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Abstract

Deblurring images with outliers has attracted consider-

able attention recently. However, existing algorithms usual-

ly involve complex operations which increase the difficulty

of blur kernel estimation. In this paper, we propose a sim-

ple yet effective blind image deblurring algorithm to handle

blurred images with outliers. The proposed method is moti-

vated by the observation that outliers in the blurred images

significantly affect the goodness-of-fit in function approxi-

mation. Therefore, we propose an algorithm to model the

data fidelity term so that the outliers have little effect on k-

ernel estimation. The proposed algorithm does not require

any heuristic outlier detection step, which is critical to the

state-of-the-art blind deblurring methods for images with

outliers. We analyze the relationship between the proposed

algorithm and other blind deblurring methods with outlier

handling and show how to estimate intermediate latent im-

ages for blur kernel estimation principally. We show that

the proposed method can be applied to generic image de-

blurring as well as non-uniform deblurring. Experimental

results demonstrate that the proposed algorithm performs

favorably against the state-of-the-art blind image deblur-

ring methods on both synthetic and real-world images.

1. Introduction

Single image deblurring has received considerable atten-

tion in recent years as more photos are taken using hand-

held devices, especially with mobile smartphones. Al-

though most existing smartphones are equipped with anti-

shake features, inevitable camera shake results in blurred

images when taking photos in low-light conditions. Numer-

ous deblurring algorithms [1, 3, 5, 10, 11, 12, 13, 14, 16,

21, 23, 24, 25, 33] have been developed to address motion

blur. The success of these methods can be mainly attribut-

ed to the use of statistical priors from natural images (e.g.,

heavy-tailed distribution of image gradients [5, 25], normal-

ized sparsity prior [13], L0-regularized priors [20, 32, 33],

internal patch recurrence [19], and dark channel prior [23])

and salient edge selection for kernel estimation [3, 31]. Al-

though most existing methods are able to address blurred

images with a small amount of noise, these approaches are

not effective in handling blurred images with significan-

t outliers, such as saturated pixels and non-Gaussian noise.

Handling blurred images with significant outliers is chal-

lenging, and existing methods [4, 29] mainly address the

effects of outliers for non-blind deblurring. To address

blurred images with outliers in blind image deblurring, one

type of methods depends heavily on domain-specific prop-

erties, e.g., light streaks [8, 18]. These methods are less ef-

fective when the light streaks cannot be extracted and do not

perform well for other types of outliers, e.g., non-Gaussian

noise. Recently, Pan et al. [22] propose an outlier handling

method to improve the blur kernel estimation. This method

first selects salient edges and then detects the regions of out-

liers to refine the edge information for blur kernel estima-

tion. Although this method performs well on several kinds

of outliers, e.g., saturated pixels and non-Gaussian noise, it

needs complex operations and does not deblur images well

when the edges are not correctly selected or the regions of

outliers cannot be detected.

It is well known that the outliers significantly affect the

goodness-of-fit in function approximation. Thus, when out-

liers exist, the intermediate latent images estimated by the

methods with conventional data fidelity terms [15] contain

significant artifacts and blur residues (Figure 2), which ac-

cordingly affects the blur kernel estimation process. This

is the main reason why most existing blind deblurring ap-

proaches are less effective in handling blurred images with

outliers. In this paper, we propose a simple yet effective

method that is able to minimize the effects of outliers on

the blur kernel estimation. In contrast to existing outli-

er handling algorithms [8, 18, 22], the proposed method

does not require complex operations, e.g., light streak de-

tection [8, 18] and outlier detection [22], which are vital for

existing outlier handling methods to estimate blur kernels.

