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Abstract

Region-based correspondence (RBC) is a highly relevant

and non-trivial computer vision problem. Given two 3D

shapes, RBC seeks segments/regions on these shapes that

can be reliably put in correspondence. The problem thus

consists both in finding the regions and determining the cor-

respondences between them. This problem statement is sim-

ilar to that of “biclustering”, implying that RBC can be cast

as a biclustering problem. Here, we exploit this implication

by tackling RBC via a novel biclustering approach, called

S4B (spatially smooth spike and slab biclustering), which:

(i) casts the problem in a probabilistic low-rank matrix fac-

torization perspective; (ii) uses a spike and slab prior to

induce sparsity; (iii) is enriched with a spatial smoothness

prior, based on geodesic distances, encouraging nearby

vertices to belong to the same bicluster. This type of spatial

prior cannot be used in classical biclustering techniques.

We test the proposed approach on the FAUST dataset, out-

performing both state-of-the-art RBC techniques and clas-

sical biclustering methods.

1. Introduction

Computing correspondences between 3D shapes is a fun-

damental problems in computer vision, with applications in

computer graphics, geometry processing, statistical shape

analysis, and many others [44]. The goal of most shape

matching techniques is to find correspondences between

points or regions in a given pair of shapes, which can dif-

fer by a variety of deformations. This includes both near-

rigid correspondences, if the shapes are related by a rota-

tion and a translation, and the more general and challeng-

ing non-rigid shape matching problem [43], in which shapes

can undergo other transformations, such as articulated mo-

tion of humans. Although several methods have been pro-

posed to address the latter problem, most techniques either

use a prescribed deformation model (e.g., near-isometries or

conformal deformations [3, 17]), or rely on user-provided

landmark correspondences [1]. Thus, despite a significant

amount of effort, the problem of finding non-rigid matches

between general shapes remains challengingly open.

Another set of techniques, recently introduced in a va-

riety of settings, relaxes the correspondence problem into

that of looking for matches between probability distribu-

tions (as done in soft maps [39], or general real-valued

functions (e.g., using the functional maps framework [29]).

These techniques are better suited to the general shape cor-

respondence problem, as they do not seek precise (e.g., bi-

jective) maps between points, easily accommodating sig-

nificant sampling, geometric, or even topological changes

[36]. Furthermore, those soft maps can also be used as in-

put to more refined point-based correspondence methods, to

help improve the robustness and accuracy thereof [10].

One category of such generalized matching formulations

is region-based correspondence (RBC), where the problem

is formulated as that of finding regions on the shapes that

behave similarly and can thus be easily put in correspon-

dence. This problem is different from another well-studied

task, called shape co-segmentation, since in RBC the goal is

not to find meaningful semantic segments in various shapes

(e.g., limbs in animal shapes), but rather to determine re-

gions in the two shapes that are in correspondence. As re-

cently mentioned in [10], RBC is closely related to biclus-

tering [21], in particular if the points on the shapes can be

endowed with a similarity measure (e.g., based on on some

descriptor). Given such a measure, a similarity matrix may

be built and the goal of biclustering is to simultaneously

cluster both the rows and columns of this matrix [21].

Given a data matrix, biclustering aims at retrieving sub-

matrices (i.e., biclusters), in each of which a certain subset
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of rows exhibits a “coherent behaviour” (in some sense) in

a certain subset of columns. Biclustering differs from stan-

dard clustering, which treats whole rows/columns, in that

the former is able to focus on local information in portions

of rows and portions of columns. Many biclustering meth-

ods have been proposed, differing in the type of biclusters

that can be retrieved, as well as in the adopted criteria and

algorithms, as comprehensively reviewed in [21, 28].

Biclustering is a well-studied problem, with applications

to gene expression data, recommender systems, market seg-

mentation, and other areas [7, 8, 14, 16, 25, 37]. However,

maybe surprisingly, biclustering has not been used for shape

correspondence, with the notable exception of [10]. This

is arguably due to the two following challenges: Typical

3D shapes in computer vision and graphics contain consid-

erable geometric information, which is typically not taken

into account in biclustering methods. Perhaps more funda-

mentally, in the context of RBC, an important property is

required of the retrieved bi-clusters: spatial coherence, i.e.,

nearby points should be grouped to nearby regions. This

property is neither present, nor is easy to encourage, by us-

ing standard biclustering methods.

