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Abstract

We investigate methods for combining multiple self-

supervised tasks—i.e., supervised tasks where data can be

collected without manual labeling—in order to train a sin-

gle visual representation. First, we provide an apples-to-

apples comparison of four different self-supervised tasks

using the very deep ResNet-101 architecture. We then com-

bine tasks to jointly train a network. We also explore lasso

regularization to encourage the network to factorize the

information in its representation, and methods for “har-

monizing” network inputs in order to learn a more uni-

fied representation. We evaluate all methods on ImageNet

classification, PASCAL VOC detection, and NYU depth

prediction. Our results show that deeper networks work

better, and that combining tasks—even via a naı̈ve multi-

head architecture—always improves performance. Our best

joint network nearly matches the PASCAL performance of a

model pre-trained on ImageNet classification, and matches

the ImageNet network on NYU depth prediction.

1. Introduction

Vision is one of the most promising domains for unsu-

pervised learning. Unlabeled images and video are avail-

able in practically unlimited quantities, and the most promi-

nent present image models—neural networks—are data

starved, easily memorizing even random labels for large im-

age collections [45]. Yet unsupervised algorithms are still

not very effective for training neural networks: they fail

to adequately capture the visual semantics needed to solve

real-world tasks like object detection or geometry estima-

tion the way strongly-supervised methods do. For most vi-

sion problems, the current state-of-the-art approach begins

by training a neural network on ImageNet [35] or a similarly

large dataset which has been hand-annotated.

How might we better train neural networks without man-

ual labeling? Neural networks are generally trained via

backpropagation on some objective function. Without la-

bels, however, what objective function can measure how

good the network is? Self-supervised learning answers this

question by proposing various tasks for networks to solve,

where performance is easy to measure, i.e., performance

can be captured with an objective function like those seen

in supervised learning. Ideally, these tasks will be diffi-

cult to solve without understanding some form of image

semantics, yet any labels necessary to formulate the objec-

tive function can be obtained automatically. In the last few

years, a considerable number of such tasks have been pro-

posed [1, 2, 6, 7, 8, 17, 20, 21, 23, 25, 26, 27, 28, 29, 31,

39, 40, 42, 43, 46, 47], such as asking a neural network to

colorize grayscale images, fill in image holes, solve jigsaw

puzzles made from image patches, or predict movement in

videos. Neural networks pre-trained with these tasks can

be re-trained to perform well on standard vision tasks (e.g.

image classification, object detection, geometry estimation)

with less manually-labeled data than networks which are

initialized randomly. However, they still perform worse in

this setting than networks pre-trained on ImageNet.

This paper advances self-supervision first by implement-

ing four self-supervision tasks and comparing their perfor-

mance using three evaluation measures. The self-supervised

tasks are: relative position [7], colorization [46], the “ex-

emplar” task [8], and motion segmentation [27] (described

in section 2). The evaluation measures (section 5) assess a

diverse set of applications that are standard for this area, in-

cluding ImageNet image classification, object category de-

tection on PASCAL VOC 2007, and depth prediction on

NYU v2.

Second, we evaluate if performance can be boosted by

combining these tasks to simultaneously train a single trunk

network. Combining the tasks fairly in a multi-task learn-

ing objective is challenging since the tasks learn at different

rates, and we discuss how we handle this problem in sec-

tion 4. We find that multiple tasks work better than one, and

explore which combinations give the largest boost.

Third, we identify two reasons why a naı̈ve combination

of self-supervision tasks might conflict, impeding perfor-

mance: input channels can conflict, and learning tasks can

conflict. The first sort of conflict might occur when jointly

training colorization and exemplar learning: colorization re-

ceives grayscale images as input, while exemplar learning

receives all color channels. This puts an unnecessary burden

on low-level feature detectors that must operate across do-

mains. The second sort of conflict might happen when one
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task learns semantic categorization (i.e. generalizing across

instances of a class) and another learns instance matching

(which should not generalize within a class). We resolve the

first conflict via “input harmonization”, i.e. modifying net-

work inputs so different tasks get more similar inputs. For

the second conflict, we extend our mutli-task learning ar-

chitecture with a lasso-regularized combination of features

from different layers, which encourages the network to sep-

arate features that are useful for different tasks. These ar-

chitectures are described in section 3.