The contributions of this work are summarized as fol-

lows. First, we propose a robust method to measure the

goodness-of-fit so that the effects of outliers can be min-

imized in the blur kernel estimation process. Second, we
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Figure 1. Properties of saturated pixels and impulse noise. (a)

Clear images x with the blur kernels k. (b) Blurred images y with

saturated pixels (top) and impulse noise (bottom). (c) Blue points:

the relation between y and x ∗ k. Purple lines: the ideal case of

y = x ∗ k.

present the detailed analysis on how the proposed method

performs in the blur kernel estimation process from two per-

spectives, including its mathematical essence and its weight

in the iteratively re-weighted least squares (IRLS) [15] op-

timization. Third, we discuss the relation between the pro-

posed algorithm and other methods concerning outlier han-

dling and show that the proposed method generates reliable

intermediate results for blur kernel estimation without ad-

hoc detection processes. Furthermore, the proposed method

performs favorably against state-of-the-art blind deblurring

methods on both synthetic and real-world images with sig-

nificant outliers. Finally, the proposed algorithm is extend-

ed to handle the non-uniform deblurring effectively.

2. Proposed Method

In this section, we develop a robust method within the

maximum a posteriori (MAP) framework to handle outliers

for blind image deblurring. We first discuss the motivation

behind the proposed method and the effects of outliers on

data fidelity terms as well as the blur kernel estimation.

2.1. Motivation

A blurred image y can be modeled as a clear image x
convolved with a blur kernel k and the noise n:

y = x ∗ k + n, (1)

where ∗ denotes the convolution operator. However, some

intensity values of y are quite different from those of x ∗ k
due to the effect of outliers, e.g., saturated pixels and im-

pulse noise (Figure 1), which cannot be well modeled by

the linear convolution model (1) and will affect both the la-

tent image estimation and the blur kernel estimation.

Most deblurring methods are based on the linear convo-

lution model (1), while the outliers usually have significan-

t effects on the goodness-of-fit (Figure 1). Thus, existing

approaches may consider the outliers as the useful informa-

tion, e.g. the salient edge, which will accordingly affect the

(a) Blurred (b) [13] (c) [33] (d) [23] (e) Ours

(f) [13] (g) [33] (h) [23] (i) Ours

Figure 2. Effects of outliers on blur kernel estimation. (b)-(e) De-

blurred images. (f)-(i) Intermediate latent images in the kernel

estimation.
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(a) Impulse noise (b) Saturated pixels

Figure 3. Effects of outliers on the metrics used in the conventional

data fidelity terms. Each curve shows the goodness-of-fit at differ-

ent noise level and exposure length. The noise density denotes the

proportion of pixels affected by noise in an image. The exposure

length denotes the exposure time. The examples of impulse noise

and saturated pixels are shown in Figure 1.

blur kernel estimation process. We note that although some

image priors are able to handle saturated pixels by exploit-

ing intensity information [20, 23], these image priors are

derived based on the noise-free images and are less effec-

tive for non-Gaussian noise.

Figure 2 shows some deblurred results with correspond-

ing intermediate latent images generated by the methods

with different image priors. Due to outliers, state-of-the-art

methods are less effective in deblurring these images.

Effect of outliers on data fidelity terms. The commonly

used data fidelity term in blind image deblurring is based

on ℓ2-norm. However, the deblurring methods based on

this data fidelity term are not robust to outliers as shown

in [4, 22]. Although the deblurring methods based on the

data fidelity terms with ℓ1-norm [31] or Lorentzian func-

tion [2] are able to handle outliers, e.g., impulse noise,

to certain extent, these approaches are less effective when

the noise density is higher or the exposure length is longer

(more saturated pixels) [4, 22].

Figure 3 shows the effects of outliers, i.e., impulse noise

and saturated pixels, on the data fidelity terms. In Fig-

ure 3, the values of the data fidelity terms based on ℓ2-norm,

ℓ1-norm, and Lorentzian function significantly increase as

the noise density or exposure length increases, which in-

dicate that outliers dramatically affects the goodness-of-fit

and these data fidelity terms are sensitive to outliers. There-

fore, deblurring methods based on these data fidelity terms

are less effective for images with outliers.
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Recent outlier handling methods. In [8], Hu et al. devel-

op a light streak detection method and use the light streak

information to guide kernel estimation. Pan et al. [22] de-

tect the positions of outliers and remove them from salient

edges for kernel estimation. We note existing methods oper-

ate on the same premise of detecting and removing outliers

to minimize the adversarial effects on kernel estimation pro-

cess. In essence, existing outlier handling processes used

in [8, 22] aim to make the goodness-of-fit of the data fideli-

ty term more reliable. This is the main reason that recent

outlier handling methods [8, 22] is able to handle blurred

images with outliers.