In this paper, we propose a novel biclustering technique,

tailored to address the RBC problem, by explicitly encour-

aging spatial coherence in the corresponding regions of the

given shapes. For this, we enrich the biclustering model

with a spatial smoothness prior, based on geodesic dis-

tances, to encourage nearby vertices to belong to the same

bicluster. This type of prior has not been considered in clas-

sical biclustering techniques, since most types of data (e.g.,

recommender systems, gene expression data) lack spatial

information. We test the proposed approach on several

benchmark data, outperforming both state-of-the-art RBC

techniques and classical biclustering methods.

2. Related Work and Proposed Method

Both shape correspondence and biclustering are vast ar-

eas, with comprehensive reviews being beyond the scope

of this paper. Below we mention the work that we believe

to be most directly related to ours, including methods for

generalized (not necessarily point-to-point) correspondence

and classical biclustering techniques based on probabilistic

matrix factorization. For deeper discussions of both areas,

the interested reader is referred to [21, 25, 44].

2.1. Generalized Shape Correspondence

As mentioned above, a recent trend in shape matching

consists in finding soft correspondences between shapes.

This includes methods for computing mappings between

probability densities [23, 39, 40], often using formal and

computational tools from optimal transport theory and mea-

sure coupling. The correspondences between probability

density functions produced by these methods can, in some

cases, be further refined to obtain point-wise maps [38, 41].

Another related set of techniques adopts the functional

map framework, introduced in [29] and later extended sig-

nificantly, e.g., in [20, 33, 36]. These methods work by

establishing linear mappings between general real-valued

functions and have been used to find related regions on

shapes (see [31] for an overview). However, most of these

approaches are based on pre-segmenting the shapes and ei-

ther transferring these segmentations or establishing corre-

spondences between them as part of the pipeline (e.g., [33]).

Our method, in contrast, determines the optimal regions si-

multaneously with the correspondences.

In this area, our work is most closely related to [10],

where it was recently proposed to cast RBC as a bicluster-

ing problem. That work also introduced an efficient biclus-

tering algorithm based on a power iteration scheme. How-

ever, their method does not enforce/encourage spatial coher-

ence on the biclusters, thus a single “cluster” can contain

multiple disconnected shape regions. Our method, on the

other hand, explicitly encourages spatial consistency, yield-

ing significantly improved results, as shown below.

2.2. Biclustering

The biclustering literature includes a wide range of ap-

proaches, comprehensively reviewed in [21, 28]. A recent

trend is to use matrix factorization tools [4, 11, 13, 19, 32,

45], most of which relying on the concept of latent block

models [11, 26, 32, 35, 45]. These approaches simultane-

ously arrange the rows and columns of a data matrix into

groups of similar response patterns, thus yielding biclusters

where the rows/columns belong to only one group, and the

data matrix is divided into exhaustive and non overlapping

biclusters. These characteristic can limit the applicability

of these methods in some contexts. Moreover, most biclus-

tering formulations and methods are invariant under permu-

tations of the rows/columns, i.e., they treat them as inde-

pendent entities, ignoring any neighbourhood relationship

(spatial or otherwise) between rows/columns of the matrix.

2.3. Overview of the Proposed Method

This paper introduces a novel algorithm, where the ra-

tionale is to decompose the data matrix into levels, each

corresponding to a different bicluster (as in [13, 4]), thus

allowing to obtain non-exhaustive and possibly overlapping

biclusters. In this class of approaches, sparsity plays a cru-

cial role. In fact, the data matrices to which biclustering is

typically applied have large numbers of rows and columns

(e.g., thousands by hundreds, in gene expression data), but

the biclusters often involve only small portions thereof. The

proposed method results from combining a probabilistic

low-rank matrix factorization criterion with a spike and slab

prior to encourage sparsity. Spike and slab priors were pro-
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Figure 1: The framework of the the spatially smooth spike

and slab biclustering (S4B ) for the RBC problem

posed in [24] for variable selection in linear regression, and

later generalized and adopted by many authors as general-

purpose sparsity-inducing priors [15]. The other main novel

ingredient herein proposed is a spatial smoothness prior, to

improve the bicluster coherence/quality. Similarly to what

has been proposed for clustering [6], we exploit known pair-

wise relations to encourage certain rows (and/or columns)

to belong to the same bicluster. This is obtained by combin-

ing the spike and slab prior with two pair-wise priors, one

for the rows and one for the columns, encouraging pairs of

nearby rows/columns to be grouped together. We call our

method spatially smooth spike and slab biclustering (S4B ).