We use a common deep network across all experiments,

a ResNet-101-v2, so that we can compare various diverse

self-supervision tasks apples-to-apples. This comparison is

the first of its kind. Previous work applied self-supervision

tasks over a variety of CNN architectures (usually relatively

shallow), and often evaluated the representations on differ-

ent tasks; and even where the evaluation tasks are the same,

there are often differences in the fine-tuning algorithms.

Consequently, it has not been possible to compare the per-

formance of different self-supervision tasks across papers.

Carrying out multiple fair comparisons, together with the

implementation of the self-supervised tasks, joint training,

evaluations, and optimization of a large network for several

large datasets has been a significant engineering challenge.

We describe how we carried out the large scale training effi-

ciently in a distributed manner in section 4. This is another

contribution of the paper.

As shown in the experiments of section 6, by combining

multiple self-supervision tasks we are able to close further

the gap between self-supervised and fully supervised pre-

training over all three evaluation measures.

1.1. Related Work

Self-supervision tasks for deep learning generally in-

volve taking a complex signal, hiding part of it from the

network, and then asking the network to fill in the missing

information. The tasks can broadly be divided into those

that use auxiliary information or those that only use raw

pixels.

Tasks that use auxiliary information such as multi-modal

information beyond pixels include: predicting sound given

videos [26], predicting camera motion given two images of

the same scene [1, 17, 44], or predicting what robotic mo-

tion caused a change in a scene [2, 29, 30, 31, 32]. However,

non-visual information can be difficult to obtain: estimating

motion requires IMU measurements, running robots is still

expensive, and sound is complex and difficult to evaluate

quantitatively.

Thus, many works use raw pixels. In videos, time can

be a source of supervision. One can simply predict fu-

ture [39, 40], although such predictions may be difficult to

evaluate. One way to simplify the problem is to ask a net-

work to temporally order a set of frames sampled from a

video [23]. Another is to note that objects generally appear

across many frames: thus, we can train features to remain

invariant as a video progresses [11, 24, 42, 43, 47]. Finally,

motion cues can separate foreground objects from back-

ground. Neural networks can be asked to re-produce these

motion-based boundaries without seeing motion [21, 27].

Self-supervised learning can also work with a single im-

age. One can hide a part of the image and ask the network

to make predictions about the hidden part. The network

can be tasked with generating pixels, either by filling in

holes [6, 28], or recovering color after images have been

converted to grayscale [20, 46]. Again, evaluating the qual-

ity of generated pixels is difficult. To simplify the task, one

can extract multiple patches at random from an image, and

then ask the network to position the patches relative to each

other [7, 25]. Finally, one can form a surrogate “class” by

taking a single image and altering it many times via trans-

lations, rotations, and color shifts [8], to create a synthetic

categorization problem.

Our work is also related to multi-task learning. Several

recent works have trained deep visual representations us-

ing multiple tasks [9, 12, 22, 37], including one work [18]

which combines no less than 7 tasks. Usually the goal is

to create a single representation that works well for every

task, and perhaps share knowledge between tasks. Surpris-

ingly, however, previous work has shown little transfer be-

tween diverse tasks. Kokkinos [18], for example, found a

slight dip in performance with 7 tasks versus 2. Note that

our work is not primarily concerned with the performance

on the self-supervised tasks we combine: we evaluate on

a separate set of semantic “evaluation tasks.” Some previ-

ous self-supervised learning literature has suggested perfor-

mance gains from combining self-supervised tasks [32, 44],

although these works used relatively similar tasks within

relatively restricted domains where extra information was

provided besides pixels. In this work, we find that pre-

training on multiple diverse self-supervised tasks using only

pixels yields strong performance.

2. Self-Supervised Tasks

Too many self-supervised tasks have been proposed in

recent years for us to evaluate every possible combina-

tion. Hence, we chose representative self-supervised tasks

to reimplement and investigate in combination. We aimed

for tasks that were conceptually simple, yet also as diverse

as possible. Intuitively, a diverse set of tasks should lead

to a diverse set of features, which will therefore be more

likely to span the space of features needed for general se-

mantic image understanding. In this section, we will briefly

describe the four tasks we investigated. Where possible, we

followed the procedures established in previous works, al-

though in many cases modifications were necessary for our

multi-task setup. Further implementation details are pro-

vided in the arXiv extended version of this paper.
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Relative Position [7]: This task begins by sampling two