As explained above, the data fidelity term plays a critical

role in image deblurring with outliers. Although this prob-

lem has been extensively studied in machine learning prob-

lem, it receives much less attention in image deblurring as

the outliers may result from non-Gaussian noise and satu-

rated pixels. According to the robust analysis [9], a good

data fidelity term should satisfy that its value is not sensi-

tive to the large error (Figure 1). Based on this criterion, we

adopt a new data fidelity term in the kernel estimation based

on a robust function, which is defined as

R(z) =
z2

2
− log(a+ ebz

2

)

2b
, (2)

where a and b are positive scalar parameters. This function

is robust to outliers as shown in Figure 3. More detailed

analysis on (2) in blind image deblurring is provided in Sec-

tion 4.1.

2.2. Proposed Model

Based on above analysis, we estimate the latent image x
and the blur kernel k from the blurred image y based on the

MAP framework. The proposed deblurring model is

min
x,k

R(x ∗ k − y) + γPk(k) + λPx(x), (3)

where Pk(k) and Px(x) are priors on the blur kernel k and

the latent image x; γ and λ are weights to balance these

two priors. More analysis about how the proposed algorith-

m performs on blind image deblurring and its robustness to

outliers is discussed in Section 4.1. Note that the data fideli-

ty term is introduced for uniform deblurring first, but can be

applied to non-uniform deblurring (see Section 5).

3. Optimization

The deblurring process is modeled as the optimization

problem by alternatively solving the latent image x

min
x

R(x ∗ k − y) + λPx(x), (4)

and the blur kernel k,

min
k

R(x ∗ k − y) + γPk(k). (5)

To maintain the sparsity of blur kernels, we use the ℓ1 norm

to regularize the intensity of k [22], i.e., Pk(k) = ‖k‖1. For

the image prior, we use the hyper-Laplacian prior proposed

by Levin et al. [15] and set Px(x) = ‖∇x‖p, p = 0.8 in our

model. The optimization details of these two sub-problems

are described in the following sections.

3.1. Estimating Latent Image x

With the blur kernel k from the previous iteration, the

intermediate latent image x is estimated by

min
x

R(x ∗ k − y) + λ‖∇x‖0.8. (6)

It is difficult to solve this optimization problem due to the

non-linear function R(·). We use the IRLS [15] method to

solve (6). At each iteration, we need to solve the quadratic

problem:

x[t+1] =argmin
x

∑

p

{ωx|(x ∗ k − y)p|2

+ λ(ωx
h|(∂hx)p|2 + ωx

v |(∂vx)p|2)},
(7)

where ωx =
R′((x[t]∗k−y)p)

(x[t]∗k−y)p
, R′(·) is the derivative func-

tion of R(·), ωx
h = |(∂hx[t])p|−1.2, ωx

v = |(∂vx[t])p|−1.2, t
denotes the iteration index, and the subscript p denotes the

spatial location of a pixel. We note that (7) is a weighted

least squares problem which can be solved by the conjugate

gradient method.

3.2. Estimating Blur Kernel k

Given the intermediate latent image x, the blur kernel k
can be obtained by solving (5). As the kernel estimation

based on image gradients has been shown to be more ac-

curate [3, 25, 33], we replace the image intensity with the

image derivatives in the data fidelity term and estimate the

blur kernel k by

min
k

R(∇x ∗ k −∇y) + γ‖k‖1. (8)

Similar to (6), we use the IRLS method to solve (8) by

k[t+1] =argmin
k

∑

p

{ωk
h|(∂hx ∗ k − ∂hy)p|2

+ ωk
v |(∂vx ∗ k − ∂vy)p|2 + γωk|kp|2},

(9)

where ωk
h =

R′((∂hx∗k
[t]−∂hy)p)

(∂hx∗k[t]−∂hy)p
, ωk

v =
R′((∂vx∗k

[t]−∂vy)p)

(∂vx∗k[t]−∂vy)p
,

and ωk = 1

|k
[t]
p |

. The conjugate gradient method is used to

solve (9).

