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Abstract

Real-time scene understanding has become crucial in

many applications such as autonomous driving. In this pa-

per, we propose a deep architecture, called BlitzNet, that

jointly performs object detection and semantic segmenta-

tion in one forward pass, allowing real-time computations.

Besides the computational gain of having a single network

to perform several tasks, we show that object detection

and semantic segmentation benefit from each other in terms

of accuracy. Experimental results for VOC and COCO

datasets show state-of-the-art performance for object de-

tection and segmentation among real time systems.

1. Introduction

Object detection and semantic segmentation are two fun-

damental problems for scene understanding in computer vi-

sion. The task of object detection is to identify on an image

all objects of predefined categories and localize them via

bounding boxes. Semantic segmentation operates at a finer

scale; its aim is to parse an image and associate a class label

to each pixel. Despite the similarities of the two tasks, only

few works have tackled them jointly [3, 11, 28, 29].

Yet, there is a strong motivation to address both prob-

lems simultaneously. On the one hand, good segmentation

is sufficient to perform detection in some cases. As Fig-

ure 1 suggests, an object may be sometimes identified and

localized from segmentation only by simply looking at con-

nected components of pixels sharing the same label. In the

more general case, it is easy to conduct a simple experi-

ment showing that ground-truth segmentation is a meaning-

ful clue for detection, using for instance ground-truth seg-

mentation as the input of an object detection pipeline. On

the other hand, correctly identified detections are also use-

ful for segmentation as shown by the success of weakly su-

pervised segmentation techniques that learn from bounding

box annotation only [21]. The goal of our paper is to solve
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(a) Generated bounding boxes (b) Generated masks

Fig. 1: The outputs of our pipeline. (a) The results of object

detection. (b) The results of semantic segmentation.

efficiently both problems at the same time, by exploiting

image data annotated at the global object level (via bound-

ing boxes), at the pixel level (via partially or fully annoated

segmentation maps), or at both levels.

As most recent image recognition pipelines, our ap-

proach is based on convolutional neural networks [12],

which are widely adopted for object detection [6] and se-

mantic segmentation [17]. More precisely, deep neural net-

works were first used as feature extractors to classify a large

number of candidate bounding boxes [6], which is compu-

tationally expensive. The improved version [5] reduces the

computational cost but relies on shallow techniques for ex-

tracting bounding box proposals and does not allow end-to-

end training. This issue was later solved in [25] by making

the object proposal mechanism a part of the neural network.

Yet, the approach remains expensive and relies on a region-

based strategy (see also [13]) that makes the network archi-

tecture inappropriate for semantic segmentation.

To match the real-time speed requirement, we choose

instead to base our work on the Single Shot Detec-

tion (SSD) [16] approach, which consists of a fully-

convolutional model to perform object detection in one for-

ward pass. Besides the fact that it allows all computations to

be performed in real time, the pipeline is more generic, im-

poses less constraints on the network architecture and opens

new perspectives to solve our multi-task problem.

Interestingly, recent work on semantic segmentations are

also moving in the same direction, see for instance [17].

Specific to semantic segmentation, [17] also introduces new
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ideas such as the joint use of feature maps of different reso-

lutions, in order to obtain more accurate classification. The

idea was then improved by adding deconvolutional layers

at all scales to better aggregate context, in addition to using

skip and residual connections [26]. Deconvolutional layers

turned out to be useful to estimate precise segmentations,

and are thus good candidates to design architectures where

localization is important.

In this paper, we consider the multi-task scene under-

standing problem consisting of joint object detection and se-

mantic segmentation. For that purpose, we propose a novel

pipeline called BlitzNet, which will be released as an open-

source software package. BlitzNet is able to provide accu-

rate segmentation and object bounding boxes in real time.

With a single network for solving both problems, the com-

putational cost is reduced, and we show also that the two

tasks benefit from each other in terms of accuracy.

The paper is organized as follows: Section 2 discusses

related work; Section 3 presents our real-time multi-task

pipeline called BlitzNet. Finally, Section 4 is devoted to

our experiments, and Section 5 concludes the paper.

2. Related Work

Before we introduce our approach, we now present tech-

niques for object detection, semantic segmentation, and pre-

vious attempts to combine both tasks.