patches at random from a single image and feeding them

both to the network without context. The network’s goal is

to predict where one patch was relative to the other in the

original image. The trunk is used to produce a representa-

tion separately for both patches, which are then fed into a

head which combines the representations and makes a pre-

diction. The patch locations are sampled from a grid, and

pairs are always taken from adjacent grid points (includ-

ing diagonals). Thus, there are only eight possible relative

positions for a pair, meaning the network output is a sim-

ple eight-way softmax classification. Importantly, networks

can learn to detect chromatic aberration to solve the task,

a low-level image property that isn’t relevant to semantic

tasks. Hence, [7] employs “color dropping”, i.e., randomly

dropping 2 of the 3 color channels and replacing them with

noise. We reproduce color dropping, though our harmoniza-

tion experiments explore other approaches to dealing with

chromatic aberration that clash less with other tasks.

Colorization [46]: Given a grayscale image (the L chan-

nel of the Lab color space), the network must predict the

color at every pixel (specifically, the ab components of Lab).

The color is predicted at a lower resolution than the image

(a stride of 8 in our case, a stride of 4 was used in [46]),

and furthermore, the colors are vector quantized into 313

different categories. Thus, there is a 313-way softmax clas-

sification for every 8-by-8 pixel region of the image. Our

implementation closely follows [46].

Exemplar [8]: The original implementation of this task

created pseudo-classes, where each class was generated by

taking a patch from a single image and augmenting it via

translation, rotation, scaling, and color shifts [8]. The net-

work was trained to discriminate between pseudo-classes.

Unfortunately, this approach isn’t scalable to large datasets,

since the number of categories (and therefore, the number

of parameters in the final fully-connected layer) scales lin-

early in the number of images. However, the approach can

be extended to allow an infinite number of classes by us-

ing a triplet loss, similar to [42], instead of a classifica-

tion loss per class. Specifically, we randomly sample two

patches x1 and x2 from the same pseudo-class, and a third

patch x3 from a different pseudo-class (i.e. from a differ-

ent image). The network is trained with a loss of the form

max(D(f(x1), f(x2))−D(f(x1), f(x3)) +M, 0), where

D is the cosine distance, f(x) is network features for x (in-

cluding a small head) for patch x, and M is a margin which

we set to 0.5.

Motion Segmentation [27]: Given a single frame of

video, this task asks the network to classify which pixels

will move in subsequent frames. The “ground truth” mask

of moving pixels is extracted using standard dense tracking

algorithms. We follow Pathak et al. [27], except that we

replace their tracking algorithm with Improved Dense Tra-

jectories [41]. Keypoints are tracked over 10 frames, and

any pixel not labeled as camera motion by that algorithm is

treated as foreground. The label image is downsampled by

a factor of 8. The resulting segmentations look qualitatively

similar to those given in Pathak et al. [27]. The network is

trained via a per-pixel cross-entropy with the label image.

Datasets: The three image-based tasks are all trained on

ImageNet, as is common in prior work. The motion seg-

mentation task uses the SoundNet dataset [3]. It is an open

problem whether performance can be improved by differ-

ent choices of dataset, or indeed by training on much larger

datasets.

3. Architectures

In this section we describe three architectures: first, the

(naı̈ve) multi-task network that has a common trunk and a

head for each task (figure 1a); second, the lasso extension

of this architecture (figure 1b) that enables the training to

determine the combination of layers to use for each self-

supervised task; and third, a method for harmonizing input

channels across self-supervision tasks.

3.1. Common Trunk

Our architecture begins with Resnet-101 v2 [15], as im-

plemented in TensorFlow-Slim [13]. We keep the entire ar-

chitecture up to the end of block 3, and use the same block3

representation solve all tasks and evaluations (see figure 1a).

Thus, our “trunk” has an output with 1024 channels, and

consists of 88 convolution layers with roughly 30 million

parameters. Block 4 contains an additional 13 conv layers

and 20 million parameters, but we don’t use it to save com-

putation.

Each task has a separate loss, and has extra layers in

a “head,” which may have a complicated structure. For

instance, the relative position and exemplar tasks have a

siamese architecture. We implement this by passing all

patches through the trunk as a single batch, and then re-

arranging the elements in the batch to make pairs (or

triplets) of representations to be processed by the head. At

each training iteration, only one of the heads is active. How-

ever, gradients are averaged across many iterations where

different heads are active, meaning that the overall loss is a

sum of the losses of different tasks.