After obtaining k, we set the negative elements to 0, and

normalize it so that the sum of its elements is 1. Similar

to the state-of-the-art methods, the proposed kernel estima-

tion process is carried out in a coarse-to-fine manner using

an image pyramid. In the coarsest level, x and k are ini-

tialized as the blurred image and delta kernel, respectively.

Algorithm 1 shows the main steps for the kernel estimation

algorithm on one pyramid level.
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Algorithm 1 Blur kernel estimation algorithm

Input: Blurred image y.

initial k with results from the coarser level.

for i ≤ tmax do

Estimate x according to (7).

Estimate k according to (9).

end for

Output: Blur kernel k and latent image x.
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Figure 4. Visualization of the robust function R(z) and the weight,

i.e.,
R

′(z)
z

, used in IRLS.

4. Analysis of Proposed Method

In this section, we analyze how the proposed algorithm

performs on blind image deblurring with outliers. We also

demonstrate the effectiveness of the proposed data fideli-

ty term for blur kernel estimation with outlier handling. In

addition, we discuss the relationship of the proposed algo-

rithm with other methods in terms of handling outliers.

4.1. Effectivness of Proposed Method

As discussed in Section 2.1, the proposed data fidelity

term is robust to outliers. From the definition of the robust

function (2), the Taylor polynomial approximation of R(z)
with respect to z at 0 is

R(z) =
a

2a+ 2
z2 − log(a+ 1)

2b
+O(z3), (10)

where O(·) denotes the equivalent infinitesimal. The Tay-

lor expansion of R(z) means that R(z) has the same order

with z2 if the value of z is close to zero. This property

demonstrates that the proposed intermediate latent image

estimation model (4) will reduce to the sparse deconvolu-

tion model by Levin et al. [16], which is effective for the

image deconvolution without outliers. Figure 4 shows that

R(z) is close to a constant when the value of z is large1. In

this case, the model (4) reduces to a constant plus the reg-

ularization term. Thus, only the regularization term has an

effect on the image restoration, which indicates that most

outliers will be smoothed. This property ensures that the

deblurring method based on (2) is able to handle outliers.

From the perspective of the IRLS iteration, the weight

for the data fidelity term is
R′(z)

z
. It has a small value when

1The value of (x ∗ k− y) at pixel p is large if pixel p is an outlier, and

is small otherwise (Figure 1).

(a) Blurred image (b) Results of [22] (c) Ours

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) ωk

h
(n) ωk

v (o) ωx

Figure 5. Comparison with Pan et al. [22]. (d)-(f) Edge selection

results during the iterations by [22]. (g)-(i) and (j)-(l) Intermedi-

ate latent images with estimated kernels during the iterations by

[22] and the proposed method, respectively. (m)-(o) Weight map-

s (see Section 3.1 and 3.2) of the proposed method in the kernel

estimation and the latent image estimation.
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Figure 6. Quantitative evaluation of the proposed data fidelity term

and conventional data fidelity terms on the proposed dataset with

saturated pixels.

a pixel is an outlier; otherwise, it has a large value (Fig-

ure 4(b)). This indicates that the outliers have less effect on

both the intermediate latent image estimation and blur ker-

nel estimation. Figure 5(m)-(o) show the visualizations of

the weights (i.e., ωk
h, ωk

v , and ωx) in blur kernel estimation

and the latent image estimation, where the dark pixels in the

weight maps indicate the positions of outliers. In addition,

we note that
R′(z)

z
is similar to the outlier detection func-

tion used in [22], which demonstrates the effectiveness of

the proposed method.