Object detection. The field of object detection has been

recently dominated by variants of the R-CNN architec-

ture [5, 25], where bounding-box proposals are indepen-

dently classified by a convolutional neural network, and

then filtered by a non-maximum suppression algorithm. It

provides great accuracy, but relatively low inference speed

since it requires a significant amount of computation per

proposal. R-FCN [13] is a fully-convolutional variant that

further improves detection and significantly reduces the

computational cost per proposal. Its region-based mecha-

nism is however dedicated to object detection only.

SSD [16] is a recent state-of-the-art object detector,

which uses a sliding window approach instead of generated

proposals to classify all boxes directly. SSD creates a scale

pyramid to find objects of various sizes in one forward pass.

Because of its speed and high accuracy, we have chosen to

build our work on, and subsequently improve, the SSD ap-

proach. Finally, YOLO [23, 24] also provides real-time ob-

ject detection and shares some ideas with SSD.

Semantic segmentation and deconvolutional layers.

Deconvolutional architectures consist of adding to a clas-

sical convolutional neural networks with feature pooling, a

sequence of layers whose purpose is to increase the reso-

lution of the output feature maps. This idea is natural in

the context of semantic segmentation [20], since segmenta-

tion maps are expected to have the same resolution as input

images. Yet, it was also successfully evaluated in other con-

texts, such as pose estimation [19], and object detection, as

extensions of SSD [4] and Faster-R-CNN [14].

Joint semantic segmentation and object detection. The

idea of joint semantic segmentation and object detection

was investigated first for shallow approaches in [3, 18, 29,

7]. There, it was shown that learning both tasks simultane-

ously could be better than learning them independently.

More recently, UberNet [11] integrates multiple vision

tasks such as semantic segmentation and object detection

into a single deep neural network. The detection part is

based on the Faster R-CNN approach and is thus neither

fully-convolutional nor real-time. Closely related to our

work, but dedicated to autonomous driving, [28] also pro-

poses to integrate semantic segmentation and object detec-

tion via a deep network. There, the VGG16 network [27] is

used to compute image features (encoding step), and then

two different sub-networks are used for the prediction of

object bounding boxes and segmentation maps (decoding).

Our work is inspired by these previous attempts, but goes

a step further in integrating the two tasks, with a fully con-

volutional approach where network weights are shared for

both tasks until the last layer, which has advantages in terms

of speed, feature sharing, and simplicity for training.

3. Scene Understanding with BlitzNet

In this section, we introduce the BlitzNet architecture

and discuss its different building blocks.

3.1. Global View of the Pipeline

The joint object detection and segmentation pipeline is

presented in Figure 2. The input image is first processed

by a convolutional neural network to produce a map that

carries high-level features. Because of its high performance

for classification and good trade-off for speed, we use the

network ResNet-50 [9] as our feature encoder.

Then, the resolution of the feature map is iteratively re-

duced to perform a multi-scale search of bounding boxes,

following the SSD approach [16]. Inspired by the hour-

glass architecture [19] for pose estimation and an earlier

work on semantic segmentation [20], the feature maps are

then up-scaled via deconvolutional layers in order to predict

subsequently precise segmentation maps. Recent DSSD ap-

proach [4] uses a similar strategy for object detection the

top part of our architecture presented in Figure 2 may be

seen as a variant of DSSD with a simpler “deconvolution

module”, called ResSkip, that involves residual and skip

connections.

Finally, prediction is achieved by single convolutional

layers, one for detection, and one for segmentation, in one
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Fig. 2: The BlitzNet architecture, which performs object detection and segmentation with one fully convolutional network.

On the left, CNN denotes a feature extractor, here ResNet-50 [9]; it is followed by the downscale-stream (in blue) and the last

part of the net is the upscale-stream (in purple), which consists of a sequence of deconvolution layers interleaved with ResSkip

blocks (see Figure 3). The localization and classification of bounding boxes (top) and pixelwise segmentation (bottom) are

performed in a multiscale fashion by single convolutional layers operating on the output of deconvolution layers.

forward pass, which is the main originality of our work.