3.2. Separating features via Lasso

Different tasks require different features; this applies for

both the self-supervised training tasks and the evaluation

tasks. For example, information about fine-grained breeds

of dogs is useful for, e.g., ImageNet classification, and also

colorization. However, fine-grained information is less use-

ful for tasks like PASCAL object detection, or for relative

positioning of patches. Furthermore, some tasks require

only image patches (such as relative positioning) whilst oth-

ers can make use of entire images (such as colorization),

and consequently features may be learnt at different scales.
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a)

b)

Figure 1. The structure of our multi-task network. It is based on ResNet-101, with block 3 having 23 residual units. a) Naive shared-trunk

approach, where each “head” is attached to the output of block 3. b) the lasso architecture, where each “head” receives a linear combination

of unit outputs within block3, weighted by the matrix α, which is trained to be sparse.

This suggests that, while training on self-supervised tasks,

it might be advantageous to separate out groups of features

that are useful for some tasks but not others. This would

help us with evaluation tasks: we expect that any given

evaluation task will be more similar to some self-supervised

tasks than to others. Thus, if the features are factorized into

different tasks, then the network can select from the discov-

ered feature groups while training on the evaluation tasks.

Inspired by recent works that extract information across

network layers for the sake of transfer learning [14, 22, 36],

we propose a mechanism which allows a network to choose

which layers are fed into each task. The simplest approach

might be to use a task-specific skip layer which selects a sin-

gle layer in ResNet-101 (out of a set of equal-sized candi-

date layers) and feeds it directly into the task’s head. How-

ever, a hard selection operation isn’t differentiable, meaning

that the network couldn’t learn which layer to feed into a

task. Furthermore, some tasks might need information from

multiple layers. Hence, we relax the hard selection process,

and instead pass a linear combination of skip layers to each

head. Concretely, each task has a set of coefficients, one

for each of the 23 candidate layers in block 3. The repre-

sentation that’s fed into each task head is a sum of the layer

activations weighted by these task-specific coefficients. We

impose a lasso (L1) penalty to encourage the combination to

be sparse, which therefore encourages the network to con-

centrate all of the information required by a single task into

a small number of layers. Thus, when fine-tuning on a new

task, these task-specific layers can be quickly selected or

rejected as a group, using the same lasso penalty.

Mathematically, we create a matrix α with N rows and

M columns, where N is the number of self-supervised

tasks, and M is the number of residual units in block 3.

The representation passed to the head for task n is then:

M
∑

m=1

αn,m ∗ Unitm (1)

where Unitm is the output of residual unit m. We en-

force that
∑M

m=1
α
2

n,m = 1 for all tasks n, to control the

output variance (note that the entries in α can be negative,

so a simple sum is insufficient). To ensure sparsity, we add

an L1 penalty on the entries of α to the objective function.

We create a similar α matrix for the set of evaluation tasks.

3.3. Harmonizing network inputs

Each self-supervised task pre-processes its data differ-

ently, so the low-level image statistics are often very dif-

ferent across tasks. This puts a heavy burden on the trunk

network, since its features must generalize across these sta-

tistical differences, which may impede learning. Further-

more, it gives the network an opportunity to cheat: the net-

work might recognize which task it must solve, and only

represent information which is relevant to that task, instead

of truly multi-task features. This problem is especially bad

for relative position, which pre-processes its input data by

discarding 2 of the 3 color channels, selected at random,

and replacing them with noise. Chromatic aberration is also

hard to detect in grayscale images. Hence, to “harmonize,”

we replace relative position’s preprocessing with the same

preprocessing used for colorization: images are converted

to Lab, and the a and b channels are discarded (we replicate

the L channel 3 times so that the network can be evaluated

on color images).

4. Training the Network

Training a network with nearly 100 hidden layers re-

quires considerable compute power, so we distribute it

across several machines. As shown in figure 2, each ma-

chine trains the network on a single task. Parameters for
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Figure 2. Distributed training setup. Several GPU machines are

allocated for each task, and gradients from each task are synchro-

nized and aggregated with separate RMSProp optimizers.

the ResNet-101 trunk are shared across all replicas. There

are also several task-specific layers, or heads, which are

shared only between machines that are working on the same

task. Each worker repeatedly computes losses which are

then backpropagated to produce gradients.

