Rank

SL-pretrain 0.436 53.41 60.09 21.83

Frozen-Q 0.428 53.12 60.19 21.52

Frozen-f 0.432 53.28 60.11 21.54

RL-full-QAf 0.428 53.08 60.22 21.54

Frozen-Q-multi 0.437 53.67 60.48 21.13

(b) Visual Dialog Answerer Evaluation (c) Qualitative Retrieval Results

Figure 4: a) Guessing Game Evaluation. Percentile of GT image (higher is better) based on image retrieval using fc7 predictions vs. round

of dialog. Round 0 corresponds to image guess based on caption. RL-full-QAf outperforms SL-pretrained and other ablations.

Error bars show standard error of means. (c) shows qualitative results on image retrieval. Left column shows true image and caption,

right column shows dialog exchange and image guess (highlighted in red) alongside closest images from VisDial test in sorted order of

distance to ground truth. See supplementary for more qualitative results. b) VisDial Evaluation. Performance of A-BOT on VisDial v0.5

test, by mean reciprocal rank (MRR), recall@k for k = {5, 10} and mean rank. Higher is better for MRR and recall@k, while lower is

better for mean rank. Frozen-Q-multi outperforms other models on VisDial metrics by 3% relative gain.

Evaluation: Emulating Human Dialogs. To quantify how

well the agents emulate human dialog, we evaluate A-BOT

on the retrieval metrics proposed by Das et al. [5]. Specifi-

cally, every question in VisDial is accompanied by 100 can-

didate responses. We use the log-likehood assigned by the

A-BOT answer decoder to sort these candidates and report

the results in Tab. 4b. We find that despite the RL A-BOT’s

answer being more informative, the improvements on Vis-

Dial metrics are minor. We believe this is because while the

answers are correct, they may not necessarily mimic hu-

man responses (which is what the answer retrieval metrics

check for). In order to dig deeper, we train a variant of

Frozen-Q with a multi-task objective – simultaneous (1)

ground truth answer supervision and (2) image guessing re-

ward, to keep A-BOT close to human-like responses. We

use a weight of 1.0 for the SL loss and 10.0 for RL. This

model, denoted Frozen-Q-multi, performs better than

all other approaches on VisDial answering metrics, improv-

ing the best reported result on VisDial by 0.7 mean rank

(relative improvement of 3%). Note that this gain is ‘for

free’ since no additional annotations were required for RL.

Human Study. We conducted a human interpretabil-

ity study to measure (1) whether humans can easily un-

derstand the Q-BOT-A-BOT dialog, and (2) how image-

discriminative the interactions are. We show human sub-

jects a pool of 16 images, the agent dialog (10 rounds), and

ask humans to pick their top-5 guesses for the image the

two agents are talking about. We find that mean rank of the

ground-truth image for SL-pretrained agent dialog is

3.70 vs. 2.73 for RL-full-QAf dialog. In terms of MRR,

the comparison is 0.518 vs. 0.622 respectively. Thus, un-

der both metrics, humans find it easier to guess the unseen

image based on RL-full-QAf dialog exchanges, which

shows that agents trained within our framework (1) success-

fully develop image-discriminative language, and (2) this

language is interpretable; they do not deviate off English.

7. Conclusions

To summarize, we introduce a novel training framework

for visually-grounded dialog agents by posing a cooperative

‘image-guessing’ game between two agents. We use deep

reinforcement learning to end-to-end learn the policies of

these agents – from pixels to multi-agent multi-round dialog

to game reward. We demonstrate the power of this frame-

work in a completely ungrounded synthetic world, where

the agents communicate via symbols with no pre-specified

meanings (X, Y, Z). We find that two bots invent their own

communication protocol without any human supervision.

We go on to instantiate this game on the VisDial [5] dataset,

where we pretrain with supervised dialog data. We find that

the RL fine-tuned agents not only significantly outperform

SL agents, but learn to play to each other’s strengths, all the

while remaining interpretable to outside humans observers.
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