3.2. SSD and Downscale Stream

The Single Shot MultiBox Detector [16] tiles an input

image with a regular grid of anchor boxes and then uses

a convolutional neural network to classify these boxes and

predict corrections to their initial coordinates. In the origi-

nal paper [16], the base network VGG-16 [27] is followed

by a cascade of convolutional and pooling layers to form

a sequence of feature maps with progressively decreasing

spatial resolution and increasing field of view. In [16],

each of these layers is processed separately in order to clas-

sify and predict coordinates correction for a set of default

bounding boxes of a particular scale. At test time, the set

of predicted bounding boxes is filtered by non-maximum

suppression (NMS) to form the final output.

Our pipeline uses such a cascade (see Figure 2), but the

classification of bounding boxes and pixels to build the seg-

mentation maps is performed in subsequent layers, called

deconvolutional layers, which will be described next.

3.3. Deconvolution Layers and ResSkip Blocks

Modeling visual context is often a key to complicated

scenes parsing, which is typically achieved by pooling lay-

ers in a convolutional neural network, leading to large re-

ceptive fields for each output neuron. For semantic segmen-

tation, precise localization is equally important, and [20]

proposes to use deconvolutional operations to solve that is-

sue. Later, this process was improved in [19] by adding

skip connections. Apart from combining high- and low-

level features it also eases the learning process [9].

Like [4] for object detection and [19] for pose estima-

tion, we also use such a mechanism with skip connections

that combines feature maps from the downscale and up-

scale streams (see Figure 2). More precisely, maps from

the downscale and upscale streams are combined with a

simple strategy, which we call ResSkip, presented in Fig-

ure 3. First, incoming feature maps are upsampled to the

size of corresponding skip connection via bilinear interpo-

lation. Then both skip connection feature maps and up-

sampled maps are concatenated and passed through a block

(1 × 1 convolution, 3 × 3 convolution, 1 × 1 convolution)

and summed with the upsampled input through a residual

connection. The benefits of this topology will be justified

and discussed in more details in the experimental section.

3.4. Multiscale Detection and Segmentation

The problem of semantic segmentation and object detec-

tion share several key properties. They both require per-

region classification, based on the pixels inside an object

while taking into account its surrounding, and benefit from

rich features that include localization information. Instead

of training a separate network to perform these two tasks,

we train a single one that allows weight sharing, such that

both tasks can benefit from each other.

In our pipeline, most of the weights are shared. Object

detection is performed by a single convolutional layer that

predicts a class and coordinate corrections for each bound-

ing box in the feature maps of the upscale stream. Similarly,

a single convolutional layer is used to predict the pixel la-
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Fig. 3: ResSkip block integrating feature maps from the up-

scale and downscale streams, with skip connection.

bels and produce segmentation maps. To achieve this we

upscale all the activations of the upscale stream, concate-

nate them and feed to the final classification layer.

3.5. Speeding up Non­Maximum Suppression

Increasing the number of anchor boxes heavily affects

inference time because it performs NMS on a potentially

huge number of proposals (in the worst case scenario, it may

be all of them). Indeed, we observed that by using sliding

window proposals, addition of small scale proposals slows

down the inference even more than increasing image reso-

lution. Surprisingly, non-maximum suppression may then

become the bottleneck at inference time. We observed that

this occurred sometimes for particular object classes that re-

turn a lot of bounding box candidates.

Therefore, we suggest a different post-processing strat-

egy to accelerate detection when there are too many pro-

posals. For each class, we pre-select the top 400 boxes

with largest scores, and perform NMS leaving only 50 of

them. Overall, the final detection is the top 200 highest scor-

ing boxes per image after non-maximum suppression. This

strategy yields a reasonable computational time for NMS,

and has marginal impact on accuracy.

3.6. Training and Loss Functions

Given labeled training data where each data point is an-

notated with segmentation maps, or bounding boxes, or

with both, we consider a loss function which is simply the

sum of two loss functions of the two task. Note that we tried

reweighting the two loss functions, but we did not observe

noticeable improvements in terms of accuracy.

For segmentation, the loss is the cross-entropy between

predicted and target class distribution of pixels [1]. Specif-

ically, we use a 1×1 convolutional operation with 64 chan-

nels to map each layer of the upscale-stream to an interme-

diate representation. After this, each layer is upscaled to

the size of the last layer using bilinear interpolation and all

maps are concatenated. This representation is mapped to c
feature maps, where c is the number of classes, by using

3× 3 convolutions to predict posterior class probabilities.