Given many workers operating independently, gradients

are usually aggregated in one of two ways. The first op-

tion is asynchronous training, where a centralized parame-

ter server receives gradients from workers, applies the up-

dates immediately, and sends back the up-to-date parame-

ters [5, 33]. We found this approach to be unstable, since

gradients may be stale if some machines run slowly. The

other approach is synchronous training, where the parame-

ter server accumulates gradients from all workers, applies

the accumulated update while all workers wait, and then

sends back identical parameters to all workers [4], prevent-

ing stale gradients. “Backup workers” help prevent slow

workers from slowing down training. However, in a mul-

titask setup, some tasks are faster than others. Thus, slow

tasks will not only slow down the computation, but their

gradients are more likely to be thrown out.

Hence, we used a hybrid approach: we accumulate gra-

dients from all workers that are working on a single task,

and then have the parameter servers apply the aggregated

gradients from a single task when ready, without synchro-

nizing with other tasks. Our experiments found that this

approach resulted in faster learning than either purely syn-

chronous or purely asynchronous training, and in particular,

was more stable than asynchronous training.

We also used the RMSProp optimizer, which has been

shown to improve convergence in many vision tasks versus

stochastic gradient descent. RMSProp re-scales the gradi-

ents for each parameter such that multiplying the loss by

a constant factor does not change how quickly the network

learns. This is a useful property in multi-task learning, since

different loss functions may be scaled differently. Hence,

we used a separate RMSProp optimizer for each task. That

is, for each task, we keep separate moving averages of the

squared gradients, which are used to scale the task’s accu-

mulated updates before applying them to the parameters.

For all experiments, we train on 64 GPUs in parallel, and

save checkpoints every roughly 2.4K GPU (NVIDIA K40)

hours. These checkpoints are then used as initialization for

our evaluation tasks.

5. Evaluation

Here we describe the three evaluation tasks that we trans-

fer our representation to: image classification, object cate-

gory detection, and pixel-wise depth prediction.

ImageNet with Frozen Weights: We add a single linear

classification layer (a softmax) to the network at the end of

block 3, and train on the full ImageNet training set. We

keep all pre-trained weights frozen during training, so we

can evaluate raw features. We evaluate on the ImageNet

validation set. The training set is augmented in translation

and color, following [38], but during evaluation, we don’t

use multi-crop or mirroring augmentation. This evaluation

is similar to evaluations used elsewhere (particularly Zhang

et al. [46]). Performing well requires good representation

of fine-grained object attributes (to distinguish, for exam-

ple, breeds of dogs). We report top-5 recall in all charts

(except Table 1, which reports top-1 to be consistent with

previous works). For most experiments we use only the

output of the final “unit” of block 3, and use max pooling

to obtain a 3x3x1024 feature vector, which is flattened and

used as the input to the one-layer classifier. For the lasso

experiments, however, we use a weighted combination of

the (frozen) features from all block 3 layers, and we learn

the weight for each layer, following the structure described

in section 3.2.

PASCAL VOC 2007 Detection: We use Faster-

RCNN [34], which trains a single network base with

multiple heads for object proposals, box classification, and

box localization. Performing well requires the network

to accurately represent object categories and locations,

with penalties for missing parts which might be hard to

recognize (e.g., a cat’s body is harder to recognize than its

head). We fine-tune all network weights. For our ImageNet

pre-trained ResNet-101 model, we transfer all layers up

through block 3 from the pre-trained model into the trunk,

and transfer block 4 into the proposal categorization head,

as is standard. We do the same with our self-supervised

network, except that we initialize the proposal categoriza-

tion head randomly. Following Doersch et al. [7], we use

multi-scale data augmentation for all methods, including

baselines. All other settings were left at their defaults. We

train on the VOC 2007 trainval set, and evaluate Mean
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Average Precision on the VOC 2007 test set. For the lasso

experiments, we feed our lasso combination of block 3

layers into the heads, rather than the final output of block 3.

NYU V2 Depth Prediction: Depth prediction measures

how well a network represents geometry, and how well that

information can be localized to pixel accuracy. We use a

modified version of the architecture proposed in Laina et

al. [19]. We use the “up projection” operator defined in that

work, as well as the reverse Huber loss. We replaced the

ResNet-50 architecture with our ResNet-101 architecture,

and feed the block 3 outputs directly into the up-projection

layers (block 4 was not used in our setup). This means we

need only 3 levels of up projection, rather than 4. Our up

projection filter sizes were 512, 256, and 128. As with our

PASCAL experiments, we initialize all layers up to block 3

using the weights from our self-supervised pre-training, and

fine-tune all weights. We selected one measure—percent of

pixels where relative error is below 1.25—as a representa-

tive measure (others available in our extended arXiv report).