The spatial priors are derived from two similarity matri-

ces (one for the rows and one for the columns), based on

the geodesic distances between the shapes’ vertices. Those

matrices control the strength with which each pair of ver-

tices (on each shape) is encouraged to belong to the same

bicluster. Consequently, the proposed S4B method combin-

ing two types of information (as depicted in Fig. 1): (i) the

affinity between pairs of vertices of different shapes; (ii) the

neighbourliness between vertices on the same shape.

Notation: Before continuing, it is convenient to define

some notation. Matrices are denoted by capital letters (e.g.,

D,V, Z), vectors with lower-case letters (e.g., d, v, z), and

matrix/vector elements by using subscripts (e.g., the entry

(i, j) of matrix D is dij and the component p of vector d
is dp). The so-called vec (vectorization) operator produces

a vector with the elements of its matrix argument stacked

column-by-column; its inverse is denoted vec−1. A pair of

useful equalities concerning the vec operator are

vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A), (1)

where I is an identity matrix of adequate dimensions and ⊗
is the Kronecker matrix product [22]. Finally, given some

matrix A, ‖A‖F denotes its Frobenius norm, which is the

Euclidean norm of its vectorization: ‖A‖F = ‖vec(A)‖2.

3. Biclustering via Sparse Low-Rank

Factorization

Let D ∈ R
n×m be the given data matrix, and R =

{1, . . . , n} and C = {1, . . . ,m} be the sets of row and

column indices, respectively. Let DTK , where T ⊆ R and

K ⊆ C, be the submatrix with the subset of rows in T and

the subset of columns in K. With this notation, a bicluster

is a submatrix DTK , such that the subset of rows of D with

indices in T exhibits a “coherent behavior” (in some sense)

across the set of columns with indices in K, and vice versa.

The choice of coherence criterion controls the type of

biclusters to be retrieved [21, 28]. A standard choice is

that entries in the same bicluster have similar values, sig-

nificantly different from the other entries of the matrix. For

example, a data matrix containing one bicluster with rows

T = {1, 2} and columns K = {1, 2} may look like

D =




10 10 0 0
10 10 0 0
0 0 0 0
0 0 0 0
0 0 0 0



.

From an algebraic point of view, this matrix can be repre-

sented by the outer product D = vzT of the vectors

v = [5, 5, 0, 0, 0]T and z = [2, 2, 0, 0]T .

Generalizing to k biclusters, we can formulate the prob-

lem as the decomposition of a given data matrix D as the

sum of k outer products,

D =
k∑

i=1

viz
T
i = [v1, ..., vk]︸ ︷︷ ︸

V ∈Rn×k

[z1, ..., zk]
T

︸ ︷︷ ︸
Z∈Rk×m

= V Z. (2)

The link between biclustering and sparse low-rank ma-

trix factorization is clear: (i) the product V Z has rank no

larger than k (the number of biclusters); (ii) if D is much

larger than the expected biclusters (as it is typically the

case), each vi and zi should be sparse, thus V and Z should

be sparse.

4. The S4B Approach

This section provides a formal explanation of how the

three main ingredients of S4B are formulated:

(i) low-rank matrix factorization;

(ii) factor sparsity;

(iii) spatial smoothness.

4.1. Spike and Slab

The spike and slab is a univariate sparsity-inducing prior

composed by the mixture of two zero-mean Gaussian dis-

tributions: one with very small variance, modeling a high

probability of nearly zero values; another one with large

variance, modeling the presence of large values. Under this
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density, both very large and very small (nearly zero) sam-

ples have high likelihood, which is impossible under a sin-

gle Gaussian. The idea is that by sampling from the low-

variance Gaussian yields background values, whereas sam-

pling from the high-variance Gaussian produces foreground

values. Formally, the spike and slab prior has the form

P(x|α, τ1, τ2) = αN (x|0, τ21 ) + (1− α)N (x|0, τ22 ), (3)

with τ2 ≪ τ1, parameter α ∈ [0, 1] regulates the sparsity

degree, and N (x|µ, σ2) denotes a Gaussian density with

mean µ and variance σ2, computed at x. Note that (3) is

equivalent to the following two-stage model

P(x|h, τ1, τ2) = N (x|0, τ21 )
hN (x|0, τ22 )

(1−h), (4)

P(h|α) = αh(1− α)1−h, (5)

where h ∈ {0, 1} is a latent binary variable following a

Bernoulli distribution of parameter α. The mixture in (3)

results from marginalizing this model with respect to h.