To further demonstrate the effectiveness of the proposed

data fidelity term, we compare it with conventional data fi-
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(a) Blurred (b) L2 (c) L1 (d) Lorentzian (e) Ours

Figure 7. Effectiveness of the proposed data fidelity term. Deblur-

ring methods based on the conventional data fidelity terms are less

effective to generate clear images.

delity terms used in blind image deblurring. Figure 6 shows

the quantitative evaluation of the proposed method against

those commonly used data fidelity terms on the proposed

dataset with saturated pixels (see Section 6 for details). The

results in Figure 6 show that the blind image deblurring

methods using these conventional data fidelity terms are less

effective, as these data fidelity terms are sensitive to outlier-

s as discussed in Section 2.1. Furthermore, the proposed

algorithm generates results with higher PSNR values. Fig-

ure 7 shows visual comparisons. The deblurred results gen-

erated by those commonly used data fidelity terms contain

significant ringing artifacts and blur residues. In contrast,

our method generates clearer results with fine textures.

Note that although a truncated ℓ2-norm has the similar

shape to R(z), the truncated ℓ2-norm based data fidelity ter-

m is different from the proposed data fidelity term. Our data

fidelity term is continuously differentiable, and its weight

in the IRLS method is able to detect the regions of outliers

(see Section 4.1 and Figure 5). However, the truncated ℓ2-

norm based data fidelity term is not differentiable and does

not have these properties (see the supplemental material for

more details).

4.2. Relation with Outlier Handling Methods

Difference from Pan et al. [22]. Recently, Pan et al. [22]

develop an outlier handling method for blind image deblur-

ring. Our method is different from [22] in the following as-

pects. First, the method [22] uses the conventional ℓ1-norm

based data fidelity term in the intermediate latent image up-

date process, which is less effective for saturated or clipped

pixels. Second, this method needs to extract salient edges

from the intermediate latent image by an ad-hoc method,

which introduces an extra step to detect outliers and then

refine the selected edges. However, this strategy is less ef-

fective when the salient edges are not correctly selected or

the outliers are not detected. Furthermore, the intermediate

latent image generated by the method with ℓ1-norm based

data fidelity term usually contains significant artifacts and

blur residue, which are likely to be selected in the edge se-

lection step, thus affecting kernel estimation (Figure 7(c)).

Third, although Pan et al. [22] use a similar robust function

in the non-blind deconvolution as the methods [29] do, they

do not analyze the property of this function and demonstrate

its effectiveness on kernel estimation.

In contrast, the proposed method does not involve the ad-

hoc edge selection or extra outlier detection in blur kernel

estimation. Instead of finding a good mask to remove out-

liers, the proposed algorithm estimates intermediate latent

images and blur kernels iteratively within a unified MAP

framework. With the help of the proposed data fidelity ter-

m, the outliers have less effect on blur kernel estimation and

latent image estimation as discussed in Section 4.1, thereby

facilitating the following kernel estimation.

Figure 5 shows one example where the method [22] does

not perform well. The main reason is that the salient edges

are not correctly selected (Figure 5(d)-(f)). In contrast, the

proposed method generates a clear image with fine details

(Figure 5(c)) and the weights derived from the IRLS itera-

tion are able to detect outliers (Figure 5(m)-(o)).

Difference from Cho et al. [4] and Whyte et al. [29]. As

discussed in the introduction, the methods [4, 29] mainly fo-

cus on the non-blind deconvolution. To handle blind image

deblurring, the methods [4, 29] first manually select some

regions without outliers from the input images to estimate

blur kernels using the kernel estimation method [3], and

then apply their proposed non-blind deconvolution method-

s. However, it is difficult to select a good image patch when

the outliers are ubiquitously distributed in a blurred image

(e.g., saturated pixels in Figure 8(a)). Without good kernel

estimates, clear images cannot be recovered well. Figure 8

shows an example where the methods [4, 29] do not recover

clear images as [3] is less effective for images with outliers.

We note that the methods [4, 29] can be straightforward-

ly extended to blind deblurring based on the MAP frame-

work, where the intermediate latent image estimation de-

rives from their proposed non-blind deconvolution methods

[4, 29] and the kernel estimation is based on the ℓ1-norm.