Relative error is defined as max
(

dgt

dp
,

dp

dgt

)

, where dgt is

groundtruth depth and dp is predicted depth. For the lasso

experiments, we feed our lasso combination of block3 lay-

ers into the up projection layers, rather than the final output

of block 3.

6. Results: Comparisons and Combinations

ImageNet Baseline: As an “upper bound” on perfor-

mance, we train a full ResNet-101 model on ImageNet,

which serves as a point of comparison for all our evalua-

tions. Note that just under half of the parameters of this

network are in block 4, which are not pre-trained in our

self-supervised experiments (they are transferred from the

ImageNet network only for the Pascal evaluations). We use

the standard learning rate schedule of Szegedy et al. [38]

for ImageNet training (multiply the learning rate by 0.94
every 2 epochs), but we don’t use such a schedule for our

self-supervised tasks.

6.1. Comparing individual self-supervision tasks

Table 1 shows the performance of individual tasks for

the three evaluation measures. Compared to previously-

published results, our performance is significantly higher

in all cases, most likely due to the additional depth of

ResNet (cf. AlexNet) and additional training time. Note,

our ImageNet-trained baseline for Faster-RCNN is also

above the previously published result using ResNet (69.9

in [34] cf. 74.2 for ours), mostly due to the addition of multi-

scale augmentation for the training images following [7].

Of the self-supervised pre-training methods, relative po-

sition and colorization are the top performers, with relative

position winning on PASCAL and NYU, and colorization

winning on ImageNet-frozen. Remarkably, relative posi-

tion performs on-par with ImageNet pre-training on depth

Pre-training ImageNet top1 PASCAL NYU

Prev. Ours Prev. Ours Ours

Rel. Pos. 31.7[46] 36.21 61.7 [7] 66.75 80.54

Color 32.6[46] 39.62 46.9[46] 65.47 76.79

Exemplar - 31.51 - 60.94 69.57

Mot. Seg. - 27.62 52.2[27] 61.13 74.24

INet Labels 51.0[46] 66.82 69.9[34] 74.17 80.06

Table 1. Comparison of our implementation with previous results

on our evaluation tasks: ImageNet with frozen features (left), and

PASCAL VOC 2007 mAP with fine-tuning (middle), and NYU

depth (right, not used in previous works). Unlike elsewhere in this

paper, ImageNet performance is reported here in terms of top 1

accuracy (versus recall at 5 elsewhere). Our ImageNet pre-training

performance on ImageNet is lower than the performance He et

al. [15] (78.25) reported for ResNet-101 since we remove block 4.

prediction, and the gap is just 7.5% mAP on PASCAL. The

only task where the gap remains large is the ImageNet eval-

uation itself, which is not surprising since the ImageNet pre-

training and evaluation use the same labels. Motion seg-

mentation and exemplar training are somewhat worse than

the others, with exemplar worst on Pascal and NYU, and

motion segmentation worst on ImageNet.

Figure 3 shows how the performance changes as pre-

training time increases (time is on the x-axis). After 16.8K

GPU hours, performance is plateauing but has not com-

pletely saturated, suggesting that results can be improved

slightly given more time. Interestingly, on the ImageNet-

frozen evaluation, where colorization is winning, the gap

relative to relative position is growing. Also, while most

algorithms slowly improve performance with training time,

exemplar training doesn’t fit this pattern: its performance

falls steadily on ImageNet, and undulates on PASCAL and

NYU. Even stranger, performance for exemplar is seem-

ingly anti-correlated between Pascal and NYU from check-

point to checkpoint. A possible explanation is that exemplar

training encourages features that aren’t invariant beyond the

training transformations (e.g. they aren’t invariant to object

deformation or out-of-plane rotation), but are instead sensi-

tive to the details of textures and low-level shapes. If these

irrelevant details become prominent in the representation,

they may serve as distractors for the evaluation classifiers.

Note that the random baseline performance is low rela-

tive to a shallower network, especially the ImageNet-frozen

evaluation (a linear classifier on random AlexNet’s conv5

features has top-5 recall of 27.1%, cf. 10.5% for ResNet).

All our pre-trained nets far outperform the random baseline.