For detection, we use the same loss function as [16]

when performing tiling of the input image with anchor

boxes and matching them to ground truth bounding boxes.

We use activations of each layer in the upscale-stream to

regress corrections for coordinates of the anchor boxes and

to predict the class probability distribution. We use the same

data augmentation suggested in the original SSD pipeline,

namely photometric distortions, random crops, horizontal

flips and zoom-out operation.

4. Experiments

We now present various experiments conducted on the

COCO, Pascal VOC 2007 and 2012 datasets, for which both

bounding box annotations and segmentation maps are avail-

able. Section 4.1 discusses in more details the datasets and

the metrics we used; Section 4.2 presents technical details

that are useful to make our work reproducible, and then

each subsequent subsection is devoted to a particular ex-

periment. The last two sections discuss the inference speed

and clarify particular choices in the network architecture.

Our code is now available as an open-source software pack-

age at http://thoth.inrialpes.fr/research/

blitznet/.

4.1. Datasets and Metrics

We use the COCO [15], VOC07, and VOC12

datasets [2]. All images in the VOC datasets are annotated

with ground truth bounding boxes of objects and only a sub-

set of VOC12 is annotated with target segmentation masks.

The VOC07 dataset is divided into 2 subsets, trainval (5011

images) and test (4952 images). The VOC12-train subset

contains 5717 images annotated for detection and 1464 of

them have segmentation ground truth as well (VOC12-train-

seg), while VOC12-val has 5823 images for detection and

1449 images for segmentation (we call this subset VOC12-

val-seg). Both datasets have 20 object classes.

The COCO dataset includes 80 object categories for de-

tection and instance segmentation. For the task of detec-

tion, there are 80k images for training and 40k for valida-

tion. There is no either a protocol for evaluation of seman-

tic segmentation or even annotations to train it from. In this

work, we are interested particularly in semantic segmenta-

tion masks so we obtain them from instance segmentation

annotations by combining instances of one category.

To carry out more extensive experiments we leverage ex-

tra annotations for VOC12 segmentation provided by [8],

which gives a total of 10,582 fully annotated images for
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training that we call VOC12-train-seg-aug. We still keep the

original PASCAL annotations in VOC12 val-seg, even if a

more precise annotation is available in [8], for a fair com-

parison with other methods that do not benefit from these

extra annotations.

In VOC12 and VOC07 datasets, a predicted bounding

box is correct if its intersection over union with the ground

truth bounding box is higher than 0.5. The metric for eval-

uation detection performance is the mean average precision

(mAP) and the quality of predicted segmentation masks is

measured with mean intersection over union (mIoU).

4.2. Experimental Setup

In this section, we discuss the common setup to all ex-

periments. BlitzNet is coded in Python and TensorFlow.

All experiments were conducted on a single Titan X GPU

(Maxwell architecture), which makes the speed comparison

with previous work easy, as long as they use the same GPU.

Optimization Setup. In all our experiments, unless ex-

plicitly stated otherwise, we use the Adam algorithm [10],

with a mini-batch size of 32 images. The initial learning rate

is set to 10−4 and decreased twice during training by a fac-

tor 10. We also use a weight decay parameter of 5× 10−4.

Modeling setup. As already mentioned, we use ResNet-

50 [9] as a feature extractor, 512 feature maps for each

layer in down-scale and up-scale streams, 64 channels for

intermediate representations in the segmentation branches;

BlitzNet300 takes input images of size 300 × 300 and

BlitzNet512 uses 512 × 512 images. Different versions

of the network vary in the stride of the last layer of the

upscaling-stream. Strides 4 and 8 in the result tables are

denoted as (s4) and (s8) suffix respectively.