However, these straightforward extensions do not perform

well as shown in Figure 8(c) and (e).

5. Extension to Non-Uniform Deblurring

The proposed method can be directly extended for non-

uniform deblurring where the blurred images are acquired

from tilting and rotating cameras [6, 7, 25, 28, 30]. Based

on the geometric model of camera motion [28, 30], the non-

uniform blur model can be expressed as:

y = Kx+ n = Ak+ n, (11)

where y,x,k and n are vector forms of y, x, k and n, re-

spectively. In model (11), K and A denote the blur kernel

matrix and image matrix with respect to the blur kernel k

and latent image x. Based on (11), the non-uniform deblur-

ring process is achieved by alternatively minimizing:

min
x

R(Kx− y) + λ‖∇x‖0.8 (12)
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(a) Blurred image (b) [3]+[4] (c) Extension of [4] (d) [3]+[29] (e) Extension of [29] (f) Ours

Figure 8. Comparison with Cho et al. [4] and Whyte et al. [29] and their possible extensions.

and
min
k

R(Ak− y) + γ‖k‖1. (13)

We employ the fast forward approximation [7, 21, 33] to

estimate the latent image x and the blur kernel k. The algo-

rithmic details are presented in the supplementary material.

6. Experimental Results

We present experimental evaluations of the proposed al-

gorithm against the state-of-the-art blind deblurring meth-

ods. First, we examine our algorithm on two synthetic im-

age datasets with different significant outliers (i.e., saturat-

ed pixels and impulse noise). Then, we evaluate our method

on real captured images with outliers. Finally, we quantita-

tively evaluate our method on two publicly available image

datasets [16, 26] without outliers. As shown in [4, 22, 27],

the effects of nonlinear camera response function can be

minimized by using raw camera output or alleviated by ap-

plying an inverse response curve obtained from camera cal-

ibration before kernel estimation. Thus we do not consider

the nonlinear camera response function [27] in the follow-

ing experiments. Due to the comprehensive experiments

performed, we only show the main results in this section,

and present more results in the supplemental material.

Parameter settings. In all experiments, we set γ and λ in

(3) as 0.1 and 0.008, respectively. The parameters a and b
in (2) are set to be 459/

√
2π and 2601/2. We empirically

set tmax = 4 as a trade-off between accuracy and speed. The

proposed algorithm is implemented in MATLAB on a com-

puter with an Intel Core i7-4790K CPU and 32 GB RAM.

All the color images are converted to grayscale ones in the

kernel estimation process. In the final deconvolution pro-

cess, each color channel is processed independently. The

MATLAB code is publicly available on the authors’ web-

sites.

Dataset with saturated pixels. To evaluate the effective-

ness of the proposed method, we create a dataset containing

5 ground-truth low-light images with saturated pixels (see

the supplemental material for details) and 8 kernels from

[16]. Similar to [22], each ground-truth image is syntheti-

cally blurred by 8 blur kernels and high-intensity pixels are

clipped. We also add 1% random noise on each blurred im-

age. For fair comparisons, we use the original implementa-

tions of the state-of-the-art methods [3, 8, 20, 22, 23, 33]
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Figure 9. Quantitative evaluation on the dataset with saturated pix-

els in terms of PSNR.

to estimate blur kernels. The non-blind deconvolution

method [4] is used to generate the final deblurring results.

We use the PSNR and error ratio [16] as the quality met-

rics. Figure 9 shows that the proposed algorithm achieves

favorable results against the state-of-the-art methods. As

the methods [3, 20, 33] are not designed for images with

saturated pixels, the PSNR values of the restored images

are lower than other methods. Although the method [8] is

able to deal with images with saturated areas, it is less ef-

fective when the light streaks are not available. Although

the dark channel prior based method [23] is able to handle

images with saturated pixels, this method is sensitive to im-

age noise. The outlier handling method [22] is based on

a heuristic edge selection step for blur kernel estimation.