4.2. The S4B Model

The data matrix D ∈ R
n×m is modeled as a noisy ver-

sion of a low-rank product V Z,

P(D|V, Z, σ2) = N (D|V Z, σ2I) (6)

=

n∏

i=1

m∏

j=1

N (dij |(V Z)ij , σ
2), (7)

where V ∈ R
n×k, Z ∈ R

k×m, k is the number of biclus-

ters, and σ is the standard deviation of the noise, which also

accounts for approximation errors. This part embodies the

low-rank assumption, as V Z has rank no larger than k.

As explained above, matrices V and Z are expected to be

sparse, to keep the biclusters of small size. Moreover, we

would like to enforce certain pairs of rows/columns to be

in the same bicluster. A hierarchical prior expressing these

desiderata is formally defined as follows (see Figure 2):

• The entries of V follow a pairwise regularized spike and
slab prior with variances τ21 and τ22 (such that τ21 ≫ τ22 ),

P(V |H, τ1, τ2) =
1

Ξ

[

k
∏

j=1

exp

(

−
β

4

n
∑

i=1

n
∑

l=1

Sv
il(vij − vlj)

2

)]





n
∏

i=1

k
∏

j=1

N (vij |0, τ
2

1
)hijN (vij |0, τ

2

2
)1−hij





=
1

Ξ





k
∏

j=1

exp

(

−
1

2
vTj ∆vvj

)









n
∏

i=1

k
∏

j=1

N (vij |0, τ
2

1
)hijN (vij |0, τ

2

2
)1−hij





(8)

where vj is the j-th column of V and Sv
il = Sv

li ≥ 0
is the strength with which vij and vlj are encouraged to

be similar (i.e., in the same bicluster); ∆v is the n × n
Laplacian of a graph with edge weights Sv

il,

∆v = β

(
diag

(
n∑

i=1

Sv
1i, . . . ,

n∑

i=1

Sv
ni

)
− Sv

)
, (9)

and Sv is the matrix with elements Sv
il; parameter β

controls the global weight of the pair-wise (smoothness)

prior; each hij is an entry of the matrix H of latent vari-

ables of the spike-and-slab prior; finally, Ξ is the normal-

ization constant, which does not need to be known.

• The binary latent variables in H are independent and fol-

low a Bernoulli distribution of parameter α1,

P(H|α1) =

n∏

i=1

k∏

j=1

α
hij

1 (1− α1)
1−hij . (10)

• The entries of Z follow a pairwise regularized spike and
slab prior, with variances ρ21 and ρ22 (such that ρ21 ≫ ρ22),

P(Z|G, ρ1, ρ2) =
1

Ξ

[

k
∏

j=1

exp

(

−
β

4

m
∑

i=1

m
∑

l=1

Sz
il(zij − zlj)

2

)

]





k
∏

i=1

m
∏

j=1

N (zij |0, ρ
2

1
)gijN (zij |0, ρ

2

2
)1−gij





=
1

Ξ





k
∏

j=1

exp

(

−
1

2
zTj ∆zzj

)









k
∏

i=1

m
∏

j=1

N (zij |0, ρ
2

1
)gijN (zij |0, ρ

2

2
)1−gij





(11)

where vector zj is the j-th column of Z and Sz
il = Sz

li ≥ 0
is the strength with which zij and zlj are encouraged to

be similar (i.e., in the same bicluster); ∆z is the m ×m
Laplacian of a graph with edge weights Sz

il,

∆z = β

(
diag

(
m∑

i=1

Sz
1i, . . . ,

m∑

i=1

Sz
mi

)
− Sz

)
, (12)

Sz is the matrix with elements Sz
il.

• The binary latent variables in matrix G follow a Bernoulli

distribution of parameter α2,

P(G|α2) =

k∏

i=1

m∏

j=1

α
gij
2 (1− α1)

1−gij . (13)

Intuitively, α1 and α2 control the sparsity of V and Z,

i.e., the biclusters sizes on rows and columns, respectively.

The variances τ21 , τ
2
2 , ρ

2
1, and ρ22 control the value ranges.