4.3. PASCAL VOC 2007

In this experiment, we train our networks on the union

of VOC07 trainval set and VOC12 trainval set; then, we test

them on the VOC07 test set. The results are reported in

the Table 1. For experiments that involve segmentation, we

leverage ground truth segmentation masks during training

if they are available in VOC12 train-seg-aug or in VOC12

val-seg. When using images of size 300× 300 as input, the

stochastic gradient descent algorithm is performed by train-

ing for 65K iterations with the initial learning rate, which

is then decreased after 35K and 50K steps. When training

on 512 × 512 images, we choose the batch size of 16 and

learn for 75K iterations decreasing the learning rate after

45K and 60K steps.

The results show that BlitzNet300 outperforms SSD300

and YOLO with a 78.5 mAP, while being a real time detec-

tor. BlitzNet512 (s8) performs 0.8% better than R-FCN -

the most accurate competitive model, scoring 81.2% mAP.

We further improve the results by training for detection and

segmentation jointly achieving 79.1% and 81.5% mAP with

BlitzNet300 (s4) and BlitzNet512 (s8) respectively.

We think that the performance gain for BlitzNet300 over

BlitzNet512 could be explained by the larger stride used for

the last layer, which is 4, vs 8 for BlitzNet512, and seems

to be helpful for better learning finer details. Unfortunately,

training BlitzNet512 with stride 4 was impossible because

of memory limitations on our single GPU.

4.4. PASCAL VOC 2012

In this experiment, we use VOC12 train-seg-aug for

training and VOC12 val-seg for testing both segmentation

and detection. We train the models for 40K steps with the

initial learning rate, and then decrease it after 25K and 35K

iterations. As Table 3 shows, joint training improves ac-

curacy on both tasks comparing to learning a single task.

Detection improves by more than 1% while segmentation

mIoU grows by 0.4%. We argue that this result could be

explained by feature sharing in the universal architecture.

To confirm this fact, we conducted another experiment

by adding the VOC07 trainval images to VOC12 train-seg-

aug for training. Then, the proportion of images that have

segmentation annotations to the ones that have detection

ones only is 2/1, in contrast to the previous experiments

where all the images where annotated for both tasks. To

deal with cases where a mini-batch has no images to train

for segmentation, we set the corresponding loss to 0 and

do not back propagate with respect to these images, other-

wise we use all images that have target segmentation masks

in a batch to update the weights. The results presented in

Table 4 show an improvement of 3.3%. Detection also im-

proves in mAP by 0.6%. Figure 5 shows that extra data for

detection helps to improve classification results and to mit-

igate confusion between similar categories. In Table 2, we

report results for these models on the VOC12 test server,

which again shows that our results are competitive. More

qualitative results, including failure cases, are presented in

the supplementary material.

4.5. Microsoft COCO Dataset

To further validate the proposed framework, we conduct

experiments on the COCO dataset [15]. Here, as explained

in Section 4.1, we obtain segmentation masks and again

training the model on different types of data, i.e., detection,

segmentation and both, to study the influence of joint train-

ing on detection accuracy.

We train the BlitzNet300 or BlitzNet512 models for

700k iterations in total, starting from the initial learning rate

10−4 and then decreasing it after the 400k and 550k itera-

tions by the factor of 10. Table 5 shows clear benefits from

joint training for both of the tasks on the COCO dataset.

To be comparable with other methods, we also report the
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network backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

SSD300* [16] VGG-16 77.6 79.2 84.0 75.6 69.9 50.9 86.7 85.9 88.6 60.1 81.4 76.8 86.2 87.3 84.2 79.5 52.7 79.3 79.4 87.7 77.2

SSD300* (our reimpl) ResNet-50 75.3 75.3 85.1 72.5 67.4 45.5 85.7 83.9 82.8 57.2 79.1 76.7 83.1 86.5 83.3 77.5 50.1 74.4 79.4 86.5 73.3

BlitzNet300 (s8) ResNet-50 78.5 79.7 85.9 80.1 72.1 50.9 87.0 84.6 88.2 62.3 83.7 77.1 87.3 85.0 84.7 79.2 54.9 81.5 80.0 87.0 78.0

BlitzNet300 (s4) ResNet-50 78.2 86.8 85.1 78.3 70.4 47.5 85.4 85.0 86.2 59.0 81.8 77.9 86.9 86.1 85.4 78.6 54.9 81.9 81.1 87.7 78.2