However, it is less effective when the positions of outliers

are not detected. In contrast, our method generates images

with higher PSNR values. Table 1 reports the average er-

ror ratio of the results in Figure 9 and shows that the pro-

posed algorithm performs favorably against the state-of-the-

art methods. Figure 10 shows an example where the state-

of-the-art methods do not generate clear images. However,

our method generates a clear image with fine textures.

Dataset with impulse noise. To further evaluate the pro-

posed method, we create a dataset containing 30 ground-

truth natural images (see the supplemental material for de-

tails) and 8 kernels from [16], in which we add the impulse

noise (as it is one of the most common non-Gaussian noise)

to each image. The noise density is set to be 0.02. Thus, we

have 240 blurred images in total. We evaluate the proposed

algorithm against several state-of-the-art deblurring meth-

ods including the outlier handling method [22]. We follow

the protocol used in the dataset with saturated pixels for fair

comparisons. Table 2 reports the average PSNR values of

the restored results, where our method achieves a higher P-
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Table 1. Quantitative comparison using the dataset with saturated pixels in terms of error ratio metric.
[3] [33] [20] [8] [23] [22] Ours

Average Error Ratio 18.04 7.42 13.41 34.37 3.83 3.22 3.09

(a) Input (b) [3] (c) [33] (d) [8]

PSNR: 14.72 PSNR: 21.60 PSNR: 17.89 PSNR: 20.11

(e) [23] (f) [22] (g) Ours (h) GT

PSNR: 19.33 PSNR: 21.11 PSNR: 23.52

Figure 10. A synthetic example with saturated pixels (Best viewed

on high-resolution displays with zoom-in).

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

110

Error Ratios

Su
cc

es
s 

R
at

e 
(%

)

Ours
Pan et al. [22]
Pan et al. [23]
Zhong et al. [34]
Xu et al. [33]
Levin et al. [17]
Cho and Lee [3]

0.01 0.02 0.03 0.04 0.05
24

26

28

30

32

34

36

Noise Density (%)

A
ve

ra
ge

 P
SN

R
 V

al
ue

s

Ours
Pan et al. [22]
Pan et al. [23]
Zhong et al. [34]
Xu et al. [33]

(a) Dataset with impulse noise (b) Robustness to impulse noise

Figure 11. Quantitative evaluations on dataset with impulse noise.

SNR than the others. The error ratio [16] is also used as

the quality metric. As Figure 11(a) shows, our method per-

forms favorably against the state-of-the-art methods.

We evaluate our method using images with differen-

t noise densities. Figure 11(b) shows that the proposed al-

gorithm performs well even when the noise density is high.

Figure 12 shows a synthetic example with impulse noise

from the dataset. Since the conventional data fidelity terms

are not robust to outliers, the state-of-the-art blind deblur-

ring algorithms [3, 17, 33] do not estimate the blur kernels

well, thus resulting in blurred results with significant ring-

ing artifacts (Figure 12(b), (c), and (d)). The method [34] is

designed to deal with Gaussian noise, but less effective for

impulse noise. Although the recent method [23] is able to

address saturated images, it is less effective for images with

noise as pointed in the work. Thus, the blur kernels esti-

mated by [23, 34] are not accurate which accordingly lead-

s to results with significant ringing artifacts (Figure 12(e)

and (f)). The method [22] is designed to handle outlier-

s including impulse noise. However, this method involves

a heuristic edge selection and outlier detection step and is

less effective when the edges are not correctly selected or

the outliers are not detected (Figure 12(g)). In contrast, our

estimated blur kernel is visually close to the ground-truth

blur kernel, and the recovered latent image contains clearer

details and fewer ringing artifacts (Figure 12(h)).

Real images. We evaluate the proposed algorithm and oth-

er methods using real images with outliers. Figures 13

(a) Input (b) [3] (c) [17] (d) [33]

PSNR: 16.00 PSNR: 20.05 PSNR: 26.13 PSNR: 26.12

(e) [34] (f) [22] (g) Ours (h) GT

PSNR: 22.31 PSNR: 28.76 PSNR: 31.37

Figure 12. A synthetic example with impulse noise (Best viewed

on high-resolution displays with zoom-in).