The joint distribution of all the variables and parameters

involved in this model can now be written as

P(D,V, Z,H,G, σ, τ1, τ2, ρ1, ρ2, α1, α2)

= P(D|V, Z, σ2)P(V |H, τ1, τ2)P(Z|G, ρ1, ρ2)

P(H|α1)P(G|α2)P(σ, τ1, τ2, ρ1, ρ2, α1, α2), (14)
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Figure 2: Graph of the probabilistic model in Section 4.2.

where P(τ1, τ2, ρ1, ρ2, α1, α2) is a prior on the model pa-

rameters. In this paper, we consider this prior to be flat, that

is, we seek maximum likelihood (ML) estimates thereof.

Finally, this model may be easily extended to the case

where each bicluster has its own parameter set (spike and

slab variances and mixing probability), rather than being

assumed the same for all the biclusters. In this paper, we

keep the simpler version that we have just introduced.

4.3. Parameter Estimation

We estimate the model parameters τ1, τ2, ρ1, ρ2, α1, α2,

and σ by resorting to the classical EM algorithm [9]. Recall

that EM is a class of iterative algorithms designed to ob-

tain marginal ML estimates θ̂ = argmaxθ P(x|θ), where

the marginal likelihood results from marginalizing out hid-

den/latent variables y, i.e., P(x|θ) =
∫
P(x, y|θ) dy (with

summation rather than integration, if y is discrete). The al-

gorithm alternates between two steps:

E-step: computes the conditional expectation of the com-

plete log-likelihood, given the current parameter es-

timate θ̂(t) and the observed data x, yielding the so-

called Q-function:

Q(θ, θ̂(t)) = Ey

[
logP(x, y|θ)|x, θ̂(t)

]
. (15)

M-step: updates the parameter estimate according to

θ̂(t+1) = argmax
θ

Q(θ, θ̂(t)). (16)

Computing the expectation in (15) may not be trivial in gen-

eral, as it may involve intractable integration.

Concerning the unobserved V, Z,H, and G, there is a

choice of marginalizing them out via the EM algorithm,

i.e., treat them as latent variables, or maximizing with re-

spect to them, i.e. seeing them as parameters, rather than

latent variables. Inspired by [6], and in order to obtain

a simpler E-Step, we treat H and G as latent variables,

but V and Z as unknown parameters, estimated along with

τ1, τ2, ρ1, ρ2, α1, α2, and σ. We could also treat H and G
as parameters; however, as these are binary matrices, max-

imizing with respect to them corresponds to making hard

decisions, which may have a strong influence in the whole

optimization procedure. On the other hand, V and Z are

matrices of real-valued entries, thus estimating them has a

smoother/weaker influence on the other estimates. For these

reasons, V and Z are treated as parameters, and H and G as

latent variables. Next, we present the form that the E-step

and the M-step take in the proposed S4B model.

4.3.1 The E-Step

To keep the notation compact, we denote the complete tu-

ple of parameters as θ = (V, Z, σ2, α1, α2, τ1, τ2, ρ1, ρ2).
Recall that the joint distribution of all the variables and pa-

rameters is as given in (14). With D observed and H and G
latent, the Q-function is obtained by computing

Q(θ, θ̂(t)) = EH,G

[
logP(D,H,G, θ)

∣∣θ̂(t), D
]
.

Straightforward, but long and tedious, manipulations and

dropping terms that do not depend on θ, leads to

Q(θ, θ̂(t)) = (17)

−
nm

2
log(σ2)−

||D − V Z||2

2σ2

−
||H

(t)
||F

2
log(τ21 )−

||1−H
(t)
||F

2
log(τ22 )

−
||G

(t)
||F

2
log(ρ21)−

||1−G
(t)
||F

2
log(ρ22)

−
1

2
vTH

(t)
v −

1

2
zTG

(t)
z

+

( nk∑

p=1

h
(t)

p

)
log
( α1

1− α1

)
+ nk log(1− α1)

+

( km∑

j=1

g
(t)
j

)
log
( α2

1− α2

)
+ km log(1− α2)

where v = vec(V ), z = vec(Z),

H
(t)
= diag

(h(t)

1

τ21
+

1− h
(t)

1

τ22
, ...,

h
(t)

nk

τ21
+

1− h
(t)

nk

τ22

)
, (18)

G
(t)
= diag

(g(t)1

ρ21
+

1− g
(t)
1

ρ22
, ...,

g
(t)
km

ρ21
+

1− h
(t)

km

ρ22

)
, (19)

and, for p = 1, ..., nk, and j = 1, ..., km,

h
(t)

p =
α1N (vp|0, τ

2
1 )