BlitzNet300 + seg (s4) ResNet50 79.1 86.7 86.2 78.9 73.1 47.6 85.7 86.1 87.7 59.3 85.1 78.4 86.3 87.9 84.2 79.1 58.5 82.5 81.7 85.7 81.8

SSD512* [16] VGG-16 79.6 84.9 85.8 80.7 73.0 58.0 87.8 88.4 87.6 63.6 85.4 73.1 86.3 87.7 83.7 82.6 55.3 81.5 79.1 86.4 80.3

BlitzNet512 (s8) ResNet-50 80.7 87.7 85.4 83.6 73.3 58.5 86.6 87.9 88.5 63.7 87.3 77.6 87.3 88.1 86.2 81.3 57.1 84.9 79.8 87.9 81.5

R-FCN[13] ResNet-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

Faster RCNN ResNet-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

YOLO [23] YOLO net 63.4 - - - - - - - - - - - - - - - - - - - - -

BlitzNet512 + seg (s8) ResNet50 81.5 87.0 87.6 83.5 75.7 59.1 87.6 88.0 88.8 64.1 88.4 80.9 87.5 88.5 86.9 81.5 60.6 86.5 79.3 87.5 81.7

Table 1: Comparison of detection performance on Pascal VOC 2007 test set. The models where trained on VOC07 trainval

+ VOC12 trainval. The models that have suffix “+ seg” where trained for segmentation jointly with data from VOC12 trainval

and extra annotations provided by [8]. The values in columns correspond to average precision per class (%).

network backbone mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

SSD300* [16] VGG-16 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1

BlitzNet300 ResNet50 75.4 87.4 82.1 74.5 61.6 45.9 81.5 78.3 91.4 58.2 80.3 64.9 89.1 83.5 85.7 81.5 50.5 79.9 74.7 84.8 71.1

BlitzNet300 + COCO ResNet50 80.2 91.0 86.5 80.0 70.1 54.7 84.4 84.1 92.5 65.1 83.5 69.2 91.2 88.1 88.5 85.7 55.8 85.4 79.3 89.8 78.2

R-FCN[13] ResNet-101 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9

Faster RCNN ResNet-101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

YOLO [23] YOLOnet 57.9 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8

SSD512* [16] VGG-16 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6

BlitzNet512 ResNet50 79.0 89.9 85.2 80.4 67.2 53.6 82.9 83.6 93.8 62.5 84.0 65.8 91.6 86.6 87.6 84.6 56.8 84.7 73.9 88.0 75.7

BlitzNet512 + COCO ResNet50 83.8 93.1 89.4 84.7 75.5 65.0 86.6 87.4 94.5 69.9 88.8 71.7 92.5 91.6 91.1 88.9 61.2 90.4 79.2 91.8 83.0

Table 2: Comparison of detection performance on Pascal VOC 2012 test set. The models where trained on VOC07

trainval + VOC12 trainval. The BlitzNet models where trained for segmentation jointly with data from VOC12 trainval and

extra annotations provided by [8]. Suffix ‘+ COCO’ means that the model was pretrained on the COCO dataset. The reported

values correspond to average precision per class (%). Detailed results of submissions are available on the VOC12 test server.

network seg det mIoU mAP

BlitzNet300 X - 78.9

BlitzNet300 X X 72.8 80.0

BlitzNet300 X 72.4 -

Table 3: The effect of joint learning on both tasks. The

networks where trained on VOC12 train-seg-aug, and tested

on VOC12 val.

network seg det mIoU mAP

BlitzNet300 X - 83.0

BlitzNet300 X X 75.7 83.6

BlitzNet300 X 72.4 -

Table 4: The effect of extra data with bounding box an-

notations on segmentation performance. The networks

were trained on VOC12 trainval (aug) + VOC07 tainval.