(a) Blurred (b) [3] (c) [17] (d) [33]

(e) [8] (f) [23] (g) [22] (h) Ours

Figure 13. A real captured image with numerous saturated pixels.

and 14 show two challenging real captured images with

numerous saturated areas and unknown noise. The state-

of-the-art methods [3, 17, 23, 33] do not perform well on

these examples due to the effects of saturated areas. The

method by Hu et al. [8] does not generate clear results

either due to unavailable light streaks (Figures 13(e) and

14(e)). The deblurred results of [22] contain ringing arti-

facts, and some details are not recovered well. In contrast,

our method successfully estimates the blur kernels and gen-

erates better-deblurred results. Furthermore, the compari-

son results shown in Figures 13 and 14 demonstrate that the

proposed algorithm is able to prevent the effects of outliers

in blur kernel estimation.

Non-uniform examples. As our method can be extended to
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Table 2. Quantitative comparison on the proposed dataset with impulse noise in terms of PSNR.
[3] [17] [33] [34] [23] [22] Ours

Average PSNR 28.5819 27.1834 30.6736 28.5304 29.3544 32.0176 34.5818

(a) Blurred (b) [3] (c) [17] (d) [33]

(e) [8] (f) [23] (g) [22] (h) Ours

Figure 14. A real example with numerous saturated pixels.

(a) Blurred (b) [3] (c) [13] (d) [29]

(e) [33] (f) [22] (g) Ours (h) Our kernels

Figure 15. The proposed algorithm applies to images with non-

uniform blur and generates results with fewer ringing artifacts

(Best viewed on high-resolution displays with zoom-in).

deal with non-uniform blur, we also report results on an im-

age degraded by spatially-variant motion blur in Figure 15.

Due to saturated pixels, the state-of-the-art non-uniform de-

blurring methods [13, 29] do not perform well. Compared

to the outlier handling method [22], our method generates

an image with fewer artifacts and clearer textures.

Benchmark datasets without outliers. Our method can be

applied to deblur natural images without outliers. To verify

the effectiveness of the proposed method, we use the natural

image benchmark datasets [16, 26] for quantitative evalua-

tions and follow the protocols of [16, 26] for fair compar-

isons. Although the proposed algorithm focuses on han-

dling outliers, our method achieves comparable results a-
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Figure 16. Quantitative evaluations on two benchmark datasets.

0 2 4 6 8 10 12
0.79

0.8

0.81

0.82

0.83

0.84

Iterations

A
ve

ra
ge

 K
er

ne
l S

im
ila

rit
y

0 5 10 15 20 25
408

409

410

411

412

413

414

415

416

417

Iterations

A
ve

ra
ge

 E
ne

rg
ie

s

Figure 17. Convergence property of the proposed algorithm.

gainst the state-of-the-art methods [3, 5, 13, 17, 19, 20, 22,

23, 25, 26, 31, 33, 34] on both datasets without outliers, as

shown in Figure 16. More experimental results are included

in the supplemental material.

6.1. Convergence of Proposed Algorithm

As our energy function is nonlinear and highly noncon-

vex, a natural question is whether our optimization method

converges (e.g., to a good local minimum) or not. We

quantitatively evaluate the convergence property of the pro-

posed algorithm on the proposed dataset with impulse noise

(see Section 6 for details). The results shown in Figure 17

demonstrate that the proposed method converges after less

than 12 iterations, in terms of the average kernel similarity

values and the energies computed from (3).

7. Conclusions

In this paper, we propose a robust method to measure

the goodness-of-fit to minimize the effects of outliers in the

blur kernel estimation. We analyze how the proposed algo-

rithm handles outliers, discuss the relationship between the

proposed method and other related methods, and show that

the proposed algorithm generates reliable intermediate la-

tent images for kernel estimation without ad-hoc detection

process. Extensive experimental evaluations on benchmark

datasets and real images demonstrate the proposed method

performs favorably against the state-of-the-art methods for

uniform and non-uniform deblurring.
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