α1N (vp|0, τ21 ) + (1− α1)N (vp|0, τ22 )
(20)

g
(t)
j =

α2N (zj |0, ρ
2
1)

α2N (zj |0, ρ21) + (1− α2)N (zj |0, ρ22)
. (21)
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4.3.2 The M-Step

Examining the several terms in (17) reveals the following:

maximizing with respect to V and Z corresponds to a vari-

ant of a low-rank matrix factorization formulation [5]; con-

cerning the other parameters, closed-form updates can be

obtained by equating the corresponding derivatives to zero.

Updating V and Z: considering only the terms in (17)

that depend on V and Z, we have the following low-rank

factorization problem,

min
V,Z

[ ||D−V Z||2F
2σ2

+
1

2
vT(H

(t)
+∆v)v+

1

2
zT(G

(t)
+∆z)z

]
,

(22)

where ∆v = block-diag(∆v, . . . ,∆v) is an (nk) × (nk)
block diagonal matrix with k copies of the ∆v (similarly for

∆z and ∆z). This is a generalization of the model recently

proposed in [5], where the generalization consists in replac-

ing the Frobenius norm used in [5] by the quadratic terms

vT (H
(t)

+∆v)v and zT (G
(t)

+∆z)z. In the absence of ma-

trices ∆v and ∆z , these would simply be squared weighted

Frobenius norms.

Following [5], we tackle (22) via the augmented La-

grangian method (ALM), also known as method of multi-

pliers [12, 34]. The first step is to re-write (22) as an equiv-

alent constrained problem, by introducing a new variable C
to take the place of the low rank product V Z,

min
V,Z,C

[ ||D − C||2F
2σ2

+
1

2
vT H̃v +

1

2
zT G̃z

]
(23)

s.t. C = V Z,

where, to keep the notation lighter, we used H̃ = H
(t)

+

∆v and G̃ = G
(t)

+ ∆z . It is convenient to write a fully

vectorized version of this problem; to that end (and as for

v = vec(V ) and z = vec(Z)), we define c = vec(C) and

d = vec(D), leading to

min
v,z,c

[ ||d− c||22
2σ2

+
1

2
vT H̃v +

1

2
zT G̃z

]
(24)

s.t. c = (I ⊗ V )z,

where the constraint c = (I⊗V )z is equivalent to C = V Z
(as is clear from (1)). Notice that the constraint can also be

written as c = (ZT ⊗ I)v (as is also clear from (1)). For

later use, we define the two following matrices:

A(z) = (ZT ⊗I) and B(v) = (I⊗V ). (25)

The augmented Lagrangian is obtained by adding a

quadratic penalty to the Lagrange function of (24),

Lρ(v, z, c, y) =
||d− c||2

2σ2
+

1

2
vTHv +

1

2
zTGz +

ρ

2
||B(v)z − c||2 + yT

(
c−B(v)z

)
, (26)

where y is the vector of Lagrange multipliers, ρ ≥ 0 is a

parameter. ALM proceeds by alternating between minimiz-

ing Lρ(v, z, c, y) with respect to v, z, c, and updating the

Lagrange multipliers y.

Unfortunately, Lρ(v, z, c, y) cannot be minimized in

closed-form simultaneously with respect to v, z, c, thus we

follow the approach in [5] and solve it by a non-linear block

Gauss-Seidel (NLBGS) method, i.e., by cycling through

minimizations w.r.t. v, z, and c, until some convergence

criterion is satisfied, taking advantage of the fact that each

of these minimizations can be written in closed form. Let-

ting the iteration counter of the NLBGS be s and denoting

As = A(z(s)) and Bs = B(v(s)), the resulting update ex-

pressions are (for s = 1, 2, ...)

v(s+1) =
(
H̃ + ρAT

s As

)−1(
AT

s y + ρAT
s c

(s)
)

(27)

z(s+1) =
(
G̃+ρBT

s+1Bs+1

)−1((
BT

s+1y + ρBT
s+1c

(s)
)

(28)

c(s+1) =
d− σ2y + ρBs+1z

(s+1)

1 + σ2ρ
. (29)

Summarizing, V (t+1) and Z(t+1), which are the solution

of (22), are obtained by cycling through (27), (28), and (29),

until some convergence criterion is satisfied.

Other parameters: the updates of other parameters

(τ21 , τ
2
2 , ρ

2
1, ρ

2
2, σ, α1, α2) are obtained by setting the corre-

sponding partial derivatives of Q(θ, θ̂(t)) to zero, yielding

τ21 =
(
vTH

(t)
v
)
/‖H

(t)
‖F (30)

τ22 = vT (1−H
(t)
)v/‖1−H

(t)
‖F (31)

ρ21 = zTG
(t)
z/‖G

(t)
‖F (32)

ρ22 = zT (1−G
(t)
)z/‖1−G

(t)
‖F (33)

α1 =

( nk∑

p=1

hp

)
/(nk) (34)

α2 =

( nk∑

p=1

gp

)
/(mk) (35)

σ2 = ‖D − V Z‖2F /(nm), (36)

where we have omitted the iteration counter superscript

(·)(t), to keep the notation lighter.

Complexity: the leading term concerning space complex-

ity is O(nk) (or O(km), which is the space needed to store

the A(z) (or B(v)) matrix. Thus, an adequate sparse rep-

resentation can overcome this possible drawback. Regard-

ing time complexity (for each iteration), the leading term

is O(n3k3) (or O(m3k3)) which is the worst case scenario
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for matrix multiplication/inversion of a O(nk) (or O(mk))
matrix.

5. Experiments

This section describes the experiments carried out to

compare S4B with the relevant state-of-the-art, including

specific RBC and general biclustering techniques. Regard-

ing RBC-specific techniques, the most relevant work is

the recent stable region correspondences (SRC) approach

[10], which uses a power iteration scheme. We can di-

rectly compare the corresponding regions obtained by S4B
and SRC with respect to the ground-truth mapping between

the two shapes. Other methods produce point-to-point cor-

respondences based on geometric features of the shapes.

We compare our corresponding regions to blended intrinsic

maps (BIM) [17], a popular point-to-point correspondence

method. To evaluate BIM in the context of corresponding

regions, we follow [10] and use the point-to-point mapping

to transport the segmentation computed on one shape to the

other. We also provide a comparison between S4B and its

version without the spatial smoothness prior, to show that

this prior is crucial to obtain high quality results.

All the experiments use FAUST [2], a challenging recent

dataset containing 100 scanned human shapes (10 poses of

10 subjects). This dataset presents both near-isometric (dif-

ferent poses of the same subject) and non-isometric defor-

mations (due to the significant variability between different

subjects). All of the shapes have the same number of ver-

tices, and the ground-truth one-to-one correspondence (or

map) between each pair of shapes is available. We mea-

sure the quality of the results as the global labelling accu-

racy with respect to the ground-truth map. More precisely,

since every method assigns a label to each vertex on the two

shapes, we compute a score that sums the influence area of

vertices in one shape that are given the same label as their

mapping in the second shape. This provides the percentage

of the shape’s area that has a correct correspondence. Then,

we compute the same score by inverting the role of first and

second shape, and consider the mean of these two scores as

the final score. Formally,

score(La, Lb) =

n∑

i=1

(
La(i) = Lb

(
f(i)

))
Aa(f(i)) (37)

quality =
1

2

( score(La, Lb)∑
(Aa)

+
score(Lb, La)∑

(Ab)

)
, (38)

where a and b are the shapes, La and Lb are the given labels,

Aa and Ab indicate the influence area of each vertex, and f
is the ground-truth point-to-point mapping.

To evaluate the SRC method, we followed the guidelines

provided by its authors [10]. Concerning BIM, since its per-

formance is highly influenced by the starting segmentation,

we evaluate the point-to-point mapping using two possible

segmentations: (i) based on geodesic Voronoi cells around

a farthest point sampling [42], which provides segments of

uniform size; (ii) based on the output labels of S4B . This

gives us a starting segmentation, which we transfer to the

second shape using the correspondences provided by BIM.

Implementation details. For S4B , we used k = 8 bi-

clusters, and set beta to be three times the maximum value

in the affinity matrix (computed as described in [10], with

the same descriptors). For the geodesic similarities, we

considered as “near” only distances below 5% of the maxi-

mum. Notice that setting β = 0 turns off spatial smoothness

prior, thus obtaining a standard biclustering algorithm, here-

after referred to as spike and slab biclustering (SSBi). We

used parameters that lead to similar numbers of segments

for each of the methods tested, for fairness of comparison.