Detection performance is measured in average precision

(%) and mean IoU is the metric for segmentation segmen-

tation(%).

network seg det mIoU mAP

BlitzNet512 X - 33.2

BlitzNet512 X X 53.5 34.1

BlitzNet512 X 48.3 -

Table 5: The effect of joint training tested on COCO

minival2014. The networks were trained on COCO train.

method
minival2014 test-dev2015

int 0.5 0.75 int 0.5 0.75

BlitzNet300 29.7 49.4 31.2 29.8 49.7 31.1

BlitzNet512 34.1 55.1 35.9 34.2 55.5 35.8

Table 6: Detection performance of BlitzNet on the

COCO dataset, with minival2014 and test-dev2015 splits

The networks were trained on COCO trainval dataset. De-

tection performance is measured in average precision (%)

with different criteria, namely, minimum Jaccard overlap

between annotated and predicted bounding box is 0.5, 0.75

or integrated from 0.5 to 0.95 % (column “int”).
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network backbone mAP % FPS # proposals input resolution

Faster-RCNN[25] VGG-16 73.2 7 - ∼ 1000× 600

R-FCN[13] ResNet-101 80.5 9 - ∼ 1000× 600

SSD300*[16] VGG-16 77.1 46 8732 300× 300

SSD512*[16] VGG-16 80.6 19 24564 512× 512

YOLO [23] YOLO net 63.4 46 - -

BlitzNet300 (s4) ResNet-50 79.1 24 45390 300× 300

BlitzNet512 (s8) ResNet-50 81.5 19.5 32766 512× 512

Table 7: Comparison of inference time on PASCAL VOC 2007, when running on a Titan X (Maxwell) GPU.

Block type mAP mIoU

Hourglass-style [19] 78.7 75.6

Refine-style [22] 78.0 76.1

ResSkip (no res) 78.4 75.3

ResSkip (ours) 79.1 75.7

Table 8: The effect of fusion block type on performance,

measured on detection (VOC07-test) and segmentation

(VOC12-val) The networks were trained on VOC12-train

(aug) + VOC07 tainval, see Sec. 4.1. Detection performance

is measured in average precision (%) and mean IoU is the

metric for segmentation segmentation(%).

detection results on COCO test-dev2015 in Table 6. Our

results are also publicly available on the COCO evaluation

test server.

4.6. Inference Speed Comparison

In Table 7 and Figure 4, we report speed comparison to

other state-of-the-art detection pipelines. Our approach is

the most accurate among the real time detectors working 24

frames per second (FPS) and in the setting close to real time

(19 FPS), it provides the most accurate detections among

the counterparts, while also providing semantic segmenta-

tion mask. Note that all methods are run using the same

GPU (Titan X, Maxwell architecture).

4.7. Study of the Network Architecture

The BlitzNet pipeline simultaneously operates with sev-

eral types of data. To demonstrate the effectiveness of the

ResSkip block, we set up the following experiment: we

leave the pipeline unchanged while only substituting this

block with another one. We consider in particular fusion

blocks that appear in the state-of-the-art approaches on se-

mantic segmentation. [19] [22] [26]. Table 8 shows that

our ResSkip block performs similar or better (on average)

than all counterparts, which may be due to the fact that its

design uses similar skip-connections as the Backbone net-

work ResNet50, making the overall architecture more ho-

mogeneous.

Optimal parameters for the size of intermediate represen-

tations in segmentation stream (64) as well as the number of

channels in the upscale-stream (512) where found by using

a validation set. We did not conduct experiments by chang-

ing the number of layers in the upscale-stream as long as

our architecture is designed to be symmetric with respect

to the convolutions and the deconvolutions steps. Reduc-

ing the number of the steps will result in a smaller number

of layers in the upscale stream, which may deteriorate the

performance as noted in [16].
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Fig. 4: Speed comparison with other methods. The de-

tection accuracy of different methods measured in mAP is

depicted on y-axis. x-coordinate is their speed, in FPS.

5. Conclusion

In this paper, we introduce a joint approach for object de-

tection and semantic segmentation. By using a single fully-

convolutional network to solve both problems at the same

time, learning is facilitated by weight sharing between the

two tasks, and inference is performed in real time. More-

over, we show that our pipeline is competitive in terms of

accuracy, and that the two tasks benefit from each other.
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Fig. 5: Effect of extra data annotated for detection on the quality of estimated segmentation masks. The first column

displays test images; the second column contains its segmentation ground truth masks. The third column corresponds to

segmentations predicted by BlitzNet300 trained on VOC12 train-segmentation augmented with extra segmentation masks

and VOC07. The last row is segmentation masks produced by the same architecture but trained without VOC07.
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