The fact that representations learnt by the various self-

supervised methods have different strengths and weak-

nesses suggests that the features differ. Therefore, combin-

ing methods may yield further improvements. On the other

hand, the lower-performing tasks might drag-down the per-

formance of the best ones. Resolving this uncertainty is a

key motivator for the next section.
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Figure 3. Comparison of performance for different self-

supervised methods over time. X-axis is compute time on the

self-supervised task (∼2.4K GPU hours per tick). “Random Init”

shows performance with no pre-training.

Implementation Details: Unfortunately, intermittent net-

work congestion can slow down experiments, so we don’t

measure wall time directly. Instead, we estimate compute

time for a given task by multiplying the per-task training

step count by a constant factor, which is fixed across all ex-

periments, representing the average step time when network

congestion is minimal. We add training cost across all tasks

used in an experiment, and snapshot when the total cost

crosses a threshold. For relative position, 1 epoch through

the ImageNet train set takes roughly 350 GPU hours; for

Pre-training ImageNet PASCAL NYU

RP 59.21 66.75 80.54

RP+Col 66.64 68.75 79.87

RP+Ex 65.24 69.44 78.70

RP+MS 63.73 68.81 78.72

RP+Col+Ex 68.65 69.48 80.17

RP+Col+Ex+MS 69.30 70.53 79.25

INet Labels 85.10 74.17 80.06

Table 2. Comparison of various combinations of self-supervised

tasks. Checkpoints were taken after 16.8K GPU hours, equiva-

lent to checkpoint 7 in Figure 3. Abbreviation key: RP: Relative

Position; Col: Colorization; Ex: Exemplar Nets; MS: Motion Seg-

mentation. Metrics: ImageNet: Recall@5; PASCAL: mAP; NYU:

% Pixels below 1.25.

colorization it takes roughly 90 hours; for exemplar nets

roughly 60 hours. For motion segmentation, one epoch

through our video dataset takes roughly 400 GPU hours.

6.2. Naı̈ve multi-task combination of self-
supervision tasks

Table 2 shows results for combining self-supervised

pre-training tasks. Beginning with one of our strongest

performers—relative position—we see that adding any of

our other tasks helps performance (except on NYU, where

differences are likely not significant). Adding either col-

orization or exemplar leads to more than 6 points gain on

ImageNet. Furthermore, it seems that the boosts are com-

plementary: adding both colorization and exemplar gives a

further 2% boost. Our best-performing method was a com-

bination of all four self-supervised tasks. We don’t find

that multitask learning slows down training time either: the

combined method has the highest performance even if we

stop training at 2.4K GPU hours.

To further probe how well our representation localizes

objects, we evaluated the PASCAL detector at a more strin-

gent overlap criterion: 75% IoU (versus standard VOC 2007

criterion of 50% IoU). Our model gets 43.91% mAP in this

setting, versus the standard ImageNet model’s performance

of 44.27%, a gap of less than half a percent. Thus, the self-

supervised approach may be especially useful when accu-

rate localization is important.

6.3. Mediated combination of self-supervision tasks

Harmonization: We train two versions of a network on

relative position and colorization: one using harmonization

to make the relative position inputs look more like coloriza-

tion, and one without it (equivalent to RP+Col in section 6.2

above). As a baseline, we make the same modification to

a network trained only on relative position alone: i.e., we

convert its inputs to grayscale. In this baseline, we don’t

expect any performance boost over the original relative po-

sition task, because there are no other tasks to harmonize

with. Results are shown in Table 3. However, on the Im-
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Pre-training ImageNet PASCAL NYU

RP 59.21 66.75 80.23

RP / H 62.33 66.15 80.39

RP+Col 66.64 68.75 79.87

RP+Col / H 68.08 68.26 79.69

Table 3. Comparison of methods with and without harmonization,

where relative position training is converted to grayscale to mimic

the inputs to the colorization network. H denotes an experiment

done with harmonization.
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Figure 4. Weights learned via the lasso technique. Each row

shows one task: self-supervised tasks on top, evaluation tasks on

bottom. Each square shows |α| for one ResNet “Unit” (shallow-

est layers at the left). Whiter colors indicate higher |α|, with a

nonlinear scale to make smaller nonzero values easily visible.