Once the method converges, H and G contain the probabil-

ity that each vertex belongs to the retrieved biclusters. Fi-

nally, we assign each vertex to the bicluster (and hence the

label) maximizing that probability (discarding labels with

probability below 0.75).

Evaluation. We randomly selected 50 pairs of shapes

from the FAUST dataset and applied each of the previously

mentioned methods. The results reported in Table 1 show

that S4B performs better than SRC, BIM, and SSBi. Partic-

ularly, S4B outperforms both the SRC and BIM-Voronoi

approaches. By comparing S4B and SSBi, we can state

that the spatial prior is crucial to obtain high quality results.

All of these results have been statistically evaluated with a

paired T-test with significance level equal to 5%.

Figure 3 shows some of the results obtained: the first

row shows results by the SRC method [10]; the second row

shows results of SSBi; the third row presents results of the

new S4B . Clearly, the S4B results present high coherence

among the different pairs of shapes (although they have ob-

viously been analysed independently), moreover they pro-

duce more connected regions, unlike those obtained by SRC

and SSBi.

Application We can exploit the obtained segments in sev-

eral applications. One of these could be point-wise map

estimation through the functional maps algorithm [30, 27].

This recent framework provides a point-to-point map be-

tween a pair of shapes, starting from some vertices descrip-

tors and some region correspondences between the pair of

shapes [30]. We thus compare the standard baseline (with-

out region correspondences) with the regions provided by

both S4B and SRC. Figure 4 plots the performance of S4B
and SRC, using the standard correspondence quality char-

acteristic [18], as a function of the radius r, with each point

in the curves representing the matching percentage consid-

ering only points that are at distant less than r from their

ground truth correspondence. This results show that the per-

formances clearly increase by adding the region indicators
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StableRegion

SSBi

S4B

082− 092 042− 047 005− 065 028− 070 021− 045 039− 021

Figure 3: Qualitative results of SRC, SSBi and S4B on the FAUST dataset.

Stable
Region

BIM
Voronoi

BIM
S4B SSBi S4B

scenario1 95.37 95.87 97.98 29.91 97.36

scenario2 85.34 95.35 94.21 30.39 95.73

scenario3 85.39 92.51 92.5 32.32 94.25

global 86.58 93.26 93.36 31.8 94.8

Stable
Region

BIM
Voronoi

BIM
S4B SSBi S4B

scenario1 94.95 96.76 97.84 30.07 97.98

scenario2 87.42 96.17 93.82 30.95 96.63

scenario3 87.63 92.82 92.55 33.77 94.96

global 89.33 93.1 93.15 31.26 95.52

Table 1: Results on the FAUST dataset using SRC, BIM, SSBi, and the proposed S4B . Scenario1: pairs of shapes of the same

subject in different poses. Scenario2: pairs of different subjects in the same pose. Scenario3: pairs of different subjects in

different poses. The left/right tables show mean/median scores for each scenario, and the global mean/median score.

C
o
rr

ec
t

m
at

ch
es

Localization error tolerance

Figure 4: Performances of S4B and SRC results when

adopted to create a point-wise estimation map.

obtained from S4B . Further, also adding region indicators

from SRC improves the baseline results; however it seems

that the stability of our regions are clearly more informative

since they produce a stronger improvement on the quality

of the functional maps.

6. Conclusions

We have presented a new approach to tackle the region-

based correspondence (RBC) problem, where the goal is to

find segments/regions on two shapes that can be reliably put

in correspondence. When formulated using a given similar-

ity matrix between vertices on the two shapes, RBC is a

biclustering problem. However, in RBC, it is important that

the obtained biclusters have spatial smoothness/coherence

(i.e., that nearby vertices are put in the same region), a de-

sire that is not easily cast into classical biclustering tech-

niques. We have thus proposed a novel probabilistic bi-

clustering formulation combining three ingredients: low-

rank matrix factorization; a sparsity-inducing spike and slab

prior (SSP); a spatial smoothness prior coupled with the

SSP, encouraging pairs of nearby (in terms of geodesic dis-

tance of the corresponding vertices) rows/columns to be-

long to the same bicluster. Computationally, we resort to

the EM algorithm to estimate the model parameters and

retrieve the biclusters. The resulting method, called spa-

tially smooth spike and slab biclustering (S4B), was tested

on the FAUST dataset, outperforming both state-of-the-art

RBC techniques and classical biclustering methods.
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