Net structure ImageNet PASCAL NYU

No Lasso 69.30 70.53 79.25

Eval Only Lasso 70.18 68.86 79.41

Pre-train Only Lasso 68.09 68.49 78.96

Pre-train & Eval Lasso 69.44 68.98 79.45

Table 4. Comparison of performance with and without the lasso

technique for factorizing representations, for a network trained on

all four self-supervised tasks for 16.8K GPU-hours. “No Lasso”

is equivalent to table 2’s RP+Col+Ex+MS. “Eval Only” uses the

same pre-trained network, with lasso used only on the evaluation

task, while “Pre-train Only” uses it only during pre-training. The

final row uses lasso always.

ageNet evaluation there is an improvement when we pre-

train using only relative position (due to the change from

adding noise to the other two channels to using grayscale

input (three equal channels)), and this improvement follows

through to the the combined relative position and coloriza-

tion tasks. The other two evaluation tasks do not show any

improvement with harmonization. This suggests that our

networks are actually quite good at dealing with stark differ-

ences between pre-training data domains when the features

are fine-tuned at test time.

Lasso training: As a first sanity check, Figure 4 plots the

α matrix learned using all four self-supervised tasks. Dif-

ferent tasks do indeed select different layers. Somewhat

surprisingly, however, there are strong correlations between

the selected layers: most tasks want a combination of low-

level information and high-level, semantic information. The

depth evaluation network selects relatively high-level infor-

mation, but evaluating on ImageNet-frozen and PASCAL

makes the network select information from several levels,

often not the ones that the pre-training tasks use. This sug-

gests that, although there are useful features in the learned

representation, the final output space for the representation

is still losing some information that’s useful for evaluation

tasks, suggesting a possible area for future work.

The final performance of this network is shown in Ta-

ble 4. There are four cases: no lasso, lasso only on the

evaluation tasks, lasso only at pre-training time, and lasso

in both self-supervised training and evaluation. Unsurpris-

ingly, using lasso only for pre-training performs poorly

since not all information reaches the final layer. Surpris-

ingly, however, using the lasso both for self-supervised

training and evaluation is not very effective, contrary to

previous results advocating that features should be selected

from multiple layers for task transfer [14, 22, 36]. Perhaps

the multi-task nature of our pre-training forces more infor-

mation to propagate through the entire network, so explic-

itly extracting information from lower layers is unnecessary.

7. Summary and extensions

In this work, our main findings are: (i) Deeper net-

works improve self-supervision over shallow networks; (ii)

Combining self-supervision tasks always improves perfor-

mance over the tasks alone; (iii) The gap between Ima-

geNet pre-trained and self-supervision pre-trained with four

tasks is nearly closed for the VOC detection evaluation, and

completely closed for NYU depth, (iv) Harmonization and

lasso weightings only have minimal effects; and, finally, (v)

Combining self-supervised tasks leads to faster training (see

graphs in the extended arxiv version of this paper).

There are many opportunities for further improvements:

we can add augmentation (as in the exemplar task) to all

tasks; we could add more self-supervision tasks (indeed

new ones have appeared during the preparation of this pa-

per, e.g. [10]); and we can experiment with methods for

dynamically weighting the importance of tasks in the opti-

mization. It would also be interesting to repeat these experi-

ments with a deep network such as VGG-16 where consecu-

tive layers are less correlated, or with even deeper networks

(ResNet-152, DenseNet [16] and beyond) to tease out the

match between self-supervision tasks and network depth.

For the lasso, it might be worth investigating block level

weightings using a group sparsity regularizer.

For the future, given the performance improvements

demonstrated in this paper, there is a possibility that self-

supervision will eventually augment or replace fully super-

vised pre-training.
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Pătrăucean and Karen Simonyan for helpful discussions.

2058



References

[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In ICCV, 2015.
[2] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-

itive physics. arXiv preprint arXiv:1606.07419, 2016.
[3] Y. Aytar, C. Vondrick, and A. Torralba. Soundnet: Learning

sound representations from unlabeled video. In NIPS, 2016.
[4] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisit-

ing distributed synchronous SGD. In ICLR Workshop Track,

2016.
[5] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,

A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale

distributed deep networks. In NIPS, 2012.
[6] E. Denton, S. Gross, and R. Fergus. Semi-supervised

learning with context-conditional generative adversarial net-

works. arXiv preprint arXiv:1611.06430, 2016.
[7] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-

sual representation learning by context prediction. In ICCV,

2015.
[8] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and

T. Brox. Discriminative unsupervised feature learning with

convolutional neural networks. In NIPS, 2014.
[9] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In ICCV, 2015.
[10] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-

supervised video representation learning with odd-one-out

networks. arXiv preprint arXiv:1611.06646, 2